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Abstract

Background: Defects in skeletal muscle fatty acid oxidation have been implicated in the etiology of insulin resistance.
Malonyl-CoA decarboxylase (MCD) has been a target of investigation because it reduces the concentration of
malonyl-CoA, a metabolite that inhibits fatty acid oxidation. The in vivo role of muscle MCD expression in the
development of insulin resistance remains unclear.

Results: To determine the role of MCD in skeletal muscle of diet induced obese and insulin resistant mouse models
we generated mice expressing a muscle specific transgene for MCD (Tg-fMCDSkel) stabilized posttranslationally by the
small molecule, Shield-1. Tg-fMCDSkel and control mice were placed on either a high fat or low fat diet for 3.5 months.
Obese and glucose intolerant as well as lean control Tg-fMCDSkel and nontransgenic control mice were treated with
Shield-1 and changes in their body weight and insulin sensitivity were determined upon induction of MCD. Inducing
MCD activity >5-fold in skeletal muscle over two weeks did not alter body weight or glucose intolerance of obese mice.
MCD induction further potentiated the defects in insulin signaling of obese mice. In addition, key enzymes in fatty acid
oxidation were suppressed following MCD induction.

Conclusion: Acute induction of MCD in the skeletal muscle of obese and glucose intolerant mice did not improve
body weight and decreased insulin sensitivity compared to obese nontransgenic controls. Induction of MCD in skeletal
muscle resulted in a suppression of mitochondrial oxidative genes suggesting a redundant and metabolite driven
regulation of gene expression.
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Background
The concomitant rise in obesity and type 2 diabetes has
mustered a global effort to understand the links between
nutrient overload and insulin resistance to enable new
therapies. The skeletal muscle plays an important role in
maintaining systemic glycemic control by mediating a
majority of insulin stimulated glucose disposal. Skeletal
muscle has been demonstrated to be a primary tissue
driving insulin resistance and is the target for several
anti-diabetic drugs [1-3]. Excess lipid accumulation out-
side of adipose tissue is thought to contribute to diabetes
by engaging pathways that inhibit insulin signaling. The
mechanisms that lead to the development of lipid-
induced insulin resistance remain elusive, but consistent
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themes converge at pathways implicating inflammation,
ER stress, and mitochondrial insufficiency [4-7].
Skeletal muscle with its high capacity for fatty acid

oxidation has been a target for genetic and pharmaco-
logical studies intended to restore lipid balance by pro-
moting lipid oxidative pathways. From these studies,
multiple mechanisms have been proposed to connect
lipid metabolism and defects in insulin sensitivity. For
example, mitochondria are the major site for fatty acid
oxidation and defects in this process may contribute to
lipotoxic pathways. The lipotoxicity hypothesis suggests
that accumulation of lipid signaling intermediates inter-
act and disrupt insulin signaling to mediate or exacer-
bate insulin resistance [8-12]. The finding that the
muscles of patients with type 2 diabetes contained fewer
and smaller mitochondria than those of age matched in-
sulin sensitive controls, further supported the concept
that mitochondrial deficiency or dysfunction is a driver
of insulin resistance [13-19]. The muscle’s decreased
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mitochondrial content limits its capacity to oxidize fatty
acids, resulting in the accumulation of undesirable intra-
muscular lipids, such as ceramide and DAG [20,21].
Therefore, methods that increase fatty acid oxidation,
akin to exercise, in the muscle to relieve the toxicity
caused by these lipid intermediates have been sought to
improve insulin resistance.
Malonyl-CoA is the substrate for de novo fatty acid

