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Abstract

Background: pK, values are a measure of the protonation of ionizable groups in proteins.
lonizable groups are involved in intra-protein, protein-solvent and protein-ligand interactions as
well as solubility, protein folding and catalytic activity. The pK, shift of a group from its intrinsic
value is determined by the perturbation of the residue by the environment and can be calculated
from three-dimensional structural data.

Results: Here we use a large dataset of experimentally-determined pK,s to analyse the
performance of different prediction techniques. Our work provides a benchmark of available
software implementations: MCCE, MEAD, PROPKA and UHBD. Combinatorial and regression
analysis is also used in an attempt to find a consensus approach towards pK, prediction. The
tendency of individual programs to over- or underpredict the pK, value is related to the underlying
methodology of the individual programs.

Conclusion: Overall, PROPKA is more accurate than the other three programs. Key to
developing accurate predictive software will be a complete sampling of conformations accessible to
protein structures.

is the ionization constant, a measure of a titratable group's
ability to donate a proton:

Background

A proper understanding of protein pK, values is essential
to a proper understanding of pH-dependent characteris-
tics of protein function. If the pK, of a particular group is
known then one can determine its protonation state at a
given pH, helping to determine several important proper-
ties including protein solubility, protein folding and cata-

_[H'][A7]
T (1)

The pK, value is therefore equal to the pH when there is an

lytic activity. Knowledge of the pK, values of the residues
of an active site can help to identify the reaction mecha-
nism of an enzyme or aid in the interpretation of experi-
mental results [1-4]. The pK, value is -log,,(K,) where K,

equal concentration of the protonated and deprotonated
groups in solution. Each residue with a titratable group
has a model or 'intrinsic' pK, value, defined as the pK,
value when all the other groups are fixed in their neutral
state. Ionizable groups may be divided into acidic, which
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are neutral in their protonated state, and basic, which are
positively charged in their protonated state. The proto-
nated and the non-protonated forms of a residue can be
very different chemically. In the case of His, the proto-
nated form is hydrophilic and positively charged while
the non-protonated form has a hydrophobic and aro-
matic character. Consequently the nature of the interac-
tion made by an ionizable group may differ significantly
at a pH above or below the pK,.

Table 1 shows the intrinsic or 'model' pK, values for all
protein titratable groups [5]. However, in real protein-sol-
vent systems, interactions between a residue and its envi-
ronment will cause the titratable group's pK, value to
deviate from that of the model. Hence the intrinsic pK,
value, pKy,,40, combined with the environmental pertur-
bation, ApK,, describes the real pK, value of a group [6-9].
pKa = pKModel + ApKa (2)

The pK, shift caused by the environment is not easily
quantified. This is especially true of ionizable residues
within protein active sites as they often have markedly
higher or lower values than the intrinsic pK, [5]. The three
main factors that contribute towards environmental per-
turbation of the pK, value are inter-molecular hydrogen
bonding, the desolvation effect and Coulombic interac-
tions. Previous studies have identified hydrogen bonding
as the most important determinant of pK, values [6]. The
hydrogen bonding strength is both distance and angle
dependent and therefore the extent of the perturbation is
heavily dependent on the position of the interacting resi-
dues relative to each other. This is less of a factor with side
chain hydrogen bonds than with main chain as the former
is more flexible and therefore more likely to adopt an
optimal orientation for hydrogen bond interactions. The
desolvation effect is also important; this describes the
energy that is required to move a group from a state of full
solvation to a position within the folded protein. Desol-
vation effects within the protein interior preferentially
increases the energies of the negatively-charged, base
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forms, which will increase the pK, value, while in the case
of His, Lys and Arg, the desolvation preferentially
increases the energy of the positively-charged, acid forms,
which will decrease the pK, values. The extent of the shift
is dependent on the degree to which the group is buried
within the protein. The third of the major factors, which
may cause a pK, shift, are Coulombic interactions
between ionizable groups. The pair-wise interactions are
dependent on the charges of the respective groups, but
also on their location as only residues that are buried pro-
duce significant charge-charge interactions.

Itis possible to predict the pK, value of a given protein res-
idue from three-dimensional structural data. The pK, shift
may be calculated from the difference in energy between
the group's charged and neutral forms and added to the
PKodel Value to estimate its true value. Several different
algorithms have been developed to generate predicted pK,
values based on structural data.

