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Abstract

Background: Water-soluble quinoprotein glucose dehydrogenase (PQQGDH-B) from
Acinetobacter calcoaceticus has a great potential for application as a glucose sensor constituent.
Because this enzyme shows no activity in its monomeric form, correct quaternary structure is
essential for the formation of active enzyme. We have previously reported on the increasing of the
stability of PQQGDH-B by preventing the subunit dissociation. Previous studies were based on
decreasing the entropy of quaternary structure dissociation but not on increasing the interaction
between the two subunits. We therefore attempted to introduce a hydrophobic interaction in the
dimeric interface to increase the stability of PQQGDH-B.

Results: Amino acid residues Asn340 and Tyr418 face each other at the dimer interface of
PQQGDH-B, however no interaction exists between their side chains. We simultaneously
substituted Asn340 to Phe and Tyr418 to Phe or lle, to create the two mutants Asn340Phe/
Tyr418Phe and Asn340Phe/Tyr418lle. Furthermore, residues Leu280, Val282 and Val342 form a
hydrophobic region that faces, on the other subunit, residues Thr416 and Thr417, again without
any specific interaction. We simultaneously substituted Thr416 and Thr417 to Val, to create the
mutant Thr416Val/Thr417Val. The temperatures resulting in lose of half of the initial activity of the
constructed mutants were increased by 3—4°C higher over wild type. All mutants showed 2-fold
higher thermal stability at 55°C than the wild-type enzyme, without decreasing their catalytic
activities. From the 3D models of all the mutant enzymes, the predicted binding energies were
found to be significantly greater that in the wild-type enzyme, consistent with the increases in
thermal stabilities.

Conclusions: We have achieved via site-directed mutagenesis the improvement of the thermal
stability of PQQGDH-B by increasing the dimer interface interaction. Through rational design
based on the quaternary structure of the enzyme, we selected residues located at the dimer
interface that do not contribute to the intersubunit interaction. By substituting these residues to
hydrophobic ones, the thermal stability of PQQGDH-B was increased without decreasing its
catalytic activity.
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Background

Water-soluble quinoprotein glucose dehydrogenase
(PQQGDH-B) from Acinetobacter calcoaceticus has great
potential for application as a constituent of an electron
mediator-type glucose sensor. The conventionally utilized
enzyme for glucose measurement, glucose oxidase
(GOD), inherently utilizes oxygen as its electron acceptor
during the oxidation of glucose. In contrast, PQQGDH-B
is completely independent of oxygen, resulting in
improved accuracy and rapidity during glucose measure-
ment. However, because the substrate specificity and sta-
bility of PQQGDH-B remain somewhat inferior to those
of GOD, we have been engaged in the improvement of
these enzymatic properties through protein engineering
to further increase the application of PQQGDH-B in glu-
cose monitoring systems [1-17].

The subunit structure of PQQGDH-B was determined to
be homodimeric with no activity observed in its mono-
meric form [17]. Correct quaternary structure is essential
for the formation of active enzyme and dissociation of the
dimer conformation triggers inactivation of the enzyme.
We have previously reported on the increasing of the sta-
bility of PQQGDH-B against the dissociation of quater-
nary structure by chemical cross-linking [12], by
constructing tethered enzyme [13], and by introducing
Cys residues at the dimer interface to form a novel inter-
subunit disulfide bond [14]. All of these attempts were
based on decreasing the entropy by decreasing the possi-
bility of dimer dissociation, but no attempts had been
made to increase the interaction between the two
subunits.

In this paper, we report on our rational designing of
hydrophobic interaction in the dimer interface to increase
the stability of PQQGDH-B. We identified protein regions
at the dimer interface where potential novel hydrophobic
interactions could be introduced by amino acid substitu-
tion, thereby increasing the stability.

