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Background:: Genome sequencing and bioinformatics are producing detailed lists of the molec-
ular components contained in many prokaryotic organisms. From this ’parts catalogue’ of a micro-
bial cell, in silico representations of integrated metabolic functions can be constructed and analyzed
using flux balance analysis (FBA). FBA is particularly well-suited to study metabolic networks based
on genomic, biochemical, and strain specific information.

Results:: Herein, we have utilized FBA to interpret and analyze the metabolic capabilities of Es-
cherichia coli. We have computationally mapped the metabolic capabilities of E. coli using FBA and
examined the optimal utilization of the E. coli metabolic pathways as a function of environmental
variables. We have used an in silico analysis to identify seven gene products of central metabolism
(glycolysis, pentose phosphate pathway, TCA cycle, electron transport system) essential for aero-
bic growth of E. coli on glucose minimal media, and |5 gene products essential for anaerobic growth
on glucose minimal media. The in silico tpi °, zwf, and pta ~ mutant strains were examined in more
detail by mapping the capabilities of these in silico isogenic strains.

Conclusions:: We found that computational models of E. coli metabolism based on physicochem-
ical constraints can be used to interpret mutant behavior. These in silica results lead to a further
understanding of the complex genotype-phenotype relation.

Supplementary  information: [http://gcrg.ucsd.edu/supplementary_data/DeletionAnalysis/
main.htm]
Introduction volves many complex interactions among the molecular

The knowledge of a complete genome sequence holds the
potential to reveal the 'blueprints' for cellular life. The
genome sequence contains the information to propagate
the living system, and this information exists as open
reading frames (ORFs) and regulatory information.
Computational approaches have been developed (and
are continuously being improved) to decipher the infor-
mation encoded in the DNA [1,2,3,4,5,6,7]. However, it is
becoming evident that cellular functions are intricate
and the integrated function of biological systems in-

components within the cell. To understand the complex-
ity inherent in cellular networks, approaches that focus
on the systemic properties of the network are also re-
quired.

The complexity of integrated cellular systems leads to an
important point, namely that the properties of complex
biological processes cannot be analyzed or predicted
based solely on a description of the individual compo-
nents, and integrated systems based approaches must be
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applied [8]. The focus of such research represents a de-
parture from the classical reductionist approach in the
biological sciences, and moves toward the integrated ap-
proach to understanding the interrelatedness of gene
function and the role of each gene in the context of multi
genetic cellular functions or genetic circuits [8,9,10].

The engineering approach to analysis and design of com-
plex systems is to have a mathematical or computer
model; e.g. a dynamic simulator of a cellular process that
is based on fundamental physicochemical laws and prin-
ciples. Herein, we will analyze the integrated function of
the metabolic pathways, and there has been a long histo-
ry of mathematical modeling of metabolic networks in
cellular systems, which dates back to the 1960s [11, 12].
While the ultimate goal is the development of dynamic
models for the complete simulation of cellular metabo-
lism, the success of such approaches has been severely
hampered by the lack of kinetic information on the dy-
namics and regulation of metabolism. However, in the
absence of kinetic information it is still possible to assess
the theoretical capabilities and operative modes of me-
tabolism using flux balance analysis (FBA) [10,
13,14,15,16,17].

We have developed an in silico representation of Es-
cherichia coli (E. coli in silico) to describe the bacteri-
um's metabolic capabilities [18]. E. coli in silico was
derived based on the annotated genetic sequence [19],
biochemical literature [20], and the online bioinformatic
databases [21,22,23]. The properties of E. coli in silico
were analyzed and compared to the in vivo properties of
E. coli, and it was shown that E. coli in silico can be used
to interpret the metabolic phenotype of many E. coli mu-
tants [18]. However, the utilization of the metabolic
genes is dependent on the carbon source and the sub-
strate availability [24, 25]. Thus, the mutant phenotype
is also dependent on specific environmental parameters.
Therefore, herein we have utilized E. coli in silico to com-
putationally examine the condition dependent optimal
metabolic pathway utilization, and we will show that the
FBA can be used to analyze and interpret the metabolic
behavior of wildtype and mutant E. coli strains.

