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Abstract
Background: Existing tree and forest methods are powerful bioinformatics tools to explore high
dimensional data including high throughput genomic data. However, they cannot deal with the data
generated by recent genotyping platforms for single nucleotide polymorphisms due to the massive
size of the data and its excessive memory demand.

Results: Using the recursive partitioning technique, we developed a new software package,
Willows, to maximize the utility of the computer memory and make it feasible to analyze massive
genotype data. This package includes three tree-based methods – classification tree, random forest,
and deterministic forest, and can efficiently handle the massive amount of SNP data. In addition, this
package can easily set different options (e.g., algorithms and specifications) and predict the class of
test samples.

Conclusion: We developed Willows in a user friendly interface with the goal of maximizing the
use of memory, which is critical for analysis of genomic data. The Willows package is well
documented and publicly available at http://c2s2.yale.edu/software/Willows.

Background
Successes of genomewide association (GWA) studies have
demonstrated repeatedly that single nucleotide polymor-
phisms (SNPs) can be used to identify genetic variants
underlying complex diseases [1-5]. Thanks to those suc-
cesses, GWA studies have emerged as the most effective
study designs for identifying candidate genes.

Classification trees and forest-based methods [6-9] are
powerful tools for identifying complex relationships
between a response and many predictors, particularly if
the predictors have interactive effects on the response.
These methods have been widely used, such as in the anal-
yses of genomic data [10-13]. However, the grand scale of
the GWA data presents a significant computational chal-
lenge to any data analysis. For example, the genotype data

from the Framingham Heart Study (FHS, 9,300 subjects
and 550,000 SNPs) require more than 38.1 GB memory
for input when each genotype at a SNP marker is stored in
the double data type or 4.8 GB when stored in the byte
type. For a typical GWA study, e.g., the Cancer Genetic
Markers of Susceptibility (CGEMS) breast cancer projects
(2,434 subjects and 550,000 SNPs) [14], the genotype
data occupy 10 GB in the double type and 1.2 GB in the
byte type. None of the existing tree/forest tools are capable
of analyzing these massive data in commonly available
computing facilities. It is noteworthy that PLINK [15] and
Chen, et al. [16] already utilize efficient memory use algo-
rithms similar to what we propose to use in trees and for-
ests, and the compressed data format designed by PLINK
has been adopted by NCBI to distribute GWA data. Thus,
incorporating an efficient memory use algorithm in other

Published: 5 May 2009

BMC Bioinformatics 2009, 10:130 doi:10.1186/1471-2105-10-130

Received: 20 January 2009
Accepted: 5 May 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/130

© 2009 Zhang et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 6
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19416535
http://www.biomedcentral.com/1471-2105/10/130
http://creativecommons.org/licenses/by/2.0
http://c2s2.yale.edu/software/Willows
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2009, 10:130 http://www.biomedcentral.com/1471-2105/10/130
statistical methods such as tree- and forest-based methods
is imperative in order to apply those well-established
methods for analyzing ultra-dense SNP data.

To this end, we have developed a new software package,
Willows. The statistical method is based on the classical
recursive partitioning technique [17,18]. Compression/
decompression algorithms have been implemented in
Willows to efficiently reduce the memory level used for
the storage and analysis of SNP data. Three recursive par-
titioning-based methods – classification tree, random for-
est, and deterministic forest – have been included in this
package, which can efficiently handle the massive amount
of SNP data. In addition, this package is equipped with a
user-friendly graphic interface by which users can easily
select different options (e.g., algorithms and specifica-
tions) and predict the class of a test sample.

Implementation
Classification tree
Classification tree is based on recursive partitioning
method [6,18]. It extracts homogeneous strata from the
sample and builds a classification rule to predict class
membership. A splitting rule consists of two components:
a predictor and its corresponding threshold. The quality
of a splitting rule is measured by node impurity such as
Gini index or entropy. Once the root node is split into two
daughter nodes, the daughter nodes can be further split by
repeating the splitting procedure. This partitioning proc-
ess continues recursively until no more split is possible.
To avoid over fitting, pruning procedures is used to elim-
inate redundant nodes [18-20].