Results

Modeling novel dimer hydrophobic core

Among 19 amino acid residues located at the dimer inter-
face, 8 residues were predicted not to be involved in the
formation of hydrogen bonds, electrostatic interactions,
or hydrophobic interactions (Fig. 1). We focused on the
residues Asn340, Tyr418, Thr416, and Thr417, as they are
not involved in the formation of the active site cavity and
are therefore suitable candidates for amino acid substitu-
tion. Although residues Asn340 and Tyr418 face each
other on the surface of the dimer interface (Fig. 2), no
interaction exists between their side chains. We therefore
simultaneously substituted Asn340 to Phe and Tyr418 to
Phe or Ile to create the mutants Asn340Phe/Tyr418Phe
and Asn340Phe/Tyr418lle, respectively. Furthermore, the
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Figure |

The amino acid residues located at the dimer inter-
face. The two subunits are represented in red and blue,
respectively, using the RasMol molecular visualization soft-
ware 26. The |9 amino acid residues at the interface are
shown in space filling format, of which 8 residues (orange and
light blue) are predicted not be involve in hydrogen bond for-
mation, electrostatic interaction, or hydrophobic interaction
at the interface.

hydrophobic region composed of residues Leu280,
Val282, and Val342 faces residues Thr416 and Thr417,
again with no specific interaction. We therefore substi-
tuted Thr416 to Val and Thr417 to Val to create the double
mutant Thr416Val/Thr417Val.

Characterization of mutant enzymes

The activity and stability of each of the three constructed
double mutant enzymes were then analyzed. All three
mutant enzymes showed slightly higher thermal stability
than wild-type PQQGDH-B upon incubation for 10 min
at various temperatures (Fig. 3). The temperatures result-
ing in lose of half of the initial activity were shifted by
approximately 3°C higher in the mutants compared to
the wild type (Table 1). As the time course of thermal inac-
tivation at 55°C follows first-order kinetics (Fig. 4), half-
lives were calculated using logarithmic regression of resid-
ual activity. The wild-type enzyme inactivates at 55°C
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Table I: Kinetic parameters and thermal stability of PQQGDH-Bs.

http://www.biomedcentral.com/1471-2091/6/1

Vmax(U/mg) Km(mM) T,(°C)2 t; 5 (min)b
Wild type 3030 20 53909 95+ 14
Asn340Phe/Tyr418Phe 3100 20 57704 149+ 1.1
Asn340Phe/Tyr418lle 2500 20 575+03 155+ 1.5
Thr416Val/Thr417Val 2800 6 56.5+09 148 + 1.4
aT, represents the temperature at which half the initial activity is lost in 10 min.
bt,, represents the half-life at 55°C.
100 + =
90 T
- 80 T
s
> 70 T ]
= 60 8
o
% 50 T
© .
3 40+
o 7y
20 T
L4
10 + r 8
o —+—+—"F+—+—+—+—++—+—+
2025 30354045 50556065 70758085
10-minute treatment temperature (°C)
Ser415-Thr416-Thr417 Figure 3

Figure 2

Hydrophobicity of PQQGDH-B dimer interface.
Hydrophobic regions are shown in green and hydrophilic
regions are shown in blue. Residues that have been substi-
tuted in this study are indicated. The structural images were
generated using Molecular Operating Environment.

with a half-life of 9.5 + 1.4 min, while all three double
mutants showed greater thermal stability, with half-lives
of 5-6°C greater (Table 1).

Investigation of the kinetic parameters of the wild-type
and mutant enzymes shows that the mutations did not
significantly affect the overall kinetic properties of
PQQGDH-B (Table 1). The specific activities of
Asn340Phe/Tyr418Phe (3100 U/mg), Asn340Phe/
Tyr4181le (2500 U/mg), and Thr416Val/Thr417Val (2800

Thermal stability of wild-type and mutant
PQQGDH-Bs. Residual activity was measured at 25°C after
10-min incubations at different temperatures of the following
protein samples (0.075 pg/mL): Wild-type ¢, Asn340Phe/
Tyr418Phe [, Asn340Phe/Tyr418lle A, and Thr416Val/
Thr417Val O.

U/mg) were close to that of the wild-type enzyme (3030
U/mg). Except for Thr416Val/Thr417Val, which had a Km
value of 16 mM, the mutants had Km values identical to
20 mM Km value of the wild-type enzyme.