Materials and Methods

Flux balance analysis

All biological processes are subjected to physico chemi-
cal constraints (such as mass balance, osmotic pressure,
electro neutrality, thermodynamic, and other con-
straints). As a result of decades of metabolic research
and the recent genome sequencing projects, the mass
balance constraints on cellular metabolism can be as-
signed on a genome scale for a number of organisms.
Methods have been developed to analyze the metabolic
capabilities of a cellular system based on the mass bal-
ance constraints and this approach is known as flux bal-
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ance analysis (FBA) [13, 14, 16] (see the supplementary
information for an FBA primer). The mass balance con-
straints in a metabolic network can be represented math-
ematically by a matrix equation:

Se+v=0 Equation 1

The matrix S is the mxn stoichiometric matrix, where m
is the number of metabolites and n is the number of re-
actions in the network (The E. coli stoichiometric matrix
is available in matrix format in the supplementary infor-
mation and in a reaction list in Appendices 1-3). The vec-
tor v represents all fluxes in the metabolic network,
including the internal fluxes, transport fluxes and the
growth flux.

For the E. coli metabolic network represented by Eqn. 1,
the number of fluxes was greater than the number of
mass balance constraints; thus, there were multiple fea-
sible flux distributions that satisfied the mass balance
constraints, and the solutions (or feasible metabolic flux
distributions) were confined to the nullspace of the ma-
trix S.

In addition to the mass balance constraints, we imposed
constraints on the magnitude of individual metabolic
fluxes.

o; <v; < B; Equation 2

The linear inequality constraints were used to enforce
the reversibility of each metabolic reaction and the max-
imal flux in the transport reactions. The reversibility
constraints for each reaction are indicated online. The
transport flux for inorganic phosphate, ammonia, car-
bon dioxide, sulfate, potassium, and sodium was unre-
strained (o; = -ec and B; = ). The transport flux for the
other metabolites, when available in the in silico medi-
um, was constrained between zero and the maximal level
(0 £v;<v; M) The v; "™ values used in the simulations
are noted for each simulation (Fig. 1). When a metabolite
was not available in the medium, the transport flux was
constrained to zero. The transport flux for metabolites
capable of leaving the metabolic network (i.e. acetate,
ethanol, lactate, succinate, formate, and pyruvate) was
always unconstrained in the net outward direction.
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Growth phenotypes of in silico deletion strains; maximal bio-
mass yields on glucose for all possible single gene deletions in
central intermediary metabolism. The environmental varia-
bles (uptake rate/external metabolic fluxes) are set to corre-
spond to a point within each of the phases of the wild-type
PhPP (figure inset). The maximal yields were calculated using
flux-balance analysis with the objective of maximizing the
growth flux. The biomass yields are normalized with respect
to the results for the full metabolic genotype. The ot and 3 val-
ue for the constraints on the external fluxes for glucose and
oxygen uptake are defined as follows (unlts mmole g hrl):

Phase I -vg =10, Y ox =23;LO-v 4= 10,v,, =20.3; Phase

2 2%, Phase 3 - vg,c 10, Vg, = 12; Phase
4 v =10, voxy 8, Phase 5 - v - = 10, v o, = 3; Phase 6 -
Vglc_|0 oxy

The intersection of the nullspace and the region defined
by the linear inequalities defined a region in flux space
that we will refer to as the feasible set, and the feasible set
defined the capabilities of the metabolic network subject
to the imposed cellular constraints. It should be noted
that every vector v within the feasible set is not reachable
by the cell under a given condition due to other con-
straints not considered in the analysis (i.e. maximal in-
ternal fluxes and gene regulation). The feasible set can be
further reduced by imposing additional constraints (i.e.
kinetic or gene regulatory constraints), and in the limit-
ing condition where all constraints are known, the feasi-
ble set may reduce to a single point.