The majority of papers which have assessed the reliability
of pK, predictive algorithms have only examined a limited
number of proteins, making an evaluation of their accu-
racy very difficult [6,10-13]. The largest of these [13]
looked at 260 experimental pK, values taken from 41 pro-
teins. Here we use a large pK, dataset of 100 proteins,
which is more than double that of the most extensive pre-
vious paper [13], to analyse the predictive capabilities of
the MCCE [14,15], MEAD [16], PROPKA [17] and UHBD
[18] programs. The programs differ in their methodology
and we assessed the merits of each. An enhanced
approach to the problem of pK, prediction is proposed.

Results and discussion

Technical difficulties with the UHBD program, due to
errors in the protonation of histidine residues, prevented
the successful processing of all 100 proteins; in total only
43 could be completed. This lead to the creation of two
separate datasets, the Large dataset (containing 492 resi-
dues and excluding the UHBD program) and the Small
Dataset (containing 280 residues and including the

Table I: Model pK, values for all protein basic and acidic titratable groups. See reference 5.

No. in Study
Titratable Group PKhodel Value LARGE SMALL Mean pK,,, Value

N-Termini 7.5 - - -
C-Termini 3.8 - - -

Arg 12 | I -

Asp 4 143 12 35

Cys 9.5 I 4 6.6

Glu 4.4 126 105 43

His 6.3 130 24 6.4

Lys 10.4 57 23 9.6

Tyr 10 26 16 9.5
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UHBD program). Several of the programs produced out-
liers, in some cases outside of the physically possible pH
0-14 range. Outliers were removed from the dataset using
a variety of different parameters to see the effect upon the
overall accuracy of prediction Datasets were generated
where all predicted values were lesser or greater than the
intrinsic values by 3, 5, 7 and 10 pH units were removed
as well a dataset where only physically possible values
were included. This data is presented in Table 2 and Table
3. It may been seen from the data that in general the best
results were obtained by using values within a range of 5
pH units. Using those parameters, 89 residues were
removed from the Large dataset leaving 403 and 39 resi-
dues were removed from the Small dataset leaving 241
residues. It is unlikely that the pKa of a titratable residues
can deviate more than 5 pH units from the residue's
intrinsic value (see Table 1).

The majority of the outliers in both datasets were gener-
ated by the MEAD program, particularly when the PARCE
force field was used. Considerably more residues are
present within the +/- 1 unit bands for MCCE, UHBD and
PROPKA. Thus there is a clear division between the per-
formance of MEAD and that of the other programs. The
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same trend may be seen in the Root Mean Squared Devi-
ation (RMSD) values (Table 2, 3). PROPKA is more accu-
rate for Asp, Glu, Lys and Tyr with RMSD values of 0.934,
0.849, 0.260 and 1.001 respectively. His is more accu-
rately predicted by MCCE with an RMSD of 1.522. With
respect to the Small dataset in Table 3, PROPKA is the best
predictor for all residues except Glu and His, where UHBD
performs best: RMSD of 0.442 and 0.494 respectively. The
overall accuracy of each program to a level of <0.5 pK,
units is 27% AMBER, 34% PARSE, 42% MCCE, 40%
UHBD (242 dataset) and 48% PROPKA. When the error
range is increased to <1 unit, the difference between the
programs is more distinct: 56% AMBER, 56% PARSE, 71%
MCCE, 67% UHBD (Small dataset) and 81% PROPKA
(Table 4, 5). Scatter plots for each program are shown in
Figure 1.

From a previous study [19], 39 carboxyl residues found
within protein active sites were selected. These are shown
in Table 6[20-30]. The 27 Asp and 12 Glu residues have
experimental values that differ from the model pKa value
by at least 1 unit. Values for Asp and Glu range from 2.0 -
9.9 and 2.1 - 6.7 respectively. PROPKA and UHBD are
distinct within the <0.5 and <1 unit error bands (Table 7),

Table 2: Overview of the prediction accuracy of the Large Dataset (404 Residues) I. The table shows the RMSD values for each of the
residues from the whole dataset and the dataset following removal of non-physical values and of all outliers outside of a range of 3, 5, 7
and 10 pH units. Figures marked in bold indicate significant results (P = 0.05).