Discussion

PQQGDH-B is a 6-blade B-propeller protein, with each
blade consisting of a 4-stranded anti-parallel B-sheet (W-
motif) [18]. The strands in each W-motif are labeled A-D
from the inside to the outside of the molecule [18,19]. All
strands are connected by loops, which are named accord-
ing to the strands they connect. Based on PQQGDH-B
structural information, these loop regions have been
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Figure 4

Time course of thermal inactivation of wild-type and
mutant PQQGDH-Bs. Protein samples (0.075 pg/mL)
were incubated at 55°C and aliquots were taken at different
times to measure residual activity. The analyzed samples con-
tained the following PQQGDH-Bs: Wild-type ¢, Asn340Phe/
Tyr418Phe [, Asn340Phe/Tyr418lle A, Thr416Val/
Thr417Val O.

Table 2: Predicted binding energy of each mutant subunit
calculated using AMBER89 and CHARMM22 force fields.

Binding energy (kcal/mol)

AMBERS89 CHARMM22
Wild type -249 -118
Asn340Phe/Tyr418Phe -291 -134
Asn340Phe/Tyr418lle =273 -126
Thr416Val/Thr417Val -278 -131

associated with a number of important functions, such as
substrate binding, co-factor binding, and formation of the
enzyme active site. As with other B-propeller proteins, the
catalytic site and substrate-binding pocket of PQQGDH-B
is made up of the cleft formed by loops DA and BC [20].
The enzyme surface composed of loops AB and CD is
therefore located opposite the functional region. In the
present study, we have introduced mutations at Asn340,
Tyr418, Thr416, and Thr417, which are all located in the
loop 5CD region. Considering that these residues are
located far from the functional region and do not contrib-
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ute in the structure of functional region, it is not surpris-
ing that their substitutions did not significantly alter the
enzyme's kinetic parameters, particularly its catalytic
activity.

Based on the predicted structure of the mutant enzymes
shown in Figure 5, the binding energy of each subunit was
calculated, using both the AMBER89 and CHARMM?22
force fields, and compared with those of the wild-type
enzyme (Table 2). As expected, the increases in hydropho-
bicity at the subunit interface resulted in increases in their
binding energies calculated by both methods. Estimation
of the number of hydrophobic interactions based on these
same predicted models revealed 4 to 5 novel hydrophobic
interactions at the interface of all the mutants, while none
were found in the wild-type one. These results based on
structural predictions are consistent with the observed
improvements in thermal stability.

The addition of hydrophobic interactions in other
enzymes has been reported to result in thermostability
increases of 2 to 10°C [21-24], comparable to the results
of the current study. Recent observations of enzymes from
thermophilic organisms indicate that their extraordinary
thermal stability is due to hydrophobic interactions. Oli-
gomeric enzyme stability was also reported to be
improved through engineering to increase the hydropho-
bic interaction at the oligomer interface [25]. However,
these studies were based on homology analyses between
mesophilic and thermophilic bacteria together with ran-
dom mutagenesis library analyses [21-24]. Although
some sequences have been found to be homologous to
PQQGDH-B, these are all putative ORFs with no func-
tional information reported. Therefore, there exists no
reliable template to help improve the stability of this
enzyme by increasing the dimer interface interaction.

Conclusions

We improved PQQGDH-B's thermal stability by increas-
ing the dimer interface interaction through rational design
based on its quaternary structure. We demonstrated that
this can be achieved by selecting residues located at the
dimer interface that do not contribute to the intersubunit
interaction and substituting them to hydrophobic ones
via site-directed mutagenesis. In each case tested, the
enzyme's thermal stability was increased without decreas-
ing its catalytic activity. This rational design approach will
provide relevant information for future designs by com-
bining with other mutant PQQGDH-Bs with narrowed
substrate specificity and improved catalytic efficiency.

