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Abstract

Background: Protein kinase A type | (PKAI) and PKAIl are expressed in most of the eukaryotic cells examined. PKA
is a major receptor for cAMP and specificity is achieved partly through tissue-dependent expression and subcellular
localization of subunits with different biochemical properties. In addition posttranslational modifications help fine
tune PKA activity, distribution and interaction in the cell. In spite of this the functional significance of two forms of
PKA in one cell has not been fully determined. Here we have tested the ability of PKAI and PKAIl formed by
expression of the regulatory (R) subunits Rla. or Rllee in conjunction with Cal or CB2 to activate a co-transfected
luciferace reporter gene, controlled by the cyclic AMP responsive element-binding protein (CREB) in vivo.

Results: We show that PKAI when expressed at equal levels as PKAIl was significantly (p < 0.01) more efficient in

catalytic subunit identity.

and not C subunit identity.

inducing Cre-luciferace activity at saturating concentrations of cAMP. This result was obtained regardless of

Conclusion: We suggest that differential effects of PKAI and PKAIl in inducing Cre-luciferace activity depend on R

Background

Cyclic 3’, 5’-adenosine monophosphate (cCAMP) is a key
intracellular signaling molecule, which main function is
to activate the cAMP-dependent protein kinases (PKA)
[1,2]. PKA is a heterotetrameric holoenzyme composed
of two regulatory (R) and two catalytic (C) subunits,
which is enzymatically inactive in the absence of cAMP.
When two molecules of cAMP bind to each of the R
subunits [3], the C subunits are released and activated
to phosphorylate serine and threonine residues on speci-
fic intracellular target proteins [4,5]. Several PKA sub-
strates have been identified of which the synthetic
peptide Kemptide [6] and the naturally occurring sub-
strate cCAMP responsive element binding protein (CREB)
are of the best characterized [7,8]. In primates, four
genes encoding the R subunit and four genes encoding
the C subunit, have been identified and designated Rla,
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RIB, Rlla, RIIB and Ca, CPB, Cy and X-chromosome
encoded protein kinase X (PrKX) [9].

Whereas no splice variants for RIf and RIIf have been
described, Rl is transcribed from at least two different
promoters. The first exons of the Rla gene, exon la and
1b, give rise to alternatively spliced but identical pro-
teins RIocla and RIalb [10]. RIo. 1a and 1b mRNAs
have been identified in most tissues and are differen-
tially regulated by cAMP [11-13]. In the case of RII, it
has been shown that Rlla in the human testis but no
other tissues examined, is encoded with an alternative
amino-terminal region [14]. No functional consequences
of alternative splicing of RI and RII have been reported.

Several splice variants are transcribed from the Ca
and the CB genes (PRKCA and PRKCB) and include
Cal, CaS, CB1, CB2, CB3 and CB4, in addition to an
unknown number of abc forms of the CB3 and Cp4 var-
iants [15-20]. The major differences between the various
C subunits are introduced through alternative use of
exon 1 in the PRKCB and PRKCA genes, respectively
[16,21,22]. In the case of Cal exon 1-1 encodes an
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N-terminal stretch of 14 amino acids that have three
sites that undergo co- and posttranslational modifica-
tions. At the very N-terminus a Gly is located that
undergoes myristoylation in vivo [23]. C-terminal to the
Gly an Asn is located that is partly deamidated in vivo
leading to Cal-Asp2 and Cal-iso(B)Asp2 [24]. The
third modification is PKA-autophosphorylation at Ser10
[25-27]. In the case of CB2, exon 1-2 encodes an
N-terminal stretch of 62 amino acids that does not har-
bor sites for any of the modifications identified in Co1.
Instead, the CB2 N-terminus contains a stretch of
hydrophobic amino acids that form an amphiphatic
a-helix displayed as a hydrophobic surface [20]. Cal
and CB1 are more than 90% identical at the amino acid
level and are ubiquitously expressed. CaS has only been
identified in sperm cells [28], CB2 is predominantly
expressed in lymphoid cells [29,30], and CB3 and CB4
and their abc variants are mainly expressed in neuronal
tissues [15,16].