A particular metabolic flux distribution within the feasi-
ble set (vector v which satisfies the constraints in Eqns. 1
and 2) was found using linear programming (LP). A com-
mercially available LP package was used (LINDO, Lindo
Systems Inc., Chicago, II). LP identified a solution that
minimized a metabolic objective function (subject to the
imposed constraints- Eqns. 1and 2) [16, 48, 49], and was
formulated as shown below:

Minimize -Z
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where Z =X ¢ ; v; = <c » v> Equation 3

The vector ¢ was used to select a linear combination of
metabolic fluxes to include in the objective function [50].
Herein, ¢ was defined as the unit vector in the direction
of the growth flux, and the growth flux was defined in
terms of the biosynthetic requirements:

¥ .
D dy - X, —==—s Biomass
alim

(Equation 4)

where d ,, is the biomass composition of metabolite X,
(we used a constant biomass composition defined from
the literature [51] (see Appendix 4)), and the growth flux
was modeled as a single reaction that converts all the bi-
osynthetic precursors into biomass.

Phenotype Phase Plane Analysis

All feasible E. coli in silico metabolic flux distributions
are mathematically confined to the feasible set, which is
a region in flux space (™), where each solution in this
space corresponds to a feasible metabolic flux distribu-
tion.

Phenotype Phase Plane (PhPP): A PhPP is a two-dimen-
sional projection of the feasible set, and below we will
briefly discuss the formalism for constructing the PhPP.
Two parameters that describe the growth conditions
(such as substrate and oxygen uptake rates) were defined
as the two axes of the two dimensional space. The opti-
mal flux distribution was calculated (using LP) for all
points in this plane by solving the LP problem while ad-
justing the exchange flux constraints (defining the two-
dimensional space). A finite number of qualitatively dif-
ferent patterns of metabolic pathway utilization were
identified in such a plane, and lines were drawn to de-
marcate these regions. Each region is denoted by Pn, y,
where 'P' indicates that the region was defined by a phe-
notype phase plane analysis, 'n' denotes the number of
the demarcated phase (as shown in a particular PhPP fig-
ure), and 'x, y' denotes the two uptake rates on the axis of
the PhPP. PhPPs were also generated for mutant geno-
types; represented as P&"°n

One demarcation line in the PhPP was defined as the line
of optimality (LO). The LO represents the optimal rela-
tion between exchange fluxes defined on the axes of the
PhPP.

Alterations of the genotype

FBA and E. coli in silico were used to examine the sys-
temic effects of in silico gene deletions. The genes in-
volved in the central metabolic pathways (glycolysis,
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pentose phosphate pathway, TCA cycle, electron trans-
port) were subjected to removal from E. coli in silico. To
simulate a gene deletion, all metabolic reactions cata-
lyzed by a given gene product were simultaneously con-
strained to zero. Some metabolic reactions were
catalyzed by more than one enzyme, and all genes that
code for enzymes that catalyze a given reaction were si-
multaneously removed (i.e. rpiAB). Furthermore, all
genes that make up an enzyme complex were also simul-
taneously removed (i.e. sdhABCD).

The optimal metabolic flux distribution for the genera-
tion of biomass was calculated for each in silico deletion
strain. The in silico gene deletion analysis was performed
with the transport flux constraints defined by the wild-
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type PhPP. The constraints imposed for each simulation
are noted in Fig. 1.

For each in silico deletion strain, the optimal production
of the twelve biosynthetic precursors and the metabolic
cofactors was also calculated to identify auxotrophic re-
quirements and impaired functions in the metabolic net-
work (Table 1). The optimal production of the
biosynthetic precursors was calculated by setting the ob-
jective function to the drain of a single metabolite (i.e.,
ATP — ADP + P;, or PEP —). The numerical value of the
objective function for each in silico deletion strain was
reported as a fraction of the wild-type optimal value (Ta-
ble 1).

Optimal production of the twelve biosynthetic precursors and the metabolic cofactors.