synthesis and its concentration is dependent on the
nutritional status of the cell. Malonyl-CoA is produced
by acetyl-CoA carboxylase (ACC) and catabolized by
malonyl-CoA decarboxylase (MLYCD, commonly referred
to as MCD) in the cytoplasm [22]. Although malonyl-CoA
is the substrate for fatty acid synthase (FAS) for the pro-
duction of fatty acids de novo, FAS is not expressed at high
levels in skeletal muscle [23,24]. In the skeletal muscle,
the primary role of MCD is to decarboxylate malonyl-
CoA thereby enhancing fatty acid oxidation by alleviating
the allosteric inhibition of malonyl-CoA on the rate-setting
step in mitochondrial long chain fatty acid beta-oxidation,
Carnitine Palmitoyltransferase 1 (CPT1). Genetic and
pharmacological studies to inhibit or activate genes in-
volved in fatty acid synthesis (ACC2) or oxidation (CPT1,
MCD, AMPK) have produced conflicting results support-
ing the benefits of skeletal muscle mitochondrial fatty acid
oxidation in models of diet induced insulin resistance
[5,25-31]. Whole body deletion of ACC2, used to promote
fat oxidation by decreasing malonyl-CoA levels, produced
lean hyperphagic mice that exhibited increased fatty acid
oxidation, increased energy expenditure, and improved
insulin sensitivity [32]. The potential benefits from de-
creased malonyl-CoA levels to promote fatty acid oxida-
tion to reduce body mass and increase insulin sensitivity
prompted the development of other models of ACC2
deletion. New models of whole body and skeletal muscle
ACC2 deletion or pharmacological inhibition of ACC2,
exhibited no protection from obesity and insulin resistance,
while energy expenditure remained unaffected [25,26].
MCD, an enzyme that promotes fatty acid oxidation,

has been used to elucidate the relationship between glu-
cose and lipid oxidation in the development of insulin
resistance. Over-expression of MCD in the liver of rats
fed a high fat diet was shown to increase fatty acid oxi-
dation and improve whole body insulin resistance [31].
Conversely, the loss of whole body MCD resulted in re-
sistance to diet-induced glucose intolerance, despite high
intramuscular levels of triacylglycerol and long chain fatty
acids [33]. A study using human cultured skeletal myo-
tubes investigated the effects of shifting substrate oxida-
tion from lipid to glucose via RNA interference-mediated
gene silencing of MCD under basal and insulin-stimulated
conditions [28]. Reducing MCD expression in human
myotubes, led to decreased lipid oxidation of palmitate
with a rise in glucose oxidation under insulin stimulation.
However, several of these studies are confounded by the
loss of both cytosolic and mitochondrial MCD, which is
implicated in the clearance of mitochondrial malonate, a
cytotoxic metabolite that inhibits succinate dehydrogenase
[34-39].
The interconnective nature of metabolic pathways,

coupled with the redundancy and compensatory effects
often seen by over-expression and knockout studies
make it difficult to tease out the contributions of indi-
vidual pathways to the pathophysiology of insulin resist-
ance in skeletal muscle. Chemical-genetic techniques
have been developed to acutely alter metabolic pathways
in a manner that is temporal, cell-specific, and reversible
[40-42]. We have previously shown the posttranslational
regulation of MCD in transgenic mice in a tissue specific
manner via a biologically inert small molecule, Sheild-1
[40]. The benefits of this methodology over previous
models are the ability to control for off target effects of
the chemical in nontransgenic controls and the ability to
alter metabolic pathways in already pathogenic animal
models. Here, we acutely induced MCD in the skeletal
muscle of obese and glucose intolerant mice to deter-
mine the impact of modulating skeletal muscle fatty acid
oxidation in a model of diet-induced obesity. Surpris-
ingly, a two week induction of MCD in skeletal muscle
did not alter body weight or ameliorate glucose intoler-
ance, conversely it further impaired insulin signaling in
the skeletal muscle of diet-induced obese mice. Further-
more, an acute induction of MCD led to a suppression
of fatty acid oxidative genes suggesting a redundant and
metabolite driven regulation of gene expression.