Random forest
Random forests [7] grows many classification trees
instead of one. Suppose that the sample size in a data set
is N. First, we draw N observations at random from the
original data with replacement. Then, we grow a tree using
this bootstrap sample. Trees in a random forest are built
differently from the classification tree described in the

previous section in the following two ways: (a) the trees in
the random forest are not pruned; and (b) we do not con-
sider all predictors in selecting the optimal node-split. In
fact, if there are M predictors in the original data set, m out
of M predictors are chosen randomly to split a node; here
m is a pre-specified, much smaller number than M.

Random forest ranks variables by a variable importance
index [7], which reflects the "importance" of a variable on
the basis of the classification accuracy, while considering
the interaction among variables. Specifically, in a random
forest each tree is constructed using a different cohort of
bootstrap samples from the original cohort. About one-
third of the samples are left out of the bootstrap samples
and hence not used in the construction of the tree. These
left-out samples are referred to as the out-of-bag (oob)
samples. To determine the importance of a variable, first
the values of the variable (i.e., predictor) in the oob sam-
ples are randomly permuted; then both the original oob
samples and the permuted oob samples are classified by
the corresponding tree. The difference in the correct clas-
sification rates between the original and permuted oob
samples determines the importance of the variable, and
the variable importance is obtained by averaging the dif-
ferences over all trees in the random forest.

Deterministic forest
Like a random forest, a deterministic forest [8,11] is also
an ensemble of classification trees. Because of the large
number of covariates, multiple splits may have very simi-
lar performance in terms of the quality of split and the
prediction accuracy of the outcome. Thus, it is useful to
consider all competitive splits, and construct a forest con-
sisting of these competitive trees. Specifically, a pre-speci-
fied number (for example, 20) of the top splits of the root
node and a pre-specified number (for example, 3) of the
top splits of the two daughter nodes of the root node are
selected. These combinations generate a total of 180 pos-
sible trees, leading to a deterministic forest. The frequency
of each predictor being used to split a node is indicative of

Table 2: Computation time (in seconds) for analyzing the CEGM data set

Memory Loading data Classification trees Random forest Deterministic forest

0.32 Gb 1698 2562 485 12170

Table 1: Run time (in seconds) of the operations.

SNPs Classification tree Random forest Deterministic forest

Compressed 10, 000 70 7 480
Uncompressed 10, 000 68 6 470
Compressed 100, 000 257 96 673
Uncompressed 100, 000 249 94 640
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Tree structureFigure 1
Tree structure.

Importance score results in the random forestFigure 2
Importance score results in the random forest.
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the importance of the predictor. A deterministic forest is
different from a random forest in that it is constructed
through a deterministic and reproducible manner and
that the trees in the deterministic forest tend to be very
limited in size. A deterministic forest is not only compu-
tationally more efficient than a random forest, but also its
reproducibility makes it easier to interpret.

Missing value
Considering the massive amount of SNPs, we expect some
SNP genotypes may be missing either due to mishandling
or poor quality. There are two simple approaches to deal-
ing with missing SNPs. First, we can impute the missing
SNP based on the allele frequency in the data or the hap-
lotype block covering the missing SNP. After this imputa-
tion, all of the missing SNPs are replaced by the imputed
SNPs and the "completed" data are then fed to Willows.
Alternatively, the Missings Together Approach [18] can be
adopted; namely, the subjects with missing SNPs are
grouped together so that they can be easily tracked. In the
tree framework, the first approach is expected to produce
trees with a lower misclassification rate than the second
approach. However, when forests are constructed, it war-
rants a further comparison as to which of two approaches
leads to better performing forests.

Compression Algorithms
In genetic studies, a SNP-based genotype has only four
possible choices: AA, AB, BB or missing. Each choice can
be represented by 2 bits. Thus, 16 genotypes can be

packed into one integer data type (4 bytes) in Java or C++
using bit shift operators. The theoretical compression
ratio is 4:1 compared to the byte storage scheme and 32:1
compared to the double storage scheme.