It is assumed that any known C subunit may associate
with RI and RII to form PKAI and PKAII respectively
[9]. This has raised the question of the biological signifi-
cance of PKAI and II holoenzymes containing various C
isoforms within the same cell. Whereas no reports have
been published on the functional consequences of
holoenzymes formed with various C subunits, it has
been demonstrated that several cell types expressing
RIa are highly proliferative and may also be associated
with malignancy [31-34]. Using a genetic approach it
has also been demonstrated that constitutive ablation of
RlIow but not RIB is prenatal lethal whereas ablation of
the RII variants results in more discrete defects, affect-
ing differentiation of adipose tissue and neural functions
[35-37]. The levels of RI and RII as well as tissue- and
subcellular expression varies. They also show differential
affinities for A-kinase anchoring proteins (AKAP).
Furthermore, when determining the structure of the
PKA holoenzymes it was found that RI and RII contact
the substrate binding site of the C subunit either as a
true PKA substrate (RII) or as a pseudosubstrate (RI)
due to autophosphorylation of RII but not RI at Ser95
[38,39]. Despite these differences an explanation for bio-
logical differences at the cellular level between RI and
RII are not fully appreciated [40,41]. However, it should
be noted that RII autophosphorylation modulates
AKAP-RII interaction in cardiac cells, leading to altered
down-stream substrate phosphorylation and Ca®*
dynamics [42].

To investigate biological differences between RI and
RII and to demonstrate if such differences are depen-
dent on C subunit identity we formed PKAI and PKAII
by co-transfecting 293T cells with either Rlo. or Rlla
together with Cal and CB2, respectively. This demon-
strated that PKAI was superior to PKAII in activating a
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cAMP responsive element regardless of whether the
holoenzyme contained Col or CB2. Our results contri-
bute to understand the functional significance of two
PKA holoenzymes but not various C subunits expressed
in the same cell.

Results

To test for differential roles of PKAI and PKAII
expressed in one cell we tested if markedly different C
subunits released from RI and RII are equally effective in
regulating in vivo substrate phosphorylation. We chose
the cell line 293T as a model system since they express
Rla and RIla associated with Cal (Figure 1A, left panel),
and not RIB and RIIB (Figure 1A, right panel). In these
cells PKAI and PKAII are distinctly located to the cytosol
and Golgi-centrosomal area, respectively as demonstrated
by immunostaining using anti-Rlo (red) or anti-RIIa
(green) (Figure 1B). Co-immunostaining with anti-C
demonstrated that Cal localization corresponded to
R subunit localization. We also observed a weak
nuclear staining of the C subunit in the absence of cAMP
(Figure 1C), whereas in the presence of the cAMP analo-
gue, 8-CPT-cAMP (340 uM) an increase in nuclear stain-
ing was observed (Figure 1C). We concluded that the
293T cells represented a suitable model system to study
isoform differences between PKAI and PKAII formed
with different C subunits.

To obtain 293T cells dominated by either PKAI or
PKAII expression, we formed holoenzymes by transient
transfection of plasmids over-expressing either Rla or
RIla (pDeRla or pExRIIa) in combination with either
Cal or CB2 (pDeCal or pDeCB2). For some experi-
ments the cells were also transfected with a vector
expressing Luciferace controlled by a cAMP responsive
element. C subunit activity was tested in vitro using
Kemptide as a substrate [43,44]; and in vivo using the
Cre-Luciferase reporter system [45]. This revealed a
dose-dependent increase in PKA-specific catalytic activity
against Kemptide for both pDeCal and pDeCp2 with a
maximum at 5600 ng DNA (Figure 2A). The luciferase
response was bell shaped and reached a maximum for
pDeCal and pDeC(B2 at 1400 and 2800 ng DNA, respec-
tively (Figure 2B). Next, we titrated the plasmids expres-
sing RI and RII by transfecting 0-1280 ng of the plasmids
pDeRIa and pExRIla, respectively (Figure 2C, D).