AMBER TRUE WITHI WITHI WITHI WITHI PARSE TRUE WITHI WITHI WITHI WITHI
COMP NIO N7 N5 COMP NIO N7 N5 N3
LETE LETE
ARG * * * * * : * * * * * *
ASP 2.698 1.928 2.513 1.495 1.354 1.273 3.743 1.729 2.251 1.837 1.25 1.106
cYs * * * * * * * * * * * *
GLU 1.885 1.466 1.616 1.62 1.42 1.026 3.175 1.48 1.841 1.681 1.442 1.034
HIS 3.691 2.171 3.016 2.281 2.022 1.417 3.691 2.122 2.997 2.293 1.993 1.465
LYS 1.244 1.263 1.263 1.263 1.122 0.84 25.78 1.162 1.162 1.162 0.991 0.741
TYR 2.739 2.195 2.195 2.195 1.939 1516 3.163 2.143 2.143 2.143 1.882 1.481
MCCE TRUE WITHI WITHI WITHI WITHI PROPK TRUE WITHI WITHI WITHI WITHI
COMP NIO N7 N5 A NIO N7 N5 N3
LETE COMP
LETE
ARG * * * * * * * * * * * *
ASP 2.024 1.774 2.032 1.79 1.534 1.242 1.301 1.041 1.313 1.301 0.934 0.806
cYS * * * * * * * * * * * *
GLU 1.642 1.255 1.335 1.296 1.259 0.97 1.011 0.851 0.994 0.997 0.849 0611
HIS 4.503 1.736 2.598 2.104 1.522 1.718 1.865 1.586 1.819 1.631 1.530 1.551
LYS 1.137 1.125 1.125 1.125 1.005 1.129 0417 0412 0412 0412 2.600 0.423
TYR 5.426 2.643 2.634 2.643 1.668 1.593 2.225 1.551 1.551 1.551 1.001 1.049
Outliers
COMPLETE 0 removed
TRUE 52 removed
WITHIN 10 23 removed
WITHIN 7 27 removed
WITHIN 5 89 removed
WITHIN 3 110 removed
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Table 3: Overview of the prediction accuracy of the Small Dataset (242 Residues) I. The table shows the RMSD values for each of the
residues from the whole dataset and the dataset following removal of non-physical values and of all outliers outside of a range of 3, 5, 7

and 10 pH units. Figures marked in bold indicate significant results (P = 0.05).

AMBER TRUE WITHI WITHI WITHI WITHI PARSE TRUE WITHI WITHI WITHI WITHI
COMP NIO N7 N5 N3 COMP NIO N7 N5 N3
LETE LETE
ASP 2.078 1.787 2.079 2.077 1.691 1.781 3.774 1.582 2.142 1.912 1.53 1.267
GLU 1.641 1.416 1.603 1.603 1.294 1.047 3.041 1.474 1.71 1.71 1.334 1.051
HIS 2.786 1.689 1.689 1.689 1.347 1.118 2.736 1.809 1.81 1.81 1.488 1.402
LYS 1.291 1.29 1.291 1.291 1.291 1.291 1.278 1.278 1.278 1.278 1.278 1.278
TYR 2.06 1.297 1.297 1.297 1.933 0.766 2.368 1.262 1.262 1.262 1.871 0.792
MCCE TRUE WITHI WITHI WITHI WITHI UHBD TRUE WITHI WITHI WITHI WITHI
COMP NIO N7 N5 N3 COMP NIO N7 N5 N3
LETE LETE
ARG * * * * * * * * * * * *
ASP 1915 1.735 1.921 1.731 1.319 1.419 0.95 0.824 0.838 0.842 0.89 0.641
GLU 1.575 1.185 1.237 1.237 1.188 0.893 0.508 0.478 0.493 0.493 0.442 0.395
HIS 1.985 1.584 1.584 1.584 1.056 1.593 0.634 0.453 0.453 0.453 0.494 0.428
LYS 1.152 1.152 1.152 1.152 1.152 1.152 0.412 0.412 0412 0412 0.412 0.412
TYR 6.027 1.373 1.373 1.373 1.456 1.419 0.687 0.582 0.582 0.582 0.6l 0.631
PROPK TRUE WITHI WITHI WITHI WITHI
A NIO N7 N5 N3
COMP
LETE
ASP 1.827 1.826 1.806 1.809 0.879 0.745
GLU 0.987 0.773 0.959 0.959 0.781 0.632
HIS 2.235 2.11 2.11 2.11 1.724 2.172
LYS 0.394 0.394 0.394 0.394 0.394 0.394
TYR 1.533 0.992 0.991 0.991 0.572 1.011
Outliers

