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Abstract
Background: Reversible phosphorylation events within a polymerisation complex have been
proposed to modulate capsular polysaccharide synthesis in Streptococcus pneumoniae. Similar
phosphatase and kinase genes are present in the exopolysaccharide (EPS) biosynthesis loci of
numerous lactic acid bacteria genomes.

Results: The protein sequence deduced from the wzb gene in Lactobacillus rhamnosus ATCC 9595
reveals four motifs of the polymerase and histidinol phosphatase (PHP) superfamily of prokaryotic
O-phosphatases. Native and modified His-tag fusion Wzb proteins were purified from Escherichia
coli cultures. Extracts showed phosphatase activity towards tyrosine-containing peptides. The
purified fusion protein Wzb was active on p-nitrophenyl-phosphate (pNPP), with an optimal activity
in presence of bovine serum albumin (BSA 1%) at pH 7.3 and a temperature of 75°C. At 50°C,
residual activity decreased to 10 %. Copper ions were essential for phosphatase activity, which was
significantly increased by addition of cobalt. Mutated fusion Wzb proteins exhibited reduced
phosphatase activity on p-nitrophenyl-phosphate. However, one variant (C6S) showed close to
20% increase in phosphatase activity.

Conclusion: These characteristics reveal significant differences with the manganese-dependent
CpsB protein tyrosine phosphatase described for Streptococcus pneumoniae as well as with the
polysaccharide-related phosphatases of Gram negative bacteria.

Background
The importance of protein phosphorylation in signal
transduction has been amply demonstrated for the regula-
tion of both eukaryotic and prokaryotic cellular processes
(reviewed in [1-3]). Protein phosphorylation on serine,
threonine or tyrosine residues is catalyzed by protein
kinases while dephosphorylation is catalyzed by protein
phosphatases. The activity of these enzymes can be mod-

ulated by external stimuli, or by regulatory or targeting
subunits.

Prokaryotic phosphatases can be classified into four
superfamilies, based on amino acid sequence comparison
[1-4]. The phosphoprotein phosphatase (PPP) family
contains mainly eukaryotic members, and is not wide-
spread in bacterial genomes. The catalytic domain con-
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tains two metal ions (Mn2+, Fe2+ or Fe3+) in the active site.
Among the eukaryotic members, the catalytic domain is
conserved, but outside this region, sequence diversity is
higher. The substrate specificity and functions of the
eukaryotic PPP proteins are modulated by regulatory and
targeting subunits. However, such interactions with other
subunits have not yet been shown for prokaryotic PPP
proteins. The second superfamily consists of the Mg2+ or
Mn2+-dependent protein phosphatases (PPM). The diva-
lent cations are bound by four conserved aspartic residues,
and the catalytic mechanism resembles that of PPP family
protein phosphatases. In addition to the catalytic domain,
proteins in the PPM family can contain other domains
with various functions, such as membrane-spanning
domains, protein-protein interaction domains or sensor
domains.

The third superfamily contains polymerases such as DNA
polymerase III α subunits and X-family DNA polymerases
as well as histidinol phosphatases (PHP) from yeast and
bacteria such as Lactococcus lactis. Although very diverse in
function, many members are not protein phosphatases,
but are proposed to hydrolyze inorganic pyrophosphate
in order to facilitate the continuation of polymerisation.
Histidinol phosphatase removes the phosphate group
from histidine during the biosynthesis of this amino acid
in yeast. CpsB from Streptococcus pneumoniae is a member
of the PHP superfamily, and has been shown to be a pro-
tein phosphatase that is Mn2+-dependent [5]. Members of
the PHP superfamily are also found in other Gram posi-
tive species such as Bacillus subtilis, where PtpZ can
dephosphorylate its cognate tyrosine kinase PtkA, as well
as UDP-glucose dehydrogenases (Ugd or TuaD), thus sug-
gesting a role in teichuronic acid synthesis [6-8]. All mem-
bers of this superfamily share four consensus motifs
containing histidine and aspartate residues that are pro-
posed to carry out the metal-dependent hydrolysis of
phosphoester bonds. Tyrosine kinases coded by genes
adjacent to PHP type phosphatase genes have been shown
to be substrates for PHP activity [6].

Finally, the fourth PTP superfamily of phosphotyrosine
protein phosphatases actually contains two distinct sub-
families sharing a common catalytic mechanism, but that
result from convergent evolution [9]. The members of the
first subgroup have dual specificity; serine/threonine and
tyrosine, while the members of the second subgroup are
the low molecular weight PTPs specific for tyrosine resi-
dues. PTP-type enzymes have been identified by genome
search and analysis in a number of bacterial species [10-
12]. During the two-step phosphatase reaction, a phos-
phocysteine intermediate is generated through transfer of
the phosphate to the cysteine of the CX5R motif. Mutation
of this cysteine in the motif of the SptP protein from Sal-
monella typhimurium eliminates hydrolysis of phosphoty-

rosine substrates [13]. The arginine promotes substrate
binding by forming salt bridges with the phosphoryl
group [14] and also stabilizes the phosphoenzyme inter-
mediate [15]. Two LMW-PTPs have been identified and
characterized from Bacillus subtilis, and were shown to be
involved in resistance to ethanol stress [16]. In Gram neg-
ative bacteria, LMW-PTPs have roles in regulating capsule
composition [17] as well as modulating the phosphoryla-
tion state of transcription factors in the heat shock
response [18]. Tyrosine phosphorylation, in particular,
has also been shown to have a role in pathogenicity
through the control of exopolysaccharide production
[19].