Methods
Antibodies and chemicals
Rabbit polyclonal antibodies that recognize phospho-
AKT (Ser473), Pan AKT, phospho-GSK3b (Ser9), Pan
GSK3b, phospho-glycogen synthase (Ser 641), Pan glyco-
gen synthase, phospho-IRS-1 (Ser 302), Pan IRS-1, phos-
pho AMPK (Thr172), AMPKα, were obtained from Cell
Signaling Technology. Rabbit polyclonal antibody detect-
ing endogenous MCD was obtained from Abcam and
antibodies against HADHA and MCAD were from Gen-
etex. A polyclonal antibody for dsRED that reacts with
mCherry was obtained from Clontech. Stabilization of
Shield-1 was confirmed with a rabbit polyclonal antibody
for FKBP-12 (Thermo Scientific). MitoProfile total OXPHOS
Rodent WB Antibody cocktail was obtain from MitoS-
ciences. Alpha-Tubulin protein loading control was obtained
from Sigma. Gastrocnemius muscle for tissue analysis of
signaling proteins, detection of endogenous recombin-
ation markers, and stabilization by Shield-1 was harvested
and immediately flash frozen in liquid nitrogen. Total pro-
tein was extracted by tissue homogenization in cold lysis
buffer consisting of 50 mM Tris-HCl, 150 nM NaCl,
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1 mM EDTA, 1% Triton X-100, with protease and Phos-
Stop phosphatase inhibitor cocktail (Roche). Tissue ho-
mogenates were pelleted at 16,000 g for 30 minutes at 4°C
and supernatants collected into fresh, cold microcentri-
fuge tubes. Protein estimation by Pierce BCA Protein
Assay Kit was used to determine protein concentration in
supernatants. Proteins were separated using NuPAGE
Novex 4-12% Bis-Tris Gels in NuPAGE MOPS SDS run-
ning buffer or Bio Rad Mini Protean TGX precast gels.
Proteins were transferred to PVDF membranes (0.45 μm),
blocked in 5% non-fat milk and detected by immunoblot-
ting with the antibodies above. HRP-conjugated secondary
antibodies were detected using Amersham ECL Prime
Western Blotting Detection Reagent (GE Healthcare) and
detected using the FluorChem Western Blot imaging sys-
tem (Cell Biosciences). Shield-1 was synthesized as previ-
ously reported [41,43]. Shield-1 was dried under a stream
of nitrogen gas and reconstituted in 50%N,N-dimethyace-
tamide and 50% of a 9:1 PEG-400:Tween-80 mixture [42].
Shield-1 was administered intraperitoneally.

Animal studies
Animals were housed in a specific pathogen free barrier
facility. Tg-fMCD mice were bred to mice expressing
Cre from a muscle specific (human alpha-skeletal actin)
promoter obtained from Jackson Laboratory to generate
Tg-fMCDskel mice [44]. Tg-fMCDskel and control litter-
mates (WT and Cre transgenic) were maintained on a
standard chow diet, with free access to food and water
and maintained on a 12 hour light-dark photocycle in a
temperature controlled environment. At 7 weeks of age,
Tg-fMCDskel and control littermate male mice were
transitioned from a standard chow diet to a 60% kcal
from fat high fat diet (HFD) (D12492, Research Diets,
Inc.) or 10% kcal from fat low fat diet (LFD) (D12450J,
Research Diets, Inc.). Body weights were measured
weekly. Onset of glucose intolerance was assessed by
glucose and insulin tolerance tests. At 19 weeks of age,
Tg-fMCDskel and control mice were injected i.p. with
60 mg/kg Shield-1 (40 μl formulated in 50% N,N-
dimethylacteamide and 50% of a 9:1 PEG-400:Tween-80
mixture) or vehicle alone. Mice received Shield-1 or ve-
hicle injections every 48 hours for 2 weeks. Glucose tol-
erance tests were repeated on mice to measure efficacy
of Shield-1 treatment to lower fasting blood glucose and
increase insulin sensitivity. Mice used for the insulin
stimulation studies, were i.p. injected with 60 mg/kg
Shield-1 or vehicle every 24 hours for 5 days before the
stimulation. Acute insulin stimulation was performed on
mice following a 6 hour fast during the light cycle. Mice
were injected i.p. with 1U/kg insulin (Sigma, bovine pan-
creas). Tissues were collected 10 minutes after insulin
injection, frozen in liquid nitrogen, and stored at -80°C.
Animal experiments were done in accordance with the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals and under the approval of the Johns
Hopkins Medical School Animal Care and Use Committee.