COMPLETE 0 removed
TRUE 25 removed
WITHIN 10 || removed
WITHIN 7 13 removed
WITHIN 5 34 removed
WITHIN 3 54 removed

with PROPKA performing best with an accuracy of
66.67% within the <1 unit band. However a large discrep-
ancy exists between the <1 and <0.5 bands for all of the
programs, with an approximate 50% drop in accuracy. For
the Asp residues, PROPKA predicts far better than the
other programs, with values of 37.04%, compared to
18.52% for MCCE and 0% for UHBD at the <0.5 level.
However, for Glu residues program performance is closer,
with values of 25 % for PARSE, MCCE and UHBD and
33% for AMBER and PROPKA at the <0.5 level. When the
error level is extended to <1, PROPKA is far better, with a
value of 83.33% compared to its nearest rivals UHBD,
AMBER and PARSE with values of 50%. PROPKA shows

an accuracy of 85% to within 1 pKa unit for surface resi-
dues, whereas the same accuracy is limited to 53% with
the MCCE program for buried residues, a considerable
reduction. The accuracy values obtained for MCCE were
also comparable with those that recently appeared on the
program's website, which show an RMSD of 0.77 and an
accuracy range of 98% within the <2 pH unit range and
84% accuracy within the <1 pH unit range [31].

Given the capacity of the predictive programs to under or
over predict the true pK, value (see Discussion), the possi-
bility of using a consensus approach to integrate the vari-
ous programs was investigated. Using the Small dataset,
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Figure |
Correlation plots for the individual programs. The
bold line indicates perfect prediction (pK..4 = pK,,). The

outer lines indicate +/- | unit from the pK,,..

combinations of the prediction values were calculated
and the accuracy tested as before. From this dataset, 25
combinations (Table 8) were tried. One, UHBD +
PROPKA, leads to improvements in all residues except
histidine. The His RMSD value of 0.955, from this combi-
nation, is far better than all of the programs except UHBD,
which has a value of 0.494. The overall accuracy of this
combination was not a surprise due to the individual per-
formance of each program. A further attempt to integrate
the programs was made by using Partial Least Squared
(PLS) regression. The PLS model generated had a correla-
tion coefficient (r2) of 0.9 and a cross-validated correla-
tion coefficient (¢?) of 0.89. The resulting equations were
applied to the Small dataset and the accuracy results are
shown in Table 9. The accuracy improved greatly in the
<0.5 range to almost 58%, significantly greater than either
the other programs run individually or the combination
method (UHBD + PROPKA). Again, a disparity between
the predictive capabilities of MEAD and the other pro-
grams may be seen. AMBER and PARSE have coefficients
of -0.03129 and -0.0001836 respectively, which are com-
paratively small compared to the other coefficients
(0.239, 0.4282 and 0.4108 for MCCE, UHBD and
PROPKA respectively). The results above would indicate a
more significant relationship between the PROPKA and
UHBD predictions and the experimental pK, values. This
data fits with the trends seen in the other analysis. How-
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ever, multiple linear regression is not an ideal way to
increase predictive accuracy as combining programs will
cause the propagation of experimental errors within a
given dataset.

The disparity between the predictive capabilities of the
program relates to the algorithm that used for the calcula-
tion. MEAD, UHBD and MCCE are all based upon an elec-
trostatic continuum model that solves the linearised
Poisson-Boltzmann equation numerically [32,33]. The
electrostatic potential ¢(r)can be calculated by the Pois-
son-Boltzmann equation:

Ve (Vo (r)-x(re (e (r) =-4mp (1) (3)

Wheree is the dielectric constant, r is the position vector,
@is the electrostatic potential, p is the charge distribution
and x is a parameter that represents the effect of mobile
ions in solution. All three programs work on the assump-
tion that the major determinant of the pK, shift from the
model values are the electrostatic effects of burying titrat-
able groups in low dielectric medium. A model of the
macromolecule-solvent system is used with dielectric con-
stants of 80 for the solvent and 4 for the protein. The
details of the atomic structure are incorporated into the
placement of charges and dielectric boundaries. The calcu-
lation accounts for the desolvation energy, the titratable
group's interaction with partial charges and the group's
interaction with other titratable groups in the protein.
MEAD consistently performs more poorly than the other
two Poisson-Boltzmann-based programs. This may be
because, in addition to the basic calculation, UHBD and
MCCE also incorporate a Monte Carlo function to sample
the multiple conformations of each titratable site. The
Monte Carlo method achieves convergence by random
sampling of side chain conformers. This allows the MCCE
and UHBD programs to make a more realistic calculation
of the charge-charge interactions than MEAD. The RMSD
values of the two MEAD data sets — PARSE and AMBER -
are comparable, both producing similar RMSD values and
numbers of outliers. However, Table 2 shows that the
PARSE force field generates outliers that deviate much fur-
ther from the experimentally-determined values than
those of AMBER. Although the parameters of the two force
fields are similar; the atomic radii of the hydrogens for
PARSE are slightly larger which may have created inaccu-
rate charge-charge interactions that have increased the cal-
culated pK, value (this would also account for the
program's propensity to generate outliers). This is espe-
cially noticeable for Lys where the respective RMSD values
of AMBER and PARSE are 1.2 and 25.8.