Compound umol/g DW Compound umol/g
DW
Amino Acids Phospholipids
Alanine 488 Phosphatidyl  2.58
serine
Arginine 281 Phosphatidyl ~ 96.75
ethanolamine
Asparagine 229 Phosphatidyl ~ 23.22
glycerol
Aspartate 229 Cardiolypin 6.45
Cysteine 87 Fatty acid
composition
(% of total
fatty acid)
Glutamate 250 Myristic acid
(2.68)
Glutamine 250 Mpyristoleic
acid (7.70)
Glycine 582 Palmitic acid
(38.23)
Histidine 90 Palmitoleic
acid (10.74)
Isoleucine 276 Heptadece-
noic acid
(re.11)
Leucine 428 cis-Vaccenic
acid (0.90)
Lysine 326 Oleic acid
(17.91)
Methionine 146 Nonadeceno-
ic acid (5.73)
Phenylalanine 176 Cell Wall
Sructures
Proline 210 Lipopolysac- 84
charide
Serine 205 Peptidoglycan 27
Threonine 241 Cofactors
and other
molecules
Tryptophan 54 5-Methyl- 50.0
THF
Tyrosine 131 Putrescine 35.0
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Optimal production of the twelve biosynthetic precursors and the metabolic cofactors.

Valine 402 Spermidine 7.0
Protein synthesis/processing (ATP/ Ami- 4.306 NAD 2.15
no Acid)
Ribonucleotides NADH 0.05
ATP 165 NADP 0.13
GTP 203 NADPH 0.4
CTP 126 UDP-Glu- 3.0
cose
uTP 136 ATP 4.0
RNA synthesis/processing (ATP/Nucle- ~ 0.40 ADP 2.0
otide)
Deoxyribonucleotides AMP 1.0
dATP 24.7 CoA 0.03
dTTP 247 Acetyl-CoA  0.04
dGTP 254 Succinyl-CoA 0.0l
dCTP 254 Glycogen 154
DNA synthesis/processing (ATP/Nucle-  1.372
otide)

The optimal production was calculated for the wild-type strain and the deletion strains. The
constraints are set as defined in Figure |. The color code quantitatively defines effect of the
in silico deletion; red corresponds to 0.0, yellow corresponds to 0-50% of the wild-type pro-
duction, blue corresponds to 50-100% of the wild-type, and no color coding is illustrated
when the production is unchanged from the wild-type. Data for other carbon sources is avail-
able online. G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; R5P, ribose-5-phosphate;
E4P,erythrose 4-phosphate; T3PI, glyceraldehyde 3-phosphate; 3PG, 3-phosphoglycerate;
PEP, phosphoenolpyruvate; PYR, pyruvate; ACCOA, acetyl-CoA; AKG, o-ketoglutarate;

SUCCOA, succinyl-CoA; OA, oxaloacetate.

Results

We have previously described the construction of pheno-
type phase planes (PhPPs) (see materials and methods)
and the analysis of the glucose-oxygen PhPP. We have
previously described the effect of in silico 'gene deletions'
on the ability of E. coli in silico to 'grow' under a single
condition [18]. Since the utilization of the metabolic
pathways is condition dependent, herein, we have inves-
tigated the link between the environmental conditions
and the optimal metabolic pathway utilization in silico
by: 1. studying the effects of gene deletions in all phases
of the glucose-oxygen PhPP, and 2. broadening the anal-
ysis of in silico deletion strains by comparing PhPPs from
isogenic in silico strains.

Gene Deletions: A point within each phase of the glu-
cose-oxygen PhPP was chosen to define the transport
flux constraints (indicated in Fig. 1) for the FBA simula-
tions. At each point, the growth characteristics of all in
silico gene deletion strains (of central metabolic pathway
genes) were examined. Based on the results, the genes
were categorized as; essential (growth under the defined
condition requires the activity of the corresponding gene
product), critical (growth at a reduced yield (< 95% of
wild-type)), or non-essential (growth at near wild-type
yield (> 95%)). The effects of the in silico gene deletions

were phase-dependent, allowing us to identify optimal
growth phenotypes for each growth condition. Addition-
ally, the optimal production of the 12 biosynthetic pre-
cursors, high-energy phosphate bonds, and redox
potential was calculated for each in silico deletion strain
(Table 1) to determine the specific effect of the gene de-
letion on the metabolic capabilities. For instance, the in
silico acnAB' strain was unable to synthesize o-ketoglu-
tarate under all simulated growth conditions, and thus,
acnAB was defined as essential for growth in a glucose
minimal media (Table 1).