Emerging roles for bacterial tyrosine phosphorylation sys-
tems are diverse, ranging from adaptation, virulence and
stress responses to DNA metabolism, and cell division as
well as motility and sporulation [6]. Reversible phospho-
rylation events within a polymerisation complex have
been proposed to modulate capsular polysaccharide syn-
thesis in streptococci [20-22]. Extracellular polysaccharide
production in any form (secreted, attached or capsular) is
an example of a metabolic activity that consumes energy
and carbon in a product that is not readily accessible as a
nutrient source. The control of polymer production can be
exerted at the transcription level, or post-translationally.
Polymerisation must be strictly controlled with respect to
precursor availability and the energy necessary to form
glycosidic bonds as well as to transport the units out of the
cell. Bender and Yother [20] have proposed that a stable
complex consisting of CpsB, CpsC, CpsD and ATP
enhances capsule synthesis. Similar systems have been
proposed for EPS synthesis by L. lactis [23] and Streptococ-
cus thermophilus [24]. They showed that CpsB can dephos-
phorylate and inhibit the phosphorylation of CpsD, while
CpsD is a tyrosine kinase that requires the presence of the
accessory transmembrane protein, CpsC, for intra- and
inter-molecular phosphorylation. Deletion mutants of
cps2C and cps2D or epsC and epsD do not produce any cap-
sular material or EPS [20]. In addition, Morona et al. [25]
showed that two simultaneous point mutations (D199N
and H201Q) in one conserved motif of CpsB result in loss
of the capsule, equivalent to the phenotype of the mutant
in which the entire cpsB gene was deleted. Nothing is
known of the importance of other conserved residues for
the function of phosphatases of this type.

There are important differences between Gram negative
and Gram positive bacteria with respect to the polysaccha-
ride polymerization mechanism. In E. coli, the tyrosine
kinase-phosphatase pair Wzc-Wzb has been shown to par-
ticipate in colanic acid synthesis [26]. Wzc was shown to
autophosphorylate on tyrosine, and is dephosphorylated
by Wzb [17]. A similar mechanism has been proposed for
S. pneumoniae (CpsB dephosphorylates CpsD; Morona
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2003), as well as for Streptococcus thermophilus [24] and
Lactococcus lactis [23]. However, there are two major differ-
ences between these Gram negative and Gram positive
systems. Wzc has an N-terminus with two transmembrane
segments that is equivalent to the separate protein CpsC
in S. pneumoniae. A third transmembrane segment is
located in the C-terminus of Wzc. The C-terminus also
contains the ATP-binding and tyrosine kinase sites. In the
CpsC-D system, CpsC is required for phosphorylation of
CpsD, while the same is not true for the Wzc-Wzb system
of E. coli. The Wzc component is capable of two-step phos-
phorylation events (intra-molecular and inter-molecular
[27]). In addition, the E. coli Wzb component belongs to
the low molecular weight protein tyrosine phosphatases,
as it possesses the major signature motif CX5R(S/T) [28].
Thus, these two types of systems appear to have evolved
separately to carry out the control of polymerization of
extracellular polysaccharides that are assembled from
repeating units. Examples of convergent evolution can be
found among systems relying on phosphorylation for sig-
nal transduction, as has been shown for the PTP sub-
groups of phosphatases [9,12].

Similar phosphatase and kinase genes are present in the
exopolysaccharide (EPS) biosynthesis locus of four EPS-
producing strains of Lactobacillus rhamnosus (AY659976
[29]). The present study demonstrates the phosphatase
activity of Wzb from L. rhamnosus strain ATCC 9595, its
characteristics and the unique ion dependence profile of
this enzyme. Site-directed mutagenesis is used to identify
key residues involved in the catalytic activity.

Results
Comparative sequence analysis of Wzb
Among four strains of L. rhamnosus, Wzb is 100% identi-
cal, except for one amino acid change (T53 to A) for the
Wzb of strain RW-6541M (GenBank Acc. No. AY659977)
[29]. Wzb has the highest identity (94%) with CapC from
Lactobacillus casei ATCC 334 (GenPept Acc. number
YP_807246), and shows high similarity (74%; 39% iden-
tity) with PtpZ (YwqE; Swiss-Prot ID P96717) from Bacil-
lus subtilis 168, which dephosphorylates tyrosine residues
[7,8]. Wzb shows low identity (24%) with the phosphoty-
rosine-protein phosphatase from S. pneumoniae strain
D39 (Cps2B; GenBank Acc. No. AF026471), for which the
phosphatase function has been demonstrated on the cog-
nate tyrosine kinase Cps2D and on p-nitrophenyl phos-
phate [20].

Typical tyrosine and serine/threonine phosphatase con-
sensus sequences are absent or modified in Wzb
orthologs. In addition, the CX5R motif of PTP phos-
phatases is absent [2,30]. In fact, no cysteine residues are
fully conserved in this alignment. Only the DXH is fully
conserved (Fig. 1) out of the consensus sequence found in

a wide variety of phosphoesterases (DXH(X)n-
GDXXD(X)mGNHD/E [31,32]). This consensus sequence
was also found in the multifunctional phosphoprotein
phosphatase from lambda [31].

Phosphoesterase activity can be predicted for Wzb, based
on alignment of deduced amino acid sequences with PHP
superfamily members (PHP domain, PF02811). Four con-
served motifs of the PHP (polymerase and histidinol
phosphatase) domain identified by Aravind & Koonin [4]
were located in the amino acid sequence of Wzb. These
motifs consist of conserved histidine and aspartic acid res-
idues (Fig. 1).