Although the PROPKA and MCCE programs are of com-
parable accuracy, the data suggests that the former tends
to under-predict pK, values whilst the latter over-predicts
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Table 4: Overview of the prediction accuracy of the Large Dataset (404 Residues) Il Three tables show the accuracy of the predictions

to the measured pK,,,
marked in bold indicate significant results (P = 0.05).

within the ranges of <2 to <0.5. This is taken as the number of residues predicted within each range. Figure

TOTAL (404)

AMBER PARSE MCCE PROPKA

% % % %

<2 322 80 320 79 357 88 371 92

<15 283 70 282 70 328 8l 354 88

<l 213 53 221 55 283 70 317 78

<05 108 27 139 34 168 4 195 48

SURFACE (337)

AMBER PARSE MCCE PROPKA

% % % %

<2 285 85 284 84 301 92 329 98

<15 255 76 253 75 290 86 317 94

<l 196 58 200 59 248 74 285 85

<05 98 29 132 39 151 45 184 55

BURIED (66)

AMBER PARSE MCCE PROPKA

% % % %

<2 37 56 36 55 46 70 ) 64

<15 28 4 29 44 38 58 37 56

<l 17 2 2 32 35 53 32 48

<05 10 15 7 I 17 26 I 17

them (Figure 1). This observation may reflect the different
approaches towards the calculation of the pK, value in the
two programs. PROPKA [17] takes a different approach to
the other three programs, calculating the pK, shift by
using empirical rules that incorporate effects from hydro-
gen bonds, desolvation and Coulombic interactions. The

[EREGRESSION
[EUHED + PROPIG
mPROPKA

Figure 2

Comparative performance of the prediction meth-
ods. The accuracy ranges (0.5 — 2) apply to the deviation
from the measured pK, value. The percentage score repre-
sents the number of residues predicted in each range.

extent of the pK, shift caused by hydrogen bonding is pro-
portional to the number of hydrogen bonds formed by
the titratable group [19]. The desolvation effect is calcu-
lated from the solvent accessible surface and the 'depth of
burial' (the distance of the group from the protein sur-
face). Lastly, the strength of the Coulombic charge-charge
interactions is dependent on the distance between the
charges and on the state of the surrounding ionizable res-
idues. This process, however, is only applied to buried
pairs of ionizable residues. Therefore PROPKA's tendency
to under-predict pK, values may be caused by the pro-
gram's emphasis on the dominance of hydrogen bonding
in determining the extent of the shift. Hydrogen bonds
have the effect of lowering pK, values [34] and the pre-
dicted values may reflect that. Conversely, MCCE's ten-
dency to over-predict may be the result of charge-charge
interaction forcing an increase in the pK, value. The
majority of the over-predicted values are surface residues
and, unlike PROPKA, the MCCE program does not take
into account the lessened effects of charge-charge interac-
tions when the respective residues are not buried within
the protein interior. Consequently, PROPKA and MCCE
tend to be more accurate for surface and buried residues
respectively.

Side chains located at active sites are of particular interest
as they often have unusually high or low pK, values. In
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Table 5: Overview of the prediction accuracy of the Small Dataset (242 Residues) Il. Three tables show the accuracy of the predictions
to the measured pK_,,. This is taken as the number of residues predicted within each range. Figures marked in bold indicate significant

results (P = 0.05).