Implementation
Willows, implemented in C and Java, comes with a user-
friendly graphic user interface (GUI) on Windows, Linux
and Mac OS X. It also can be executed from the command
line on Windows, Linux and Mac OS X.

Results and discussion
The performance of Willows was analyzed on a computer
equipped with 2.33 GHz processor and 2 GB physical
memory running on Microsoft Windows XP Professional
Version.

Simulated data
The compression and decompression operations for a spe-
cific genotype take a constant operation time using bit
operators. In fact, the time required for these operations is
negligible comparing to the overall running time. For
example, we randomly generated two simulated data sets,
which had 10, 000 SNPs and 100, 000 SNPs, respectively.
Both data sets contained 1, 000 subjects. For each data set,
we built classification trees, a random forest of 100 trees,
and a deterministic forest of 8 trees, respectively, on a
computer described above. The number of SNPs used to
split at each node in the random forest is set to be int(log2
M) + 1, where M is the number of SNPs. The running time

Prediction results in a test sampleFigure 3
Prediction results in a test sample.
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with the compressed and uncompressed operations is
given in Table 1, and differs very little with or without the
compressed operations.

CGEMS
For a typical GWA study, e.g., the Cancer Genetic Markers
of Susceptibility (CGEMS) breast cancer projects [14],
which contains 2,434 subjects and 550,000 SNPs, the gen-
otype data occupy 10 GB in the double type and 1.2 GB in
the byte type. As we did for the simulated data sets, we
built classification trees, a random forest of 1000 trees,
and a deterministic forest of 8 trees, respectively. The
number of SNPs used to split on at each node in random
forest is set to be int(log2 550000) + 1. Table 2 displays the
time of using Willows to analyze CGEMS data, and it
demonstrates that with the efficient use of memory, we
can indeed construct classification trees and forests from
typical GWA data.

Input files
Willows supports input files in a text format: the first line
indicates the variable type (response, nominal or ordinal)
with no particular order. Among various features is the
prediction function that predicts the response class based
on the predictors. Additional input files are necessary for
this feature. We refer to the supplementary information
on our website.

Output results
The main output produced by Willows is the tree struc-
tures. An example is provided in Figure 1. In this figure,
internal and terminal nodes are represented by ellipsoids
and rectangles, respectively. The frequency counts of the
outcome are displayed inside each node, and the splitting
variable and the corresponding thresholds are provided
for internal nodes.

Depending on the needs, other outputs including the
importance score of each variable and the predicted
classes in a test sample can be viewed. For example, Figure
2 and Figure 3 show the importance score and prediction
results of the two simulated data sets. Furthermore, all of
the results are saved in local files for future view. Detailed
instructions are provided in our website.

Conclusion
GWA studies have produced landmark successes in iden-
tifying genetic variants for complex diseases. Due to the
large size of the data generated from GWA studies, data
management and analysis has been a major hurtle to over-
come for GWA studies. One of the immediate challenges
is the memory management for GWA databases, espe-
cially for prevailing 32-bit operation systems. Parallel
supercomputers are useful to accelerate the computation
when the computational tasks are "parallel," but this may

not be the case or may be challenging to implement in
GWA studies. Furthermore, parallel supercomputers are
not easily accessible, and even if they are available, data
confidentiality and security restrictions may not allow the
transfer of the genomic data to a networked supercom-
puter, as those released by dbGap http://
www.ncbi.nlm.nih.gov/gap. Thus, it is ideal to have more
accessible and efficient computing software. In fact, some
of the dbGap data sets have been distributed in a com-
pressed binary format designed in PLINK and incompati-
ble for other statistical software including trees and
forests. To this end, Willows implements three classifiers
in a user friendly interface with the goal of maximizing the
use of memory, which is necessary for analysis of GWA
SNP data.

Availability and requirements
• Project name: Willows

• Project home page: http://c2s2.yale.edu/software/
Willows.

• Operating system(s): Multiple platform (tested on
Windows, Linux and Mac OS X).

• Programming language: C++ and Java.

• Other requirements: Java 1.6+.

• License: Free for non-commercial use.
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