Glucose and insulin tolerance testing
Mice were fasted for 6 hours before i.p. injection with
1.25 mg/g glucose or 0.8 U/kg of insulin (Sigma, bovine
pancreas) in a 0.9% NaCl solution. Blood glucose was
assayed from tail blood at times, 0, 15 min, 30 min,
60 min, 120 min for the GTT after glucose injection.
Blood glucose was assayed from tail blood at times, 0,
15 min, 30 min, 60 min after the insulin injection for the
ITT. Serum insulin was collected at the 15 minute time
point during the GTT and measured using a mouse in-
sulin ELcISA kit (Millipore).

Malonyl-CoA decarboxylase assay
Isolated gastrocnemius muscles were assayed for MCD
activity following drug and diet treatments via a fluoro-
metric assay as previously described [40,45].

Quantitative real time PCR analysis
Isolated gastrocnemius muscles from Tg-fMCDskel and
control male mice were frozen in liquid nitrogen and
stored at -80°C until homogenization with Trizol (Life
Technologies) to isolate RNA. The conversion of RNA
to cDNA, was performed by using a high capacity cDNA
reverse transcription kit (Applied Biosystems). The fol-
lowing PCR primer pairs were used for this study:
CPT1B forward, 5′- GGTCCCATAAGAAACAAGACC

TCC-3′, CPTIB reverse, 5′- CAGAAAGTACCTCAGCCA
GGAAAG-3′, MCAD forward, 5′-GTTGAACTCGCTAG
GCTCAGTTAC-3′, MCAD reverse, 5′-CTCTGTGTTGA
ATCCATAGCCTCC-3′, PPAR alpha forward, 5′-ACAAG
GCCTCAGGGTACCA-3′, PPAR alpha reverse, 5′-GCCG
AAAGAAGCCCTTACAG-3′, PGC1alpha forward, 5′-CA
GCCTCTTTGCCCAGATCT-3′, PGC1alpha reverse, 5′-C
CGCTAGCAAGTTTGCCTCA-3′, ACOT1 forward, 5′-G
ACAAGAAGAGCTTCATTCCCGTG-3′, ACOT1 reverse,
5′-CATCAGCATAGAACTCGCTCTTCC-3, 18S rRNA
forward, 5′-GCAATTATTCCCCATGAACG-3′, 18 s rRNA
reverse, 5′-GGCCTCACTAAACCATCCAA -3.

Statistics
Statistical analyses were performed using one-way or
two-way ANOVA as indicated in the figure legends. Sig-
nificance is defined when p < 0.05. Data is represented as
mean ± SEM.

Results
In Vivo chemical-genetic regulation of Malonyl-CoA
decarboxylase in skeletal muscle
Lipids mediate insulin resistance in skeletal muscle via
an ill-defined mechanism; however, promoting the rate
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of fatty acid oxidation in skeletal muscle has been pro-
posed to affect insulin sensitivity in this tissue
[30,32,46-50]. Given the importance of MCD in regulat-
ing skeletal muscle fatty acid oxidation, we generated
transgenic mice where MCD (Tg-fMCD) can be regu-
lated in a cell and chemical specific manner in order to
determine the effect of acutely altering fatty acid metab-
olism in insulin resistance [40]. A cytoplasmic targeted
MCD fused to a destabilization domain was cloned
downstream of a lox mCherry stop cassette. Therefore,
the expression of the transgene is controlled in a Cre-
recombinase dependent manner. The destabilization do-
main was derivatized from FKBP12 (FK506 binding
protein 12) enabling reversible and dose dependent pro-
tein stabilization with its synthetic ligand, Shield-1
(fMCD) [41]. In order to target the transgene to skeletal
muscle, Tg-fMCD mice were bred to mice expressing
Cre recombinase from the human alpha skeletal muscle
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transgene (Figure 1C). Therefore we chose 60 mg/kg
Shield-1 in a PEG/Tween/NNMDA vehicle to alter
MCD in skeletal muscle in mice.