TOTAL
(242)
AMBER PARSE MCCE UHBD PROPKA
% % % % %
< 195 8l 191 79 216 89 225 93 230 95
<15 174 72 171 71 201 83 209 86 220 91
<l 131 54 135 56 172 71 16l 67 195 8l
<05 63 26 87 36 1o 45 97 40 125 52
SURFACE
(209)
AMBER PARSE MCCE UHBD PROPKA
% % % % %
<2 179 86 176 84 193 92 199 95 205 98
<15 163 78 159 76 18l 87 186 89 199 95
<l 126 60 125 60 156 75 152 73 18 87
<05 60 29 83 40 100 48 94 45 122 58
BURIED
@33)
AMBER PARSE MCCE UHBD PROPKA
% % % % %
< 16 48 5 45 23 70 26 79 25 76
<15 I 33 12 36 20 6l 23 70 2 64
<1 5 I5 10 30 16 48 9 27 14 42
<05 3 9 4 12 16 30 3 9 3 9

some instances, the electrostatic charge of the active site
can be radically different from that the rest of the protein
as a means to 'steer' a ligand towards the binding cleft
[35]. For a program to work as an effective pK, prediction
tool it must be able to predict unusual pK, values accu-
rately. Generally speaking, the accuracy of prediction
decreased the further the measured pK, value was from the
side chain's intrinsic pK,. Again, PROPKA proved to be the
most consistent of the programs. This is not surprising as
the design of the model and assignment of parameters
were based upon a large dataset of carboxyl pK, values.
Overall, the active site data was encouraging at the <1 unit
level. However, once reduced to <0.5, the accuracy of all
of the programs decreased. This highlights a key area for
the development of new models and programs.

An interesting correlation is seen with respect to the
regression coefficients and the general performance of the
programs. Coefficients are generally an indicator of the
relative importance of the contributing terms in a regres-
sion equation. The comparative performance of PROPKA,
the combination methods and the regression model is
seen in Figure 2. PROPKA is equally effective as these
additional methods, although the regression data per-

forms better than the best combination. A Molecular
Dynamics simulation of one of the proteins from the
dataset (Barnase wild type ribonuclease (pdb code: 1A2P))
showed a standard deviation of + 1.4 for the pK, value
over a one-nanosecond period. This indicates that a
dynamic structure has a large capacity for extreme pK,
shifts. This suggests that any accurate prediction pK,
method would need to incorporate conformational varia-
bility into the algorithm.

Conclusion

PROPKA is the most accurate method for all residues
except Glu and His, where it is narrowly surpassed by
UHBD and MCCE, respectively. Furthermore, the pro-
gram also produces by far the best values for surface resi-
dues, most likely by taking sufficient account of hydrogen
bonding. However, MCCE predicts buried residues far
better than PROPKA, possibly by a more accurate evalua-
tion of the charge-charge interaction with the conformers
optimised by the Monte Carlo procedure. It must be noted
that in all cases, the prediction of the buried residues is
less accurate than for surface residues, indicating it is eas-
ier to calculate the interaction of a solvated or partially
solvated residue than one densely packed within the pro-

Page 7 of 12

(page number not for citation purposes)



BMC Biochemistry 2006, 7:18

Table 6: Carboxyl sites of interest. B = Buried, S = Surface. Figures marked in bold indicate predictions >2 units from the pK
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exp*®

PDB RESIDUE LOCATIO AMBER PARSE MCCE UHBD PROPKA pKexp
N

1A2P20 ASP-101 S 6.19 231 3.75 1.20 2.00
ASP-93 S -0.64 -1.38 1.00 3.92 0.69 2.00
ASP-54 S 0.74 1.34 3.57 2.70 2.00
GLU-73 B 4.66 237 4.68 3.1 2.10
IA9]2! ASP-7 S 3.99 20.29 4.17 4.04 3.87 5.60
ASP-44 S 6.00 20.22 5.55 4.69 4.19 5.60
ASP-61 S 5.52 26.20 5.01 4.33 4.01 7.00
GLU-2 S 4.14 4.53 4.45 4.50 5.50
GLU-37 S 5.05 -20.96 427 4.66 4.32 5.50
IBEO22 ASP-21 S 6.38 3.1 3.75 1.35 2.50
ASP-30 S 3.56 4.38 4.00 2.64 2.50
ASP-72 S 3.84 3.69 4.34 3.30 2.60
IDE323 GLU-96 B 9.88 10.41 3.53 5.70 4.10 5.10
GLU-115 S 5.19 3.8l 4.45 4.50 4.90
KX 24 ASP-59 S 3.13 233 4.20 2.49 2.30
1LZ325 ASP-18 S 3.79 6.77 4.05 3.19 2.70
ASP-48 S 3.57 5.15 3.99 2.51 2.50
ASP-66 S 0.23 -0.31 12.38 3.07 1.19 2.00
ASP-87 S 4.06 4.89 3.89 2.17 2.10
GLU-7 S 3.92 4.73 4.36 3.01 2.70
GLU-35 B 4.92 7.80 4.78 5.40 6.10
IRNZ26 ASP-14 B 9.08 3.51 4.89 -0.62 2.00
GLU-2 B -1.52 -1.48 1.44 5.03 2.66 2.80
I TRS? ASP-26 B 6.18 7.84 4.64 4.96 8.10
GLU-6 S 391 4.54 4.44 4.50 4.90
GLU-68 S 4.27 4.59 4.55 4.57 5.10
I TRW?7 ASP-26 B 823 8.63 4.83 5.62 9.90
GLU-68 S 5.07 3.55 4.88 4.34 4.90
IXNB28 ASP-11 S 1.83 3.44 3.82 1.99 2.50
ASP-83 B 6.29 6.35 4.28 1.36 2.00
ASP-101 B 5.01 9.96 4.28 1.50 2.00
ASP-106 S 8.72 3.18 4.98 3.02 2.70
GLU-172 B 6.62 5.94 5.22 7.32 6.70
20V0o? ASP-7 S 4.05 6.25 3.72 2.51 2.50
ASP-27 S 2.08 2.77 3.77 2.39 2.50
2RN230 ASP-10 B 4.01 8.47 3.83 6.99 6.10
ASP-70 B 4.11 3.15 3.50 4.10 2.60
ASP-102 B 7.33 3.00 3.40 0.13 2.00
ASP-148 B -1.10 -1.31 0.55 3.79 -0.79 2.00