Methods

Chemicals
Glucose, phenazine methosulfate (PMS), 2,6-dichloroph-
enolindophenol (DCIP), and magnesium chloride were
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Figure 5

Hydrophobicity of mutant PQQGDH-B dimer interface. Hydrophobic regions are shown in green while hydrophilic
regions are shown in blue. The interfaces shown are those of the Asn340Phe/Tyr418Phe (left), Asn340Phe/Tyr418lle (middle),
and Thr416Val/Thr417Val (right) mutants of PQQGDH-B, with their respective mutation sites circled. The structural images

were generated using Molecular Operating Environment.

obtained from Kanto Kagaku (Tokyo, Japan), 3-(N-mor-
pholino) propane sulfonate (MOPS) from Dojin
(Kumamoto, Japan), and pyrroloquinoline quinone from
Mitsubishi Gas Chemical Company (Tokyo, Japan). All
other regents were of analytical grade. Kpnl was obtained
from TOYOBO (Osaka, Japan) and HindIIl from New
England BioLabs (Beverly, USA).

Site-directed mutagenesis

The structural gene for wild-type PQQGDH-B was previ-
ously amplified by polymerase chain reaction (PCR) and
inserted into the expression vector pTrc99A (Pharmacia)
to create pGB [15]. A 1.2-kbp Kpnl-HindIII fragment con-
taining the PQQGDH-B gene was transferred from pGB to
pKF18k and mutagenesis was carried out with the Mutan-
Express Km kit (Takara) according to the manufacturer's
instructions with the oligonucleotides Asn340Phe (5'-
GGTGGGACAAAGAATTTACCAGTCC-3'), Tyr418Phe (5'-
CGGTACAGCGTCATCAAAAGTAGTGC-3"),  Tyr418lle
(5'-CGGTACAGCGTCATCAATAGTAGTGC-3"), and
Thr416Val/Thr417Val (5'-CAGCGTCATCAT-
AAACAACGCTATAAGTITGGATC-3"). The mutations
(underlined) were confirmed by automated DNA
sequencing (ABI PRISM Genetic analyzer 310, Applied
Biosystems). The mutated genes were digested with Kpnl
and HindIll and were replaced into pGB to construct
expression vectors containing mutated PQQGDH-B.
Numbering of the amino acid positions starts from the
first residue of the signal peptide (24 residues).

Enzyme preparation and assay

The PQQGDH-B genes were expressed in Escherichia coli
and the enzymes purified as previously reported [15,16].
Following a 30-min preincubation in 10 mM MOPS-
NaOH (pH 7.0) containing 1 uM PQQ and 1 mM CaCl,
at room temperature (25°C) to produce the holoenzyme,
GDH activity was measured by using 0.6 mM PMS and
0.06 mM DCIP. The enzyme activity was determined by
measuring the decrease in absorbance of DCIP at 600 nm.

Analysis of PQQGDH-B stability

The thermal stability of wild-type and mutant PQQGDH-
B was determined with 0.075 pg/mL protein, as previ-
ously reported [15]. Thermal inactivation experiments
were carried out by incubating each holoenzyme in 200
uL of 10 mM MOPS-NaOH, pH 7.0, at 55°C. Aliquots
were taken every 5 min and kept at 4°C for 2 min,
followed by incubation at room temperature for 30 min.
The residual enzyme activity was determined as described
above. Since the initial time course for thermal inactiva-
tion at 55°C followed first-order kinetics, the thermal sta-
bility of each mutant enzyme was expressed as a half-life.
The thermal stability of Asn340Phe/Tyr418Phe,
Asn340Phe/Tyr418Ile and Thr416Val/Thr417Val were
also determined by incubating purified enzyme at various
temperatures for 10 min. The residual activities were
determined as described above, and were compared with
the initial activities.
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Prediction of three-dimensional structure and quaternary-
dimensional structures

Three-dimensional and quaternary structures were pre-
dicted using Molecular Operating Environment (MOE)
(Chemical Computing Group Inc., Quebec, Canada). By
using the available PDB data of the wild-type PQQGDH-
B, 1QBI [18], we made the appropriate substitutions with
all possible side-chain orientations to predict the struc-
tures of the Asn340Phe/Tyr418Phe, Asn340Phe/Tyr418Ile
and Thr416Val/Thr417Val mutants. After addition of
hydrogen atoms to the PQQGDH-B structure and optimi-
zation of orientation of some hydrogen atoms by MOE,
the structures were subjected to energy minimization
using the AMBER89 or CHARMM22 force field within the
MOE program until the final energy gradient was < 0.01
kcal/mol - A.