Production, purification and phosphotyrosine activity of 
Wzb
The gene coding for the putative O-phosphatase (wzb)
from L. rhamnosus ATCC 9595 was expressed using the
construct pGL387, producing a His-tagged fusion protein
(Table 1; Fig. 2). E. coli (pGL387) cultures induced with
IPTG showed over-production of a 27-kDa protein (Fig.
3) corresponding to the predicted His-tagged Wzb. Puri-
fied His-Wzb was eluted as a single band of the same
molecular mass (Fig. 3). Phosphate release was shown by
cell lysates in the presence of each of two phosphopep-
tides (Tyr-1 is END(pY)INASL and Tyr-2 is
DADE(pY)LIPQQG). Induced cell extracts released 2.86
pmol PO4 min-1 μg-1 in the presence of Tyr-1, compared to
2.57 pmol PO4 min-1 μg-1 in the absence of the phos-
phopeptide (a difference of 587 pmol over the 45-min
reaction time). When 1 mM sodium vanadate was added
to the reaction, only 1.30 pmol PO4 min-1 μg-1 were
released, representing a 55% reduction in activity.

Optimal in vitro conditions for Wzb activity
The purified Wzb fusion protein was active on p-nitroph-
enyl-phosphate (pNPP), and activity was most stable in
the presence of 1% BSA. The presence of Cu2+ ions (0.1
mM) was essential for activity, which was significantly
increased by addition of Co2+ (0.1 mM). Added individu-
ally, Mn2+, Mg2+ and Fe3+ did not have a significant effect,
but, when added together, there is a significant increase in
Wzb activity (Fig. 4). Optimal pNPP hydrolysis occurred
in the presence of BSA (1%) at pH 7.3 (Fig. 5A) and a tem-
perature of 75°C. Residual activity was only 10% at 50°C
(Fig. 5B). Wzb activity on pNPP was inhibited by sodium
orthovanadate (Na3VO4). Increasing concentrations from
1 mM up to 100 mM showed increasing inhibition of Wzb
activity (data not shown). As no residual activity was
found at 100 mM, this concentration of vanadate was
used for stopping endpoint reactions.
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Sequence alignment of the predicted Wzb protein from L. rhamnosus strain ATCC 9595 (GenPept Acc. No. AAW22448)Figure 1
Sequence alignment of the predicted Wzb protein from L. rhamnosus strain ATCC 9595 (GenPept Acc. No. AAW22448). Sim-
ilar proteins from polysaccharide biosynthesis loci are as follows: AAG44708 is from Lactobacillus delbrueckii subsp. bulgaricus 
Lfi5 (EpsD); P96717 is from Bacillus subtilis 168 (YwqE/PtpZ); NP_053031 is from Lactococcus lactis subsp. cremoris B40 (EpsC); 
AAB49432 is from Staphylococcus aureus 8C (Cap8C); AAK61896 is from Streptococcus thermophilus Sfi39 (EpsB); AAC69525 is 
from Streptococcus pneumoniae 23F (Cps23fB). The four conserved motifs of the PHP domain (PF02811) are underlined, identi-
cal residues are indicated with an asterisk, while conserved residues and substitutions are indicated with dots. Mutations 
inserted in the wzb gene are numbered and give the following amino acid changes: 1: D3N, 2: H5A-H7A, 3: C6S, 4: H42A-
H43A, 5: D64N, 6: R68A, 7: R69A, 8: C78S, 9: H197A-H198A (residue numbering corresponds to wild type Wzb amino acids).

AAW22448   --MIDVHCHMLPGIDDGSKDLTTSLELAQAAVADGITHALMTPHHMNGRYTNHATDVIRM 58 
AAG44708   MPVVDLHCHILPGIDDGSKSWEASLKLARAAVADGVTHALCTPHTLNGRYTNHKQDVIKL 60 
P96717     --MIDIHCHILPAMDDGAGDSADSIEMARAAVRQGIRTIIATPHHNNGVYKNEPAAVREA 58 
NP_053031  --MIDIHCHILPGIDDGAKTSGDTLTMLKSAIDEGITTITATPHHN-PQFNNESPLILKK 57 
AAB49432   --MIDIHNHILPNIDDGPTNETEMLDLLKQATTQGVTEIIVTSHHLHPRYTTPIEKVKSC 58 
AAK61896   --MIDVHSHIVFDVDDGPKTLEESLDLIGESYAQGVRKIVSTSHRRKGMFETPEDKIFAN 58 
AAC69525   --MIDIHSHIVFDVDDGPKSREESKALLTESYRQGVRTIVSTSHRRKGMFETPEEKIAEN 58 
             ::*:* *::  :***.        :   :  :*:     *.*     : .    :    
 
 
AAW22448   TDEFQDELDRRNIPLTVFPCQEVRINGQLLEAIDHNDILTCDVSGHYVLIEFPSDDVPLY 118 
AAG44708   TEEFQDRIDQAGIPLTVFPGHEVRLSGGLTEALDNDDILFCDEEGHYMLLELPSNEVPHY 120 
P96717     ADQLNKRLIKEDIPLHVLPGQEIRIYGEVEQDLAKRQLLSLN-DTKYILIEFPFDHVPRY 117 
NP_053031  VKEVQNIIDEHQLPIEVLPGQEVRIYGDLLKEFSEGKLLKAAGTSSYILIEFPSNHVPAY 117 
AAB49432   LNHIESLEEVQALNLKFYYGQEIRITDQILNDIDR-KVITGINDSRYLLIEFPSNEVPHY 117 
AAK61896   FSKVKAEAEELYPDLTIYYGGELYYTSDIVEKLEKNLIPRMH-NTQFALIEFSARTSWKE 117 
AAC69525   FLQVREIAKEVADDLVIAYGAEIYYTLDALEKLEKKEIPTLN-DSRYALIEFSMNTPYRD 117 
             ...         : .    *:       : : .  :        : *:*:.        
 