The optimal utilization of the metabolic pathways was
dependent on the specific transport flux constraints, and
the qualitative shifts in optimal metabolic behavior as a
function of two transport fluxes are shown in the PhPP.
The optimal biomass yield and biosynthetic precursor
production capabilities were calculated for each E. coli in
silico deletion strain for a point within each region of the
PhPP, and the optimal values were normalized to the
wild-type (Fig. 1). The condition dependent metabolic
phenotypes were computationally analyzed, and the re-
sults are organized by the overall metabolic phenotype;
essential, conditionally essential, or non-essential
genes.
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Essential genes: The gene products that were essential
for growth with conditions defined by the line of optimal-
ity (LO) (see materials and methods) were also identified
as essential within all other phases (acnAB, gapAC, gltA,
icdA, pgk, rpiAB, tktAB). Specifically, the gltA ~, icdA 7,
and acnAB "~ in silico deletion strains were unable to pro-
duce one biosynthetic precursor (o-ketoglutarate, Table
1), and retained the capability to synthesize the remain-
ing biosynthetic precursors and cofactors nearly equiva-
lent to the wild-type. This prediction is consistent with
the defined media required for the cultivation of aglt ™ E.
coli mutant strain (glucose minimal media supplement-
ed with glutamine or proline) [26]. Furthermore, the es-
sential glycolytic gene products (pgk, gapAC) were
required for the synthesis of oxaloacetate, succinyl-CoA,
o-ketoglutarate, pyruvate, phosphoenolpyruvate (PEP),
and 3-phosphoglycerate within all conditions, and were
unable to synthesize all biosynthetic precursors under
anaerobic growth conditions. The remaining two essen-
tial gene products were in the pentosephosphate path-
way (tktAB, rpiAB). The tktAB and rpiAB gene products
were required for the synthesis of erythrose 4-phosphate
in all phases (aromatic amino acid supplement required
for the cultivation of tkt ~ E. coli mutant strains [27]). Ad-
ditionally, rpiAB ~ strains were identified as ribose auxo-
trophs by the in silico analysis, which was consistent with
experimental data [28].

Conditionally essential genes: During the growth simu-
lations with external parameters defined by the LO, there
were genes defined as critical for growth; however, many
of these genes were essential for cellular growth upon ox-
ygen limitations (fba, pfkAB, tpiA, eno, gpmAB). These
genes were termed conditionally essential. The fba , pfk-
AB7, and tpiA " in silico deletion strains had a limited ca-
pability to synthesize glyceraldehyde 3-phosphate, 3-
phosphoglycerate, phosphoenolpyruvate, pyruvate,
acetyl-CoA, o-ketoglutarate, succinyl-CoA, oxaloacetate,
and high-energy phosphate bonds in all phases, and were
completely unable to synthesize many of the biosynthetic
precursors in phases 46 (Table 1) (tpi ~ in silico strain dis-
cussed below). The growth potential of the eno ~and gp-
mAB ~ in silico deletion strains was theoretically
maintained under aerobic conditions by the synthesis
and degradation of serine, and without the serine degra-
dation pathway, the eno ~ and gpmAB ~ gene products
were defined as essential. However, the eno ~and gpmAB
" in silico deletion strains were limited in their produc-
tion capability of high-energy phosphate bonds under all
conditions, and were unable to produce any of the bio-
synthetic precursors in phase 6 even with the serine deg-
radation pathway.

Additionally, several LO non-essential gene products
were essential (sdhABCD, ppc, frdABCD) for growth
within other phases. The in silico analysis suggested that
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the sdhABCD and frdABCD gene products were required
for anaerobic pyrimidine biosynthesis. Additionally, the
frdABCD gene products were essential for the anaerobic
synthesis of the NAD cofactor. However, these in silico
results could be due to inaccurate stoichiometric infor-
mation with respect to cofactor utilization and should be
critically examined. Finally, the ppc gene product was re-
quired for the anaerobic synthesis of oxaloacetate and o~
ketoglutarate, but the in silico analysis suggests that this
gene product is not essential for growth in aerobic condi-
tions where the glyoxylate by-pass has the potential to
replenish the biosynthetic precursors [29].