Authors' contributions

ST carried out the site-directed mutagenesis of PQQGDH-
B as well as the preparation and characterization of the
resulting proteins. SI carried out the 3D modeling and
participated in the design of the study. SF participated in
interpretation of the results and in drafting the
manuscript. KS conceived of the study, participated in its
design and coordination, as well as in drafting the manu-

script.  All authors read and approved the final
manuscript.
Acknowledgements

We are grateful to Rie Yamoto for her assistance in preparing the
manuscript.

References

I.  D'Costa EJ, Higgins I}, Turner APF: Quinoprotein glucose dehy-
drogenase and its application in an amperometric glucose
sensor. Biosensors 1986, 2:71-87.

2. Yokoyama K, Sode K, Tamiya E, Karube I: Integrated biosensor for
glucose and galactose. Anal Chim Acta 1989, 218:137-142.

3. Smolander M, Livio H-L, Rasanen L: Mediated amperometric
determination of xylose and glucose with an immobilized
aldose dehydrogenase electrode. Biosensors & Bioelectronics 1992,
7:637-643.

4.  Sode K, Nakasono S, Tanaka M, Matsunaga T: Subzero tempera-
ture operating biosensor utilizing an organic solvent and qui-
noprotein glucose dehydrogenase. Biotechnol Bioeng 1993,
42:251-254.

5. Ye L, Hammerle M, Olsthoorn AJJ, Schuhmann W, Schmidt H-L,
Duine JA, Heller A: High current density "wired" quinoprotein
glucose dehydrogenase electrode. Anal Chem 1993, 65:238-241.

6.  Katz E, Schlereth DD, Schmidt H-L: Reconstitution of the quino-
protein glucose dehydrogenase from its apoenzyme on a
gold electrode surface modified with a monolayer of pyrrolo-
quinoline quinone. Electroanal Chem 1994, 368:165-171.

7. Kost GJ, Vu H-T, Lee JH, Bourgeois P, Kiechle FL, Martin C, Miller SS,
Okorodudu AO, Podczasy JJ, Webster R, Whitlow KJ: Multi-center
study of oxygen-insensitive handheld glucose point-of-care
testing in critical care/hospital/ambulatory patients in the
United States and Canada. Crit Care Med 1998, 26:581-590.

8.  Laurinavicius V, Kurtinaitiene B, Liauksminas V, Jankauskaite A, Sim-
kus R, Meskys R, Boguslavsky L, Skotheim T, Tanenbaum S: Reagen-
tless biosensor based on PQQ-dependent glucose
dehydrogenase and partially hydrolyzed polyarbutin. Talanta
2000, 52:485-493.

20.

21.

22.

23.

24.

25.

26.

http://www.biomedcentral.com/1471-2091/6/1

Razumiene |, Meskys R, Gureviciene V, Laurinavicius V, Reshetova
MD, Ryabov AD: 4-Ferrocenyllphenol as an electron transfer
mediator in PQQ-dependent alcohol and glucose dehydro-
genase-catalyzed reactions. Electrochemistry Commun 2000,
2:307-311.

Schmidt B: Oxygen-independent oxidases A new class of
enzymes for application in diagnostics. Clinica Chim Acta 1997,
26:33-37.

Mullen WH, Churchhouse ], Vadgama P: Enzyme electrode for
glucose based on the quinoprotein glucose dehydrogenase.
Analyst 1985, 110:925-928.

Takahashi Y, Igarashi S, Nakazawa Y, Tsugawa W, Sode K: Construc-
tion and characterization of glucose enzyme sensor employ-
ing engineered water soluble PQQ glucose dehydrogenase
with improved thermal stability. Electrochemistry 2000,
68:907-91 1.

Sode K, Shirahane M, Yoshida H: Construction and characteriza-
tion of a linked-dimeric pyrroloquinoline quinone glucose
dehydrogenase. Biotechnol Lett 1999, 21:707-710.