An acute induction of MCD in skeletal muscle did not
alter body weight or glucose sensitivity
To assess whether an acute increase in fatty acid oxidation
is associated with improvements in body weight and insu-
lin sensitivity in a model of diet induced obesity, we made
Tg-fMCDSkel and littermate controls obese and insulin re-
sistant with 15 weeks of high fat diet (HFD) (60% kcal from
fat) feeding. An additional group of Tg-fMCDSkel and litter-
mate controls were fed a low fat diet (LFD) (10% kcal from
fat) for 15 weeks (Figure 2A). Tg-fMCDSkel and control
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Tg-fMCDSkel and control HFD-induced obese and insulin
resistant mice with Shield-1 (60 mg/kg) or vehicle every
48 hours for 2 weeks. This dose of shield increased gastro-
cnemius MCD activity greater than 5-fold (Figure 3).
Despite this large increase in skeletal muscle MCD activ-
ity, Shield-1 treatment did not alter body weight in
Tg-fMCDSkel or control HFD mice (Figure 4A). Moreover,
MCD induction by Shield-1 did not alter glucose sensitiv-
ity of these mice (Figure 4B). Insulin measurements from
Tg-fMCDSkel HFD Shield-1 treated mice taken during the
glucose tolerance test, show no difference in insulin sensi-
tivity compared to control HFD Shield-1 controls; both
groups of mice remained insulin resistant compared to
lean controls. These data suggest that acute induction of
MCD in the skeletal muscle is not sufficient to alter adi-
posity or insulin sensitivity.

Acute induction of MCD in skeletal muscle repressed
insulin signaling
To address the specificity of the MCD transgene for re-
combination and induction, we collected the liver, pan-
creas and heart which highly express the non-recombined
transgene [40]. None of these tissues expressed mCherry
(a marker for recombination) or expressed the Tg-fMCD
(Shield-1 stabilized MCD) transgene (Figure 5).
To address possible tissue-specific insulin sensitivity in

the skeletal muscle, we performed an in vivo insulin
stimulation followed by tissue collection. HFD fed Tg-
fMCDSkel and control mice received an acute treatment
of Shield-1 at 60 mg/kg every 24 hours for 5 days. Six
hour fasted mice were injected with insulin 24 hours
after the last dose of Shield-1 and gastrocnemius muscle
was harvested 10 minutes after the insulin injection. As
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Figure 3 Chemical-genetic induction of MCD activity in skeletal
muscle. Malonyl-CoA decarboxylase activity in Tg-fMCDskel and
control mice fed low fat and high fat diets treated with Shield-1
(60 mg/kg) or vehicle. (n = 3-4) Data are expressed as means
+/- SEM. *p < 0.001 by 2-way ANOVA.
expected insulin stimulated phosphorylation of AKT
Ser473 was decreased in Tg-fMCDSkel HFD and control
HFD mice compared to lean LFD controls (Figure 6A).
Tg-fMCDSkel HFD Shield-1 mice, compared to control
HFD Shield-1 controls, showed a further 2-fold suppres-
sion in insulin stimulated phosphorylated AKT Ser473

relative to total AKT in the skeletal muscle (Figure 6A).
Additionally, IRS-1 Ser302 phosphorylation was lower in
Tg-fMCDSkel HFD gastrocnemius compared to all
groups (Figure 6B). Although, GSK3β Ser9 phosphoryl-
ation was not different between groups (Figure 6C),
glycogen synthase Ser641 phosphorylation was enhanced
in Tg-fMCDSkel HFD gastrocnemius (Figure 6D). Taken
together these data suggest that induction of MCD in
skeletal muscle exacerbates HFD-induced insulin resist-
ance evidenced by decreased insulin signaling.