Twenty four hours after transfection cells were lysed
and R subunit levels were measured by immunoblotting
and [’H]-cAMP-binding. This revealed an increase in a
49 kDa immunoreactive band as well as increased [*H]-
cAMP-binding that coincided with the amount of plas-
mid transfected (pDeRlo, Figure 2C). The same was the
case when transfecting pExRIlo (Figure 2D). Together
this demonstrated a dose-dependent expression of both
Rla and Rlla.
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Figure 1 PKAI (RlaCa1) and PKAIl (RllaCai1) are expressed in 293T cells. (A) Cell extracts of 293T cells (40 pg protein/lane) were analyzed
by immunoblotting using a pan-anti-C antibody (upper left panel) and anti-Rlo. and anti-Rlla. (lower left panels). The levels and identities of 293T
cell C and R subunit expression were compared to human peripheral blood lymphocytes (hPBL) revealing expression of Ca1, Rlo. and Rlla.. No
detectable levels of RIB and RIB were identified when compared to extracts of human temporal cortex (hTempCortex, right panels).

(B) Immunofluorescence analysis of PKA Rl and Rl in 293T cells. Rla (Anti-RI, red) is expressed diffusely in the cytosol and Rlla. (Anti-RIl, green) is
expressed in the Golgi-centrosomal area of 293T cells. (C) Immunofluorescence analysis of PKA C subunits in 293T treated without (-) or with (+)

C

Based on these transfections and earlier experiments
(results not shown), we next formed PKA holoenzymes
by R and C co-transfections. We aimed at transfecting R
plasmids to levels where C activity in the absence of
cAMP were at basal levels, implying levels of R able to
associate with all C subunits. 293T cells were co-

transfected with a fixed amount of either pDeCal
(300 ng) or pDeCB2 (1400 ng) together with increasing
amounts of pDeRIa (0-1280 ng, Figure 3A, B) and pEx-
RIlo (0-1280 ng, Figure 3C, D), respectively. Cell
extracts were adjusted to 1 mg total protein/mL and
total C subunit activity measured in the presence and
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Figure 2 Activity of PKA R and C subunits expressed in 293T cells. (A and B) 293T cells were left untransfected, transfected with empty vector
(vector) or with increasing amounts (0 - 5600 ng) of either pDeCa1 (Cal, —) or pDeCB2 (CB2, ————). After 24 hours cells were harvested,
homogenized and all cell extracts adjusted to 1 mg total protein/mL. PKA activity was determined as catalytic activity against Kemptide in the
presence of 7.14 uM cAMP (A) and Luciferase activity at 560 nm (B). Data points represent enzyme activity and relative luciferase activity,
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respectively, +/- SD, n = 3. (C and D) 293T cells were left untransfected, transfected with empty vector (vector) or with increasing amounts (10 -

1280 ng) of either pDeRla. or pExRllaL. Levels of R subunit expression were monitored as [*H]-cAMP-binding and R subunit immunoreactivity against
Rlaw (C, clone 4D7, 1: 300 dilution) or anti-Rlle (D, 1 : 400 dilution) after SDS-PAGE separation of 25 ug total protein per lane in 12.5 % gels. R subunit
activities are given as com +/- SD (n = 3). The apparent molecular weight of protein recognized is indicated by arrows and protein identity Rl (49

kDa) and Rl (52 kDa), given by arrows to the left. One immunoblot out of three independent experiments is shown.