Non-essential genes: Several genes that are critical for
growth in conditions defined by the LO were non-essen-
tial for growth in other phases (nuo, cyoABCD, fumA-
BC). The in silico nuo ~ and cyoABCD ~ deletion strains
were limited in their production capabilities of high-en-
ergy phosphate bonds for aerobic growth; however, un-
der anaerobic conditions high-energy phosphate bonds
were produced by substrate level phosphorylation. The
production capabilities of the fumABC ~ in silico deletion
strain was not limited with respect to the biosynthetic
precursors shown in the table (other than a slight limita-
tion of ATP production in Pigjycose, oxygen)- However, the
fumABC " in silico deletion strain was limited in its pro-
duction capabilities of several amino acids (arg, gly, his-
not shown in table), but under anaerobic conditions,
these capabilities were not limited with respect to the
wild-type.

Several LO non-essential gene products were critical
(pgi, pta, ackAB) for growth within other phases. The in
silico pgi deletion strain had a reduced capacity to pro-
duce all the biosynthetic precursors under oxygen limita-
tion, and this resulted in a decreased normalized growth
yield of this in silico deletion strain. The pta and ackAB
gene products participate in the metabolic pathway lead-
ing to the formation of acetate. Acetate was predicted as
a metabolic by-product upon oxygen limitations (all
phases below the LO). Under conditions defined by P5-
6glucose, oxygens the production capabilities of several of
the biosynthetic precursors (glucose 6-phosphate, fruc-
tose 6-phosphate, ribose 5-phosphate, erythrose 5-phos-
phate, glyceraldehyde 3-phosphate) were limited in the
pta and ackAB in silico deletion strains (pta ~ In silico de-
letion strain discussed below).

This sub-section illustrated the condition-dependent ef-
fect of gene deletions on the metabolic genotype-pheno-
type relation. The results covered the range of substrate
uptake rates and defined the optimal metabolic pathway
utilization of isogenic strains in silico under different
combinations of environmental parameters. The optimal
utilization of the metabolic pathways was dependent on
the metabolic genotype; thus, different metabolic geno-
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types are characterized by different PhPPs. The results
presented above provide insight into the genotype phe-
notype relation. Next, we will compare the PhPPs from in
silico deletion strains to the wild-type to provide a more
complete definition of optimal phenotypes.

in silico Deletion Strain Phenotype Phase Plane Analy-
sis: Comparative analysis of the phase planes for several
mutant strains (fpi ~, pta ~, and zwf) were performed.
These case studies were chosen to further investigate the
metabolic genotype-phenotype relation in silico and to
demonstrate the use of FBA to interpret and analyze cel-
lular metabolism.

tpi: The tpi - PhPP showed 3 distinct optimal metabolic
phenotypes- one glucose limited phase (Plplzglucose, oxy-
gen), and two futile phases (Fig. 2). Futile phases are
characterized by a negative effect of one of the substrates
on the objective function. One of the futile phases was
due to excess oxygen (Ptpllglucose, oxygen) and the other
was due to excess glucose (Ptplgglucose, oxygen)- Although
the tpi ~ in silico metabolic genotype theoretically sup-
ported biomass production, the feasible steady states
were restricted to a limited phase of the phase plane and
the flexibility of the metabolic network was reduced to
one dimension.

Figure 2A

— - w2 na
o o = &

Oxygen Uptake Rate (mmolelg DW/hr)
o

o

Glucose Uptake Rate {(mmole/g DWihr)

Figure 2

Mutant strain phenotype phase plane analysis. The wild-type

strain PhPP is shown in the thin lines for comparative purpos-
es. The glucose-oxygen PhPP was constructed for each of the
respective in silico deletion strains (A) tpi (B) zwf (C) pta.