Induction of MCD suppresses genes of fatty acid
oxidation
Previously, we showed that an acute induction of MCD
leads to an increase in fatty acid oxidation in vivo [40].
Because malonyl-CoA and MCD are major regulators of
skeletal muscle fatty acid oxidation, we examined the ef-
fect of inducing MCD on genes in the fatty acid oxida-
tion pathway in obese and insulin resistant mice.
Surprisingly, Tg-fMCDSkel HFD Shield-1 treated mice,
compared to control HFD Shield-1 treated counterparts,
had approximately a 2-fold reduced protein abundance
of CPT1B and oxidative phosphorylation complex pro-
teins (Figure 7A). Additionally, we saw Medium Chain
Acyl-CoA Dehydrogenase (MCAD) increase in high fat
fed mice without an effect of MCD induction (Figure 7B)
while Hydroxyacyl-CoA Dehydrogenase alpha subunit
(HADHA) did not change between groups (Figure 7C).
Due to reduced fatty acid oxidation protein expression,
we questioned the possible activation of the energy sensor,
AMPK. AMPK phosphorylation at Thr172, the major acti-
vating phosphorylation site was not changed by MCD in-
duction (Figure 7D). These data suggest that alterations in
AMPK do not play a role in mediating the decrease in in-
sulin sensitivity observed in Tg-fMCDSkel mice.
Because we observed a decrease in CPT1B and com-

ponents of oxidative phosphorylation, we determined
if the decrease was due to regulation at the transcrip-
tional level. Gene expression analysis of gastrocnemius
muscle from Tg-fMCDSkel HFD Shield-1 treated mice
demonstrated a decrease in Cpt1b mRNA upon MCD
induction (Figure 8). The transcriptional regulatory genes
Pparα and Pgc1α were unchanged after MCD induction
as well as the canonical Pparα target Acot1 (Figure 8).
Owning to a possible compensation by carbohydrate
oxidation, Pyruvate Dehydrogenase Kinase 4 (Pdk4) was
transcriptionally suppressed (Figure 8). These data dem-
onstrate that an acute change in the regulation of skeletal
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muscle lipid oxidation by MCD in a model of obesity in-
duces a concomitant reduction in the protein and mRNA
abundance in genes of fatty acid oxidation.

Discussion
The role of skeletal muscle fatty oxidation in obesity and
glucose intolerance is not clear. A growing number
of studies have shown a detrimental effect of skeletal
muscle mitochondrial fatty acid oxidation in diet in-
duced insulin resistance and obesity [5]. We have in-
creased MCD to increase the potential for fatty acid
oxidation in skeletal muscle of obese mice. Here, we
demonstrate that 1) induction of MCD did not lead to
changes in body weight in HFD induced obese mice,
2) an acute induction of MCD augmented defects in
skeletal muscle insulin signaling in HFD induced obese
mice, 3) MCD induction resulted in a suppression of
oxidative genes within skeletal muscle. The induction of
MCD in the skeletal muscle exacerbated the diabetic
phenotype by negatively affecting insulin signaling.
These data provide insight into the pathophysiology of
skeletal muscle insulin resistance and shows that indu-
cing MCD in already pathogenic mice to facilitate in-
creased fatty acid oxidation does not reverse obesity or
glucose intolerance.
The role of skeletal muscle mitochondria in the pro-