Igarashi |, Sode K: Stabilization of quaternary structure of
water-soluble quinoprotein glucose dehydrogenase. Mol
Biotech 2003, 24:97-103.

Sode K, Ohtera T, Shirahane M, Witarto AB, Igarashi S, Yoshida H:
Increasing the thermal stability of the water-soluble pyrrolo-
quinoline quinone glucose dehydrogenase by single amino
acid replacement. Enz Microbial Technol 2000, 26:49 1-496.
Igarashi S, Ohtera T, Yoshida H, Witarto AB, Sode K: Construction
and characterization of mutant water-soluble PQQ glucose
dehydrogenases with altered Km value - site-directed muta-
genesis studies on the putative active site. Biochem Biophys Res
Commun 1999, 264:820-824.

Igarashi S, Okuda ], Ikebukuro K, Sode K: Molecular engineering
of PQQGDH and its applications. Arch Biochem Biophys 2004,
428:52-63. )
Oubrie A, Rozeboom HJ, Kalk KH, Duine JA, Dijkstra BW: The 1.7A
crystal structure of the apo-form of the soluble quinoprotein
glucose dehydrogenase from Acinetobacter calcoaceticus
reveals a novel internal conserved sequence repeat. | Mol Biol
1999, 289:319-333.

Fabenr HR, Groom CR, Baker HM, Morgan WT, Smith A, Baker EN:
1.8A crystal structure of the C-terminal domain of rabbit
serum haemopexin. Structure 1995, 3:551-559.

Oubrie A, Rozeboom H), Kalk KH, Olsthoorn AJJ, Duine JA, Dijkstra
BW: Structure and mechanism of soluble quinoprotein glu-
cose dehydrogenase. EMBO | 1999, 18:5187-5159.

Kallwass HKWV, Surewicz W, Parris W, Macfarlane ELA, Luyten MA,
Kay CM, Gold M, Jones |B: Single amino acid substitution can
further increase the stability of a thermophilic L-lactate
dehydrogenase. Protein Eng 1992, 5:769-774.

Kirino H, Aoki M, Aoshima M, Hayashi Y, Ohba M, Yamagishi A, Wak-
agi T, Oshima T: Hydrophobic interaction at the subunit inter-
face contributes to the thermostability of 3-isopropylmalate
dehydrogenase from an extreme thermophile, Thermus
thermophilus. Eur | Biochem 1994, 220:275-281.

Akanuma S, Yamagishi A, Tanaka N, Oshima T: Serial increase in
the thermal stability of 3-isopropylmalate dehydrogenase
from Bacillus subtilis by experimental evolution. Protein Sci
1998, 7:698-705.

Ohkuri T, Yamagishi A: Increased thermal stability against irre-
versible inactivation of 3-isopropylmalate dehydrogenase
induced by decreased van der Waals volume at the subunit
interface. Protein Eng 2003, 16:615-621.

Glaser F, Steinberg DM, Vakser IA, Ben-Tal N: Residue frequencies
and pairing preferences at protein-protein interfaces. Proteins
2001, 43:89-102.

Sayle S, Milner-White EJ: RasMol: Biomolecular graphics for all
Trends in Biochemical Sciences. TIBS 1995, 20:374.

Page 6 of 6

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3454651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3454651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3454651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1337972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1337972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1337972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9504590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9504590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9504590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4061851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4061851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10544015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10544015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10544015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15234269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15234269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10366508
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10366508
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8590016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8590016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8590016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10508152
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10508152
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1287656
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1287656
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8119295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9541402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12968079
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12968079
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12968079
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11276079
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11276079
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7482707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7482707

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Modeling novel dimer hydrophobic core
	Table 1
	Table 2

	Characterization of mutant enzymes

	Discussion
	Conclusions
	Methods
	Chemicals
	Site-directed mutagenesis
	Enzyme preparation and assay
	Analysis of PQQGDH-B stability
	Prediction of three-dimensional structure and quaternary- dimensional structures

	Authors' contributions
	Acknowledgements
	References