The optimal utilization of the tpi ~ metabolic network un-
der environmental conditions defined by the LO™* was
characterized by increased PPP fluxes to bypass the TPI
block. The PPP operated cyclically; thus, leading to a
high production of NADPH. Due to the high NADPH
production in the PPP, the TCA cycle flux was optimally
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reduced and functioned only to produce the biosynthetic
precursors.

The in silico analysis suggests that the tpi -~ metabolic
network was restricted by the ability to regenerate phos-
phoenolpyruvate (PE) for the PTS, and the in silico anal-
ysis identified 3 metabolic 'routes' for the regeneration of
PEP. Two of the 'routes' were equivalent (alternate opti-
mal solutions), (1) The PEP was regenerated by the phos-
phoenolpyruvate synthase (PPS), or (2) the glactose
transporter was used for the transport of glucose which
was subsequently phosphorylated by the glucokinase re-
action. These two routes were equivalent with respect to
the objective function (although they were structurally
different). The third PEP regeneration route involved the
glyoxylate bypass and the phosphoenolpyruvate carbox-
ykinase, and this route was characterized by a 38% re-
duction in the optimal biomass yield. Furthermore,
experimentally it was shown that constitutive expression
of the glyoxylate bypass suppressed the PEP deficient
phenotype [30, 31]. The PEP regeneration routes (dis-
cussed above) theoretically allow the tpi ~ to grow, and
one of these solutions was required for the growth of the
tpi " in silico strain.

zwf: zwf codes for glucose-6-phosphate dehydrogenase
(G6PDH), the first enzyme in the oxidative branch of the
PPP. zwf has been shown to be a non-essential gene for
the growth of E. coli in glucose minimal media, and zwf
strains grow at near wild-type growth rates [32]. zwf was
predicted by FBA to be a non-essential gene for growth in
glucose minimal media (Fig. 1). We conducted a pheno-
type phase plane analysis of the zwf strain and examined
the systemic metabolic function of zwfand its relation to
the environmental conditions in silico (Fig. 2). The slope
of the LO” slightly increased (relative to the wild-type),
indicating a higher oxygen:glucose ratio for optimal
growth. Removing the G6PDH from the metabolic net-
work eliminated all metabolic pathways that utilized the
oxidative branch of the PPP. Therefore, the zwf PhPP
was significantly changed in the phases that utilized the
oxidative branch of the PPP (P?W 2¢lucose, oxygen and
pawf, 3glucose, oxygen) Put was unchanged in phases that did
not optimally utilize the zwf gene product (P2, 4glucose,

oxygen) .

pta: Acetate excretion is a common characteristic of E.
coli metabolism and several approaches have been ap-
plied to reduce acetate production to improve the pro-
ductivity of engineering strains [33,34,35]. Acetate
production can be interpreted using FBA [36, 37], and
we have used a phase plane analysis to quantitatively an-
alyze the conditions for which acetate excretion optimal-
ly occurs. Acetate was optimally excreted from the cell
within all phases of the glucose-oxygen PhPP below the
LO. We have generated the pta ~ PhPP and analyzed the
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metabolic characteristics of the in silico pta ~ strain (Fig.
2). The pta -~ PhPP indicated that this mutant strain
maintained the potential to support growth (both aerobi-
cally and anaerobically). Experimentally, the pta ™ E. coli
strain has been shown to grow aerobically and anaerobi-
cally on glucose minimal media [38]. The in silico analy-
sis predicted that the pta ~ strain optimally shifted the
carbon flux from acetate to ethanol in PP/?3. However, in
PP!9, the optimal metabolic by-products included lac-
tate, ethanol, and pyruvate, and under completely anaer-
obic conditions, succinate was also optimally produced
as a metabolic byproduct. These metabolic byproducts
were qualitatively consistent with experimental observa-
tions in the pta ~ strain [38].