motion or protection from metabolic dysfunction is not
well understood. Based on the strong correlation be-
tween increased lipid consumption and insulin resist-
ance, some have suggested that the accumulation of
cytoplasmic lipid intermediates that are often seen in
diabetic patients and animal models directly impairs
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insulin signaling [19,51]. Based on this, and the observa-
tion that a sedentary lifestyle promotes metabolic dys-
function, it has been suggested that the stimulation of
fatty acid oxidation could lower the concentration of
lipotoxic intermediates to improve insulin sensitivity by
removing the lipid substrates. In support of this, individ-
uals with type 2 diabetes and even pre-diabetes have de-
creased mitochondrial function [13,18,52,53]. However,
several mouse models with increased lipid oxidation in
skeletal muscle do not have improved insulin sensitivity
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[25]. Inversely, metformin, which is widely used to treat
diabetic patients, has been proposed to work as a mild
electron transport inhibitor [54-56]. Also, mice with sup-
pressed function of complex I of the electron transport
chain in skeletal muscle are protected from diet induced
glucose intolerance [57]. In support of these findings, we
were unable to observe improvements in body weight or
insulin sensitivity by increasing fatty acid oxidative po-
tential with the over-expression of MCD in our model of
high fat diet induced insulin resistance.
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Figure 7 MCD induction suppresses the fatty acid oxidative pathway. Western blot of gastrocnemius muscle for isolated from Tg-fMCDskel and
control mice on LFD or HFD given Shield-1 (60 mg/kg) or vehicle for 5 days. (A) CPT1B and OXPHOS complexes (as indicated) were normalized to
alpha Tubulin and quantified. Samples were blotted with FKBP12 (for transgene stabilization), mCherry (transgene expression) and alpha Tubulin
(loading control). (B) MCAD and (C) HADHA were normalized to alpha Tubulin and quantified (D) AMPK Thr 172 phophorylation was determined,
normalized for total AMPK and quantified. Data are expressed as means +/- SEM. *p < 0.05 by one-way ANOVA.
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Obesity induced insulin resistance is associated with
alterations in fatty oxidation genes and mitochondrial
dysfunction [58,59]. Human studies support the observa-
tion of decreased transcriptional control of fatty acid
oxidative genes in the skeletal muscle of obese, highly
insulin resistant people. Specifically, individuals in the
most insulin resistant and insulin sensitive groups had
lowered expression of Pgc1α, Pparα, and Cpt1b [60]. A
second study described decreased mRNA content in
Pdk4, Pgc1α, and Pparα in obese individuals [61]. In
contrast, decreasing fatty acid oxidation by the small
molecule inhibition of CPT1, improved insulin sensitiv-
ity and increased pyruvate dehydrogenase activity to
promote glucose oxidation, and AKT phosphorylation in
mice [62]. These studies suggest the skeletal muscle em-
ploys different mechanisms to adapt to varying degrees
of insulin resistance. The skeletal muscle may use alter-
nate mechanisms to regulate macronutrient substrate
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switching to increase glucose oxidation in a prolonged
state of over nutrition. [33,63].
Skeletal muscle MCD regulates the concentration of

malonyl-CoA, the precursor for fatty acid synthesis and
elongation. Decreasing the concentration of malonyl-CoA,
dysinhibits CPT1, the rate-setting enzyme in mitochon-
drial fatty acid oxidation. Here we showed that the induc-
tion of MCD and thereby increased fatty acid oxidation
potential in skeletal muscle in the absence of increased
ATP utilization or uncoupling may be a contributing fac-
tor in diabetes. That is, unbalancing the flux of macronu-
trient metabolism from mitochondrial capacity may be an
underlying cause of metabolic dysfunction. Interestingly,
acute MCD expression in the skeletal muscle down-
regulated Cpt1b and other genes in the lipid oxidation
pathway at the transcriptional and protein level. In sup-
port of this data, MCD knockout mouse hearts or canine
hearts subjected to pharmacologic inhibition of fatty acid
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oxidation, showed the inverse transcriptional alterations
[64,65]. These fatty acid oxidation genes are known targets
of Pparα transcriptional activation, suggesting a novel
mechanism linking intermediary metabolism to Pparα
transcriptional regulation. Pparα has been shown to play
an important role in the transcriptional regulation of lipid
and glucose metabolism, particularly in skeletal muscle
fatty acid oxidation [66]. Studies have suggested a wide
variety of lipids that function as endogenous Ppar activa-
tors [67,68]. Metabolites likely play larger roles in regulat-
ing genes and pathways than has been appreciated. We
suggest a possible mechanism where increasing MCD re-
sults in increased fatty acid intermediates to generate
metabolic signals that affect Pparα mediated transcrip-
tional control.

Conclusions
Induction of MCD in pathogenic obese and glucose in-
tolerant skeletal muscle does not improve obesity or in-
sulin resistance. Induction of MCD leads to decreased
fatty acid oxidation gene expression, and impaired skel-
etal muscle insulin signaling. These results suggest that
increasing mitochondrial fatty acid oxidative flux in the
absence of energy demand contributes to lipid induced
insulin resistance.
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