 
AAW22448   TQNMLFEVMQRGMIPVIVHPERNTRLMKHPGLLYQMVERGAFAQVTASSYVG--TFGKK- 175 
AAG44708   TKNMVYELTRRGITPIVVHPERNKKILANPQKLQEFLEMGVLVQITASSYTG--LFGKE- 177 
P96717     AEQLFYDLQLKGYIPVIAHPERNREIRENPSLLYHLVEKGAASQITSGSLAG--IFGKQ- 174 
NP_053031  AKELFYNIKLEGLQPILVHPERNSGIIENPDILFDFIEQGVLSQITASSVTG--HFGKK- 174 
AAB49432   TDQLFFELQSKGFVPIIAHPERNKAISQNLDILYDLINKGALSQVTTASLAG--ISGKK- 174 
AAK61896   IHSGLSNVLRAGVTPIVAHIERYDALEENADRVREIINMGCYTQVNSSHVLKPKLFGDKD 177 
AAC69525   IHSALSKILMLGITPVIAHIERYDALENNEKRVRELIDMGCYTQVNSSHVLKPKLFGERY 177 
            .. . .:   *  *::.* **   :  :   : .::: *   *:.:.        *..  
 
 
AAW22448   --VQQFSEDIIDAGLAHVFASDAHHLPGRSYEMSAAFKRLTRKRGEK-KARIFEENARAL 232 
AAG44708   --IEDCSREFIKAGQCAFFASDAHDLPRRQYQLSEALDKLAKEFGED-KKQKYLDNAQAV 234 
P96717     --LKAFSLRLVEANLIHFVASDAHNVKTRNFHTQEALYVLEKEFGSE-LPYMLTENAELL 231 
NP_053031  --IQKLSFKMIENHLTHFVASDAHNVTSRAFKMKEAFEIIEDSYGSG-VSRMLQNNADSV 231 
AAB49432   --IRKLAIQMIENNLTHFIGSDAHNTEIRPFLMKDLFNDKKLRDYYE-DMNGFISNAKLV 231 
AAK61896   KVRKKRVRFFLEKNLVHMVASDMHNLGPRPPFMKDAYEIVKKNYGSKRAKNLFIENPKTL 237 
AAC69525   KFMKKRAQYFLEQDLVHVIASDMHNLDGRPPHMAEAYDLVTQKYGEAKAQELFIDNPRKI 237 
              .     ::.     ...** *.   *                         .*.  : 

Motif II
4

Motif I1 3
2

5 67 8

Motif III

Motif IV
9
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Effect of site-directed mutagenesis on Wzb phosphatase 
activity
Residues targeted for site-directed mutagenesis were
selected within the previously-identified PHP superfamily
motifs (variants 1 to 4 and 9; Fig. 1), as well as aspartate,
arginine and cysteine residues outside these motifs (vari-
ants 5, 6, 7, 8; Fig. 1). Replacement of histidine residues in
positions 5 and 7, or 42 and 43 with alanine as well as
replacement of aspartate residues in positions 3 or 64 with
asparagine lead to drastic reductions of up to 99% of the
specific activity of the mutated Wzb proteins (Fig. 6).
Modification of the arginine residue in position 68 to
alanine (R68A), or the histidines in position 197 and 198,
also to alanine, leads to a 75% reduction in phosphatase
activity. The reduction in activity was not as great when
the arginine in position 69 (R69A; 10% to 30%) or the
cysteine in position 78 (C78S; 40 to 50%) were changed.
Finally, the substitution of the cysteine in position 6 by a
serine (C6S) leads to an increase in phosphatase activity,
more visibly when measured by the endpoint method
than when measured by the kinetic method. In general,

both the endpoint and kinetic reaction methods gave sim-
ilar results, except for variants D3N, C6S, H42A-H43A
and R69A, and to a lesser extent, the C78S variant, where
the endpoint method resulted in higher specific activity
than the kinetic method. This may be due to the lower
temperature used in the kinetic reaction, which limits the
activity that can be measured.

Discussion
Phosphatases are involved in regulating many cell proc-
esses by reversing phosphorylation events. Their sub-
strates may be as simple as inorganic pyrophosphate, or as
complex as nucleotides, nucleic acids or proteins. Accu-
mulating pyrophosphate must be hydrolysed in order to
drive nucleotide polymerisation during DNA synthesis,
while changes in the phosphorylation state of proteins
may result in conformational changes, and thus changes
in their function.

Such phosphorylation events are proposed to be respon-
sible for the polymerisation of heteropolysaccharides.

Table 1: Bacterial strains, plasmids, and oligonucleotide primers.