tein interior. Overall, the best standalone program is
PROPKA, which also produced the fewest outliers and is
computationally much faster than the other programs.
What the program lacks is a capacity to fully explore the
conformational space available to the protein, which may
ultimately limit its capacity to predict pK, value. The reli-
ability of the predictive programs tends to vary with both
the residue type and its spatial location. For glutamic acid
residues, UHBD produced the best results while for Histi-
dine and for all buried residues, MCCE performed well.
The comparatively poor prediction of the 'unusual' pK,
values by all of the programs was disappointing. Their
ability to only predict a third of the residues to a high
degree of accuracy highlights an area requiring further
development. The variation in pK, values observed in our

molecular dynamics simulation strongly suggests a com-
plete sampling of conformations accessible to protein
structures may be useful in creating accurate predictive
software.

Methods

100 proteins for which pK, values had been determined
experimentally were taken from PPD, a database of pro-
tein ionization constants [36,37]. The full list of the pdb
files comprising the dataset is included as an additional
file [See PDB codes]. A wide range of both protein size and
function was represented in the dataset. The protein struc-
tures were taken from the RCSB protein data bank [38]. In
order to run the MEAD program, pdb files were protonated
by using the leap program and the AMBER 94 force field
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Table 7: Accuracy of prediction for the carboxyl sites. The accuracy was tested to the <2 to <0.5 ranges. The individual accuracy of the
residues is given in the bottom two tables. Figures marked in bold indicate the greatest accuracy.

TOTAL
(242)
AMBER PARSE MCCE UHBD PROPKA
% % % % %
< 2 66.67 20 51.28 76.92 30 76.92 34 87.18
<15 19 48.72 I5 38.46 64.10 20 51.28 32 82.05
<l 10 25.64 10 25.64 43.59 8 20.51 26 66.67
<05 6 15.38 4 10.26 20,51 3 7.69 14 35.90
SURFAC
E (209)
AMBER PARSE MCCE UHBD PROPKA
% % % % %
<2 17 62.96 13 48.15 10 70.37 19 70.37 2 81.48
<15 10 37.04 8 29.63 16 59.26 I 40.74 20 74.07
<l 4 14.81 4 14.81 12 44.44 2 7.41 16 59.26
<05 2 7.41 [ 3.70 18.52 0 0.00 10 37.04
BURIED
33)
AMBER PARSE MCCE UHBD PROPKA
% % % % %
< 9 75.00 9 75.00 91.67 I 91.67 12 100.00
<15 9 75.00 7 58.33 75.00 9 75.00 12 100.00
<l 6 50.00 6 50.00 41.67 6 50.00 10 83.33
<05 4 33.00 3 25.00 25.00 3 25.00 4 33.33