Discussion

The rapid development of bioinformatic databases is re-
sulting in extensive information about the molecular
composition and function of several single cellular or-
ganisms. These genetic and biochemical databases [21,
23, 39] have now been developed to the point where the
methods of systems science need to be used to analyze,
interpret, and predict the integrated behavior of complex
multigeneic biological processes. Herein, we have uti-
lized an in silico representation of E. coli to study the
condition dependent phenotype of E. coli and central
metabolism gene deletion strains. We have shown that a
computational analysis of the metabolic behavior can
provide valuable insight into cellular metabolism. The
results presented herein address a pressing question in
the post-genome era; how can genome sequence infor-
mation be used to analyze integrated cellular functions?
Given the central importance of this question, we will
discuss the general applicability, limitations, and future
prospects for FBA and functional genomics.

The FBA metabolic modeling framework is different
than other well-known metabolic modeling approaches.
FBA can more accurately be defined as a metabolic con-
straining approach, this is because FBA defines the best’
the cell can do, rather than predicting the metabolic be-
havior. To accomplish this, we have constrained meta-
bolic function based on the most reliable information,
the metabolic stoichiometry (the stoichiometry is well
known for the vast majority of the metabolic processes).
However, FBA does have predictive capabilities when a
physiologically meaningful objective function can be de-
fined, and the E. coli FBA results, with maximal growth
rate as the objective function, have been shown to be
consistent with experimental data under nutritionally
rich conditions [40]. It should be mentioned that FBA
does not directly consider regulation, or the regulatory
constraints on the metabolic network, but rather FBA as-
sumes that the regulation is such that metabolic behavior
is optimal. This assumption produces results that are
generally consistent with experimental data, however,
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this assumption is only valid for a system that has
evolved toward optimality. In mutant strains, the regula-
tion of the metabolic network has not evolved to operate
in an optimal fashion. Therefore, the optimal utilization
of the mutant metabolic network does not necessarily
correspond to the in vivo utilization of the metabolic net-
work. Computational analysis of metabolic processes,
coupled to an experimental program may provide valua-
ble information regarding the regulatory structure of
metabolic networks, and will provide a challenge for fu-
ture computational studies coupled to highly parallel ex-
perimental programs, such as large-scale mutation
studies [41].

Currently, about one-third of the E. coli open reading
frames do not have a functional assignment. Thus, the
metabolic network studied here is incomplete and does
not account for all the metabolic processes carried out by
E. coli. However, we have used the biochemical literature
to refine the in silico metabolic genotype and given the
long history of E. coli metabolic research [20], a large
percentage of the E. coli metabolic capabilities have like-
ly been identified. However, when additional metabolic
capabilities are discovered [42], the E. coli stoichiomet-
ric matrix can be updated, leading to an iterative model
building process. Furthermore, inconsistencies between
the model and experimental data may help point to uni-
dentified metabolic functions. Additionally, the in silico
analysis can help identify missing or incorrect functional
assignments; for example, by identifying sets of metabol-
ic reactions that are not connected to the metabolic net-
work by the mass balance constraints.

The study presented herein is an example of the rapidly
growing field of in silico biology. It is clear that computer
modeling and simulations must be used iteratively with
an experimental program to continually improve in silico
models and to develop systemic understanding of cellu-
lar functions. Thus, an in silico analysis can be used to
define an experimental program. For example, the abili-
ty to construct well-defined knockout strains of E. coli
[43] opens the possibility to critically evaluate the rela-
tion between the in silico representation of mutant be-
havior and the in vivo metabolic network under well-
defined genetic and environmental conditions for strate-
gically chosen genes. This possibility is particularly time-
ly, given the increasing number of genome scale
measurements that are now possible, through 2D gels
[44, 45] and DNA array technology [46, 47].

Conclusions

Herein, we have utilized an in silico representation of E.
coli to study the condition dependent phenotype of E.
coli and central metabolism gene deletion strains. We
have shown that a computational analysis of the meta-
bolic behavior can provide valuable insight into cellular
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metabolism. The present in silico study builds on the
ability to define metabolic genotypes in bacteria and
mathematical methods to analyze the possible and opti-
mal phenotypes that they can express. These capabilities
open the possibility to perform in silico deletion studies
to help sort out the complexities of E. coli mutant pheno-

types.
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