Strain, plasmid, or primer Relevant characteristic(s) or sequence (5' to 3') Source, reference or target

Strains
L. rhamnosus ATCC 9595 Low EPS-producing (116 mg/L) ATCC1

E. coli XL1-Blue Cloning host (recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F' proAB lacIqZΔM15 
Tn10])

Stratagene1

E. coli NM522 Cloning host (supE thi-1 Δ(lac-proAB) Δ(mcrB-hsdSM)5 (rK- mK-) [F' proAB lacIqZΔM15]) Stratagene1

Plasmids
pQE30 His-tag fusion protein expression vector; Cmr, Amr Qiagen1

pGL387 768-pb digested PCR fragment (wzb) cloned into the SacI-KpnI site of pQE30 This study

Primers2

BF1SacI gagctcATTGATGTGCATTGCCATATGTTACCGGGA PCR of wzb
BRSKpn ggtaccTTAATACCGCGACAACAAACGCTTTTCAACC PCR of wzb
BD4NF ATTAATGTGCATTGCCATATGTTACCGGGA wzb-D3N forward
BD4NR TCCCGGTAACATATGGCAATGCACATTAAT wzb-D3N reverse
BFHI ATTGATGTGGCTTGCGCTATGTTACCGGGA wzb-H5A-H7A forward
BRHI TCCCGGTAACATAGCGCAAGCCACATCAAT wzb-H5A-H7A reverse
BC6SF ATTGATGTGCATAGCCATATGTTACCGGGA wzb-C6S forward
BC6SR TCCCGGTAACATATGGCTATGCACATCAAT wzb-C6S reverse
BH42AF TGATGACGCCGGCCGCTATGAATGGCCG wzb-H42-H43A forward
BH42AR CGGCCATTCATAGCGGCCGGCGTCATCA wzb-H42-H43A reverse
BD64NF GTTTCAAAACGAGTTAGACCGCCGCAATATTCCA wzb-D64N forward
BD64NR TGGAATATTGCGGCGGTCTAACTCGTTTTGAAAC wzb-D64N reverse
BR68AF GTTTCAAGACGAGTTAGACGCCCGCAATATTCCA wzb-R68A forward
BR68AR TGGAATATTGCGGGCGTCTAACTCGTCTTGAAAC wzb-R68A reverse
BR69AF GTTTCAAGACGAGTTAGACCGCGCCAATATTCCA wzb-R69A forward
BR69AR TGGAATATTGGCGCGGTCTAACTCGTCTTGAAAC wzb-R69A reverse
BC78SF TTTCCCGAGTCAGGAAGTGCGGATTAATGGGC wzb-C78S forward
BC78SR GCCCATTAATCCGCACTTCCTGACTCGGGAAA wzb-C78S reverse
BFH197A CCTCTGATGCCGCTGCCTTACCGGGTCGCAGTTA wzb-H197-H198A forward
BRH197A TAACTGCGACCCGGTAAGGCAGCGGCATCAGAGG wzb-H197-H198A reverse

1 ATCC (American Type Culture Collection, Manassas, VA, USA); Qiagen S.A. (Courtaboeuf, France); Stratagene (LaJolla, CA, USA).
2 Restriction sites in primers are indicated in lower case letters.
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Repeating units are synthesized inside the cell through the
successive action of glycosyltransferases using sugar nucle-
otides as substrates. The repeating units linked to a lipid
carrier are then transferred to the cell surface where the
polymers are assembled by a polymerization complex.
Little is known of the structure or the mechanism of this
polymerization complex. Inside the Gram positive bacte-
rial cell, the proteins proposed to be involved in control-
ling the chain length of the polymers produced include a
phosphatase, a tyrosine kinase and a co-polymerase mem-

brane protein. Before any study of the mechanism can be
carried out, demonstration of the function of the compo-
nents and the characterization of their activity are neces-
sary.

The biochemical characteristics of Wzb activity are unique
and further define a new subfamily of bacterial PHP phos-
phatases that has not been well-characterized to date.
Activity on phosphotyrosine peptides is equivalent to that
demonstrated for CpsB of S. pneumoniae strain Rx1-19F on

Physical map of pGL387 (pQE30 with the wzb ORF from L. rhamnosus strain ATCC 9595)Figure 2
Physical map of pGL387 (pQE30 with the wzb ORF from L. rhamnosus strain ATCC 9595). 6H-Wzb = wzb gene cloned into 
SacI/KpnI; Amr = ampicillin resistance; Cmr = chloramphenicol resistance.

4223 bp 1000

2000

3000

4000

Nde I
Sph I
Bst XI
Nde I
Acc I

Ssp I

Cla I
HincII

Sma I
Xma I
Bam HI

Kpn I
Sma I
Xma I
Acc I
Hin cII
Sal I
Bsp MI
Pst I
Hin dIII
Bpu 1102I

Nhe I

Pvu II

Bal I
Dsa I
Nco I
Ssp I

Xba I

Acc I
Nde I

Sap I

IBsa

IBgl

IPvu

IXmn

ISsp

IXho
RIEco
RIBse

HIBam
ISph
ISac

Cmr

Amr

6His-Wzb
Page 6 of 12
(page number not for citation purposes)



BMC Biochemistry 2008, 9:10 http://www.biomedcentral.com/1471-2091/9/10
the same phosphopeptides [25]. However, dependence
on copper and, to a lesser extent, on cobalt is original.
Lambda phosphatase activity is not stimulated very much
by cobalt and not at all by copper ions. In contrast, man-
ganese and magnesium ions are essential for lambda
phosphatase activity. This enzyme is a well-characterized
PPP superfamily member that is multifunctional, show-
ing activity on serine/threonine, tyrosine and histidyl
phosphoproteins [20].

The optimal pH of 7.3 for Wzb activity suggests that as lac-
tic acid accumulates during growth and both the external
and internal pH of the cells decrease [33], Wzb phos-
phatase activity will also decrease. The optimal tempera-
ture of 75°C reflects the nature of the optimal in vitro
biochemical reaction. However, at physiological tempera-
tures of 30°C to 37°C, the phosphatase activity is control-
led at a very low rate that should be consistent with the
requirements of the cell.