(subsequent versions of the force field proved to be
incompatible) and changed into pgr format using the
online PDB2PQR converter [39,40]. Separate sets of files
were created based on the AMBER99 and PARSE force
fields. MEAD and UHBD were run on an IBM Blade
Center Cluster, which consists of 5 Blade Centers contain-
ing 67 Dual Xeon (3.06Ghz, 1Gb) Blades. The MCCE cal-
culations were carried out on an SG Octane. The majority
of the pdb files did not need any modification. However,
1D3K, 1GU8, 1HRH and 1DRH were protonated with the
leap program and the AMBER 03 force field in order to
remove inconsistencies in the pdb files. Additionally,
1DUK, INEN and 2CI2 underwent minimization with
sander using a steepest descent method that continued for
20,000 1 fs time steps or until the root mean square devi-
ation between successive time-steps had fallen below
0.01A in order to eliminate steric clashes. The PROPKA
program was run online from its server [41]; no modifica-
tion was required to run the files. Values for all Asp, Glu,
His, Tyr, Lys residues were predicted. Arg was excluded
from the calculation due to lack of experimental data.
Arginines's high pK, precludes establishing a titratable

curve as the protein denatures at high pH. Cys was also
excluded from the calculations due to a lack of experimen-
tal data.

The resultant data was also analysed using the Partial Least
Squares (PLS) method. PLS is an extension of Multiple
Linear Regression (MLR) that where a set of coefficients
are developed from dependent variables, in this case the
pK, prediction values, by comparison with the independ-
ent variables, the experimental pK, values. The PLS analy-
sis was performed using the program GOLPE (Generating
Optimal Linear PLS Estimations)[42].

Authors' contributions

MND formatted the data carried out the calculations for
all of the pK, programs mentioned. CPT assembled the
data set and carried out statistical analysis on the output
of the pK, programs. DSM supervised the pK, calculations
using the MEAD and UHBD programs at Birkbeck Col-
lege. DRF instigated and supervised the entire project.
MND, CPT and DRF drafted the manuscript. All authors
have read and accepted the manuscript.

Page 9 of 12

(page number not for citation purposes)



BMC Biochemistry 2006, 7:18 http://www.biomedcentral.com/1471-2091/7/18

Table 8: Overview of the combination methods (242 Residues). The residue RMSD values are given for all of the 25 combinations
consisting of AMBER (A), PARSE (P), MCCE (M), UHBD (U) and PROPKA (P). Figures marked in bold indicate an improvement while
the asterisk indicates the best score.

A+P A +M A+U A +PR P+M
ASP 1.556 1.245 1.174 0.837 1.161
GLU 1.301 1.012 0.816 0.676 1.026
HIS 1.331 0.631 0.827 1.000 0.727
LYS 1.281 0.763 0.742 0.646 0.793
TYR 1.899 1.512 1.238 1.028 1.502

P+U P + PR M+U M+ PR U + PR
ASP 1.074 0.786 0910 0.818 0.596
GLU 0.834 0.690 0.660 0.766 0.393
HIS 0.812 0.987 0.566 1.289 0.955
LYS 0.742 0.647 0.713 0.755 0.366
TYR 1.212 1.016 0.974 0.956 0.466

A+P+M A+P+U A +P+PR A+M+U A+M+PR
ASP 1.262 1.242 1.000 1.038 0.837
GLU 1.064 0.973 0.844 0.761 0.714
HIS 0.792 0.954 0.942 0.520 0.839
LYS 0.868 0913 0.846 0.615 0.590
TYR 1.607 |.446 1.300 1.195 1.097
A+U+PR P+M+U P+M+PR M+ U + PR A+P+M+U
ASP 0.773 0.972 0.795 0.681 1.101
GLU 0.539 0.770 0.720 0.529 0.870
HIS 0.771 0.523 0.840 0.897 0.646
LYS 0518 0.634 0.610 0.597 0.718
TYR 0.869 1.188 1.098 0.782 1.345
A+P+M+PR A+P+U+PR A+M+U+PR P+M+U+PR A+P+M+U+PR

ASP 0.929 0.905 0.779 0.738 0.866
GLU 0.798 0.706 0.588 0.592 0.690
HIS 0.754 0.771 0.690 0.668 0.650
LYS 0.683 0.689 0.525 0.540 0.605
TYR 1.256 1112 0.959 0.959 I.115

Table 9: Accuracy of the multiple regression. The accuracy is given as the number of predictions within a range of the pK For

comparison the UHBD + PROPKA combination is added. Figures marked in bold indicate improvements.

exp*

TOTAL (242)

REGRESSION UHBD + PROPKA
% %
<2 234 96.69 233 96
<l.5 228 94.21 226 93
<l 205 84.71 197 8l
<0.5 140 57.85 124 51
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Additional material

Additional File 1

PDB codes, a full list of the pdb codes for the three-dimensional structures
comprising the dataset.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2091-7-18-S1.doc]
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