The phosphatase orthologs found in many Gram positive
exopolysaccharide biosynthesis loci belong to a distinct
subfamily of the PHP superfamily of phosphoesterases
with very diverse functions. Four motifs of histidine and
aspartate residues are highly conserved among all mem-
bers of this superfamily. Histidine residues are proposed
to be involved in binding of divalent metal ions (such as
Mn2+) in a catalytic site that is also coordinated by con-
served aspartate or glutamate residues [3,4]. However,

there are very few site-directed mutagenesis studies sup-
porting this proposal. Study of the yeast histidinol phos-
phatase has demonstrated the requirement of some of
these residues for phosphoesterase activity during histi-
dine biosynthesis. Mutations of histidine residue 6 at the
N-terminus of the conserved HXH of motif I, as well as of
His390 in motif III result in a histidine-requiring pheno-
type, indicating that the enzymatic step is not functional
[34]. In addition, inactivation of the aspartate or histidine
residues of motif IV resulted in loss of activity for Cps2B
from S. pneumoniae [25]. However, no study has yet dem-
onstrated whether the remaining histidines were essential
for phosphoesterase activity. The results presented here
show that all conserved histidines, but especially those in
positions 5 and 7, are required for optimal activity of the
Wzb phosphatase. Mutation of histidines in positions 5
and 7 affect the secondary structure prediction for the var-
iant protein, leading to an alpha helix replacing a coiled
region, which could affect protein folding.

In fact, all nine of the mutated fusion Wzb proteins exhib-
ited altered phosphatase activity on p-nitrophenyl-phos-
phate in comparison with the activity level of the wild-
type Wzb fusion protein. Some phosphatases that are
orthologs of Wzb contain a serine in position 6, not a
cysteine, as does the Wzb of strain ATCC 9595. Changing
this cysteine to serine (C6S) actually increases phos-
phatase activity slightly. In contrast, the activity of the
C78S variant is decreased by 40%. Cysteine is involved in
tyrosine-specific phosphatase activity for enzymes of the
PTP superfamily [13]. However, the catalytic mechanism
of Wzb does not appear to rely heavily on these cysteine
residues.

In addition, certain other amino acids not part of the four
histidine motifs are essential for Wzb activity. Mutations
of D3 or D64 to asparagine are particularly critical, indi-
cating the requirement for aspartic acid residues in coor-
dinating the catalytic site. Residue D3 forms part of the
general phosphoesterase consensus sequence (as found in
the lambda phosphatase), but is not invariantly conserved
in other members of the PHP superfamily. Residue D64 is
located outside of the four general PHP motifs, although
it is part of a DXXDR motif also found in the lambda
phosphatase consensus sequence. For the lambda phos-
phatase, aspartate residues, along with histidine residues,
were shown to contribute to both metal binding and
catalysis, as protein variants D20N, H22N, D49N and
H76N showed decreased pNPP hydrolysis rates as well as
reduced affinity for Mn2+ [31].

Mutation of two arginine residues also reduced Wzb phos-
phatase activity, although not to an equivalent extent
(80% reduction for R68A in comparison to 20–40%
reduction for R69A). Arginine residues are an essential

SDS-PAGE of His-tagged Wzb purification by affinity chroma-tographyFigure 3
SDS-PAGE of His-tagged Wzb purification by affinity chroma-
tography. Lane 1: Super Molecular marker (Bio-Rad, Missis-
sauga, ON); Lane 2: E. coli NM522 (pGL387) IPTG-induced 
culture lysate; Lane 3: Fraction 1 from elution step; Lane 4: 
Fraction 2 from the elution step.
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Effect of different ions on the specific activity of wild type WzbFigure 4
Effect of different ions on the specific activity of wild type Wzb. Reactions were carried out at 40°C with 2.5 mM pNPP as sub-
strate in 50 mM MES – 50 mM HEPES, 1% BSA buffer, pH 8. Each ion was added at a final concentration of 0.1 mM. A. One ion 
was subtracted for each reaction type. B. Combinations of ions were added as indicated.
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part of catalysis and substrate binding for the lambda
phosphatase [31] as well as for phosphatases of the PTP
superfamily [2], and are involved in binding the oxygen
atoms of the phosphoryl group [35]. Mutations R53A and
R73A in lambda phosphatase resulted in reduced affinity
for pNPP and phosphate binding, but metal ion affinity
was not affected [31]. The data from our study are consist-
ent with these results, as enzyme activity was reduced, but
not completely inhibited, for Wzb variants R68A and
R69A. Mutation of arginine residues may affect substrate
recognition, possibly through differences in protein inter-
actions or folding. The fact that these two arginine resi-
dues are unique to the Wzb from L. rhamnosus strains may
indicate different substrate specificity for this enzyme. It is
easily conceivable that phosphatases involved in EPS
polymerization complexes recognize a specific cognate
phosphotyrosine protein, as suggested by Bender and
Yother [20] as well as Morona et al. [25]. Protein tyrosine
kinases of lactic acid bacteria vary in the positioning of the
series of tyrosine residues that are phosphorylated, thus
suggesting that the phosphatase substrate-recognition
sequence should vary accordingly. There are a total of 19

Effect of reaction conditions on the specific activity of wild type WzbFigure 5
Effect of reaction conditions on the specific activity of wild 
type Wzb. A. Effect of temperature. Endpoint reactions were 
carried out in 50 mM MES – 50 mM HEPES buffer, pH 8, con-
taining 1% BSA in the presence of Cu2+, Co2+, Fe3+ (0.1 mM 
each) and Mn2+, Mg2+ (0.5 mM each). A 30-min pre-incuba-
tion was carried out at the desired temperature before addi-
tion of 2.5 mM pNPP. Reactions were then stopped after 10 
min incubation with 100 mM (final) sodium vanadate 
(Na3VO4). B. Effect of pH. Endpoint reactions were carried 
out in 100 mM MES – 100 mM HEPES buffer with 1% BSA in 
the presence of Cu2+, Co2+, Fe3+ (0.1 mM each) and Mg2+, 
Mn2+ (at 0.5 mM each). Incubation for 30 min at 75°C was 
carried out before the addition of 2.5 mM pNPP. Reactions 
were stopped after 10 min. with 100 mM (final concentra-
tion) sodium vanadate.
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Relative activity of variant Wzb proteinsFigure 6
Relative activity of variant Wzb proteins. Endpoint reactions 
at 75°C (black bars) and kinetic reactions at 47°C (gray bars) 
were carried out in 50 mM MES, 50 mM HEPES buffer con-
taining 1% BSA in the presence of Cu2+, Co2+, Fe3+ (at 0.1 
mM each) and Mn2+, Mg2+ (at 0.5 mM each). In the case of 
endpoint reactions, a 30-min pre-incubation at 75°C was car-
ried out before adding 2.5 mM pNPP. Reactions were 
stopped after 10 min. incubation by the addition of 100 mM 
(final conc.) sodium vanadate.
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arginine residues (7.5%) in the sequence of Wzb, of which
only two are completely conserved among the phos-
phatase proteins aligned. Interestingly, these two arginine
residues are positioned close to histidines in motifs III and
IV. This situation is not unique to Wzb, as the Cps23fB
phosphatase has 17 arginines (7.0%) in its sequence.

Caution must thus be exerted in the interpretation of the
exact nature of the predicted phosphoesterase activity, as
more experimental analysis necessary in order to reveal
other potential activities of PHP phosphatases. Multiple
independent fusions of phosphoesterase domains with
polymerases indicate a selective advantage to this associa-
tion. A unifying explanation for this phenomenon is shift-
ing the reaction equilibrium towards polymerization.
Some PHP phosphoesterases may thus accomplish an
allosteric regulatory function by binding pyrophosphate
that accumulates during DNA polymerization [4]. In an
analogous fashion, the polysaccharide polymerization
complex may require the binding and hydrolysis of pyro-
phosphate in order to favor the shift towards polymeriza-
tion. The pyrophosphate could be produced from the
regeneration of the lipid carrier, released after polymeriza-
tion of each repeating unit. This would explain why such
a polyvalent enzyme would be associated with this phos-
phorylation system. Therefore, it cannot be excluded that
the phosphatase activity of Wzb could play a role in EPS
polymerisation, independently of the cognate protein
tyrosine kinase, while also able to dephosphorylate this
protein.

Conclusion
The distinct properties of Wzb from L. rhamnosus ATCC
9595 underscore the diversity in function of the members
of various subfamilies of PHP phosphoesterases. The
essential character of certain amino acids and a depend-
ence on the presence of copper should contribute to iden-
tifying the active site. Future perspectives include
interactions of the phosphatase with other proteins
potentially involved in the polymerization complex, in
order to determine their role in modulating the biosyn-
thesis of exopolysaccharides on the surface of L. rhamnosus
cells.

Methods
Bacterial strains and culture conditions
L. rhamnosus strain ATCC 9595 was grown without agita-
tion at 37°C in MRS medium [36]. Escherichia coli strains
NM522 and XL1-Blue were grown at 37°C in low salt
Luria Bertani (LB) medium with agitation. For E. coli
transformants, ampicillin was added at 100 μg ml-1.
Media were solidified when necessary with 1.5% Bacto
Agar (Difco). All bacterial strains were maintained at -
80°C in 20% glycerol.

DNA manipulations
Genomic DNA was extracted as follows. Cells from 16–18
h cultures (2 ml) were harvested by centrifugation (8000
× g, 10 min) and washed with 1 ml of 200 mM sodium
acetate solution. The pellet was suspended in 400 μl of
100 mM Tris-HCl pH 7.0, 10 mM EDTA, 25% glucose and
incubated at 37°C for 2 h with 20 μl of 2 mg ml-1

mutanolysin solution. After centrifugation (15000 × g, 10
min), cells were suspended in 400 μl of 100 mM Tris-HCl
pH 7.0, 10 mM EDTA, 0.5% sarcosyl and incubated with
proteinase K (400 μg) and RNAse A (500 μg) for 1 h at
37°C. Two extractions with phenol/chloroform and one
with chloroform were carried out, followed by DNA pre-
cipitation with 95% ethanol and 3 M potassium acetate
(pH 4.8). The pellet was washed twice with 70% ethanol
and solubilized in 100 μl of 10 mM Tris-HCl pH 8.0.

PCR was performed using standard conditions [37] with
Taq Polymerase (Promega, Madison, WI) and the primers
listed in Table 1 specific for the wzb sequence from L.
rhamnosus strain ATCC 9595 (GenBank Acc. No.
AY659976) [29]. The forward primer was BF1Sac and the
reverse primer was BRSKpn. The amplicon was then
digested with SacI and KpnI, followed by ligation to SacI-
KpnI digested pQE30 (Qiagen) and E. coli strain NM522
was transformed with the resulting construct, named
pGL387.

Site directed lesions in pGL387 were inserted using the
QuikChange® kit (Stratagene, LaJolla CA) based on the
work of Fisher and Pei [38]. Plasmid pGL387 was used a
template (20 ng) in amplification reactions of 50 μl con-
taining 1× Pfu DNA polymerase buffer, 25 μM each
primer, 10 mM dNTP mix and 2.5 U Pfu DNA polymerase.
PCR conditions consisted of 30 s at 95°C followed by 18
cycles of 95°C for 30 s, 55°C for 1 min, 68°C for 1 min.
Methylated (parental) DNA was then degraded with DpnI
by adding 1 μl DpnI (10 U) to each PCR reaction and incu-
bating at 37°C for 1 h, followed by transformation of E.
coli strain XL1-Blue. After transformant screening, selected
recombinant plasmids were extracted by the alkaline lysis
method and E. coli strain NM522 was transformed for
production of fusion proteins.

The inserts of selected constructs were sequenced on both
strands using universal primers by Cogenics (Meylan,
France) with plasmid DNA as target. DNA and protein
sequence analysis and similarity searches were carried out
using the BLAST network service at the National Center
for Biotechnology Information, National Institutes of
Health, Bethesda, Md. [39]. Protein secondary structure
was predicted using HNN (Hierarchical Neural Network
method) at the NPS@ web server (Network Protein
Sequence Analysis [40]).
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Production and purification of Wzb fusion proteins
Small-scale volumes (1.5 ml) of transformants inoculated
from an overnight culture (LB with 100 μg ml-1 ampicil-
lin) were induced with 0.1 M IPTG for 3 h, then the bac-
terial pellet was suspended in lysis buffer (0.1 M Tris-HCl,
pH 6.8, 2 % SDS, 20 % glycerol, 0.005 % bromophenol
blue and 0.1 volume of β-mercaptoethanol) in order to
screen by SDS-PAGE for overproduction of the fusion pro-
tein.

For large scale purification, an overnight culture was used
to inoculate (1% v/v) 400 ml of LB supplemented with
ampicillin (100 μg ml-1), which was incubated at 37°C
with shaking until A600 reached 0.6. Induction was initi-
ated by adding IPTG to 1 mM and incubation continued
for 3 h with shaking at 37°C.

Cells were harvested and lysed in 15 ml buffer A (25 mM
Tris, pH 8.0, 500 mM NaCl, 6 M urea) containing 1 mg
ml-1 lysozyme. The resulting suspension was centrifuged
and the supernatant was added to Ni2+-NTA-agarose resin.
Batch binding was carried out for 1 h with gentle stirring.
The lysate/resin mixture was loaded into a polypropylene
column and protein renaturation was carried out on the
column by applying a gradient of decreasing urea concen-
tration over 90 min using Buffer B (25 mM Tris, pH 8.0,
300 mM NaCl, 20 mM imidazole, 20% glycerol). After
washing with buffer B, proteins were eluted with buffer C
(25 mM Tris, pH 8.0, 300 mM NaCl, 250 mM imidazole,
20% glycerol) and fractions were analyzed by SDS-PAGE.
Fractions containing purified 6His-tagged proteins were
pooled and stored at -20°C.

Assays of Wzb phosphatase activity
Release of phosphate from tyrosine phosphopeptides was
quantified using the Tyrosine Phosphatase Assay System
(Promega France). Extracts were pretreated to remove
endogenous phosphate according to the instructions of
the manufacturer, then assayed by incubation for 45 min
at 37°C in the presence or absence of each of two syn-
thetic phosphopeptides (Tyr Phosphopeptide-1:
END(pY)INASL or Tyr Phosphopeptide-2:
DADE(pY)LIPQQG). After adding the molybdate dye
solution, phosphate released from 50 μl of extract con-
taining 45 μg protein was calculated from absorbance
measurements (A600) using a calibration curve deter-
mined with known concentrations of free phosphate.

The effect of combinations of ions on kinetic reactions
was conducted at 40°C using 2.5 mM pNPP in 50 mM
MES- 50 mM HEPES buffer, pH 8, containing 1% BSA and
with or without the presence of 0.1 mM each of the fol-
lowing ions: Ca2+, Co2+, Cu2+, Fe3+, Fe2+, Mn2+, Mg2+,
Ni2+and Zn2+. The effect of temperature was measured
using endpoint reactions in 50 mM MES – 50 mM HEPES

buffer, pH 8, containing 1% BSA in the presence of Cu2+,
Co2+, Fe3+ (0.1 mM each) and Mn2+, Mg2+ (0.5 mM each).
Endpoint reactions showing the effect of pH were carried
out in 100 mM MES, 100 mM HEPES buffer with 1% BSA
in the presence of Cu2+, Co2+, Fe3+ (0.1 mM each) and
Mg2+, Mn2+ (at 0.5 mM each). Reactions were pre-incu-
bated for 30 min at 75°C before the addition of 2.5 mM
pNPP (final conc.), incubated for 10 minutes, and then
stopped by adding sodium vanadate to a final concentra-
tion of 100 mM. All samples were measured against a con-
trol (same composition and treatment as sample except
that the sample aliquot was replaced with buffer C) using
a double beam spectrophotometer. Assays of phosphatase
activity of site-directed mutant proteins were carried out
by both endpoint (at the optimal temp. of 75°C) and
kinetic reactions (at 47°C in order to have sufficient activ-
ity within the temperature constraints of the spectrome-
ter). Cleavage of pNPP was monitored by increase in
absorbance at 405 nm and activity calculated using the
molar extinction coefficient of 18,000 M-1 cm-1. One unit
is defined as 1 mmol of pNPP hydrolyzed min-1 [41].

Abbreviations
EPS = exopolysaccharide, pNPP = para-nitrophenyl-phos-
phate, PHP = polymerase and histidinol phosphatase,
PPP = phosphoprotein phosphatase, PPM = magnesium
or manganese-dependent phosphatase.
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