absence of 7.14 uM cAMP. This demonstrated that Co.1-
specific kinase activity was inhibited down to basal levels
in the absence of cAMP at 640 ng pDeRIa (Figure 3A),
which was equal to 28 + 1.4 pmol Rlo./mg total protein
(Table 1). In the case of CB2-specific activity it was down

to basal levels in the absence of cAMP at 80 ng pDeRla
(Figure 3B) which was equal to 11.8 + 2.7 pmol Rlo./mg
total protein (Table 1). For RIla, 320 ng pExRIIo was
required for optimal Cal inhibition (Figure 3C), which
was equal to 16.2 + 0.5 pmol RIlo./mg total protein
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Figure 3 Expressed Rlo and Rlla inhibit expressed Co1 and CB2 catalytic activity in a dose-dependent manner. 293T cells were co-
transfected with increasing amounts (0-1280 ng) of either pDeRla. (A and B) or pExRlla. (C and D) with a fixed amount of pDeCa1 (300 ng, A
and C) or pDeCP2 (1400 ng, B and D). Cells were harvested after 24 hours, cell extracts adjusted to 1 mg total protein/mL and assayed for PKA-
specific phosphotransferase activity in the presence (+ cAMP) and absence (- cAMP) of 7.14 uM cAMP. Data points represent pmol ATP
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(Table 1). Finally, 80 ng pExRIIo. was required to inhibit
CP2 activity to basal levels (Figure 3D) which was equal
to 9.6 + 2 pmol RIla./mg total protein. In order to com-
pare in vitro and in vivo PKA activity, protein extracts
were analyzed against Kemptide phosphorylation and
luciferace activity after transfection with Cage-
Cre-Luciferase (700 ng) together with either 300 ng
pDeCal or 1400 ng pDeCp2 and increasing amounts of
pDeRIo and pExRIIa (160-1280 ng DNA, Figure 4A-D).
In these experiments psv-B-Galactosidase (1000 ng) was

Table 1 Concentrations of Rl and RIl required for
maximal inhibition of transfected C subunit

Subunits Ca1 (300 ng DNA) CP2 (1400 ng DNA)
Rlo 28 + 14 118+ 27
Rilou 162 + 0.5 96 + 2

*Concentration of R subunit (pmol/mg protein) required for 100% inhibition of
Ca1 and CB2 activity.

used for normalization (see Methods). This showed that
luciferase activity induced by Cal and CB2 was comple-
tely inhibited by both Rla and RIla at doses above or
equal to 640 ng plasmid DNA.

The experiments in Figures 3 and 4 depict that Cp2
activity is fully inhibited at lower amounts of R than Cal
is. This may imply that Cal is enzymatically more active
than CB2 or simply that CB2 is more unstable than Cal
in the absence of R. A previous report shows that the C
subunit in its free active form is more rapidly degraded
than C complexed with the R subunit dimer [46]. To test
if Cal and CB2 display differential stability, identical
amounts of Cal and CB2 plasmids were transfected alone
or with 1280 ng of pDeRla.. This confirmed (Figure 5 bars
2 and 3) that in the absence of Rla total CB2 activity is
significantly (* p< 0.05) lower compared to Co1. This was
not the case when Rl was co-transfected with the two C
subunits. In this case both Cal and CB2 activities were
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Figure 4 Expressed Rla and Rlla inhibit Ca1- and CB2-dependent CREB phosphorylation in a dose-dependent manner. 2937 cells were
co-transfected with increasing amounts (0-1280 ng) of either pDeRlo (A and B) or pExRlle (C and D) and a fixed amount of pDeCa1 (300 ng, A
and C) or pDe(CB2 (1400 ng, B and D). Cells were harvested after 24 hours and cell extracts adjusted to 1 mg total protein/mL and assayed at
560 nm for PKA-specific phosphorylation of CREB measured as CRE-activity. Data points represent relative luciferase activity +/- SD (n = 2-6).
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increased, however, to comparable levels after stimulation
with cAMP (bars 5 and 7, ns). This demonstrated that RIo
has a stabilizing effect on both C subunits. However the
effect was more pronounced for CB2 than Coal indicating
that CB2 is more unstable than Co.1 in the absence of R.

The results from Figures 3 and 4 demonstrated that
we had obtained cell systems dominated by either PKAI
or PKAII Hence, the effects of PKAI and PKAII on in
vitro (Kemptide) and in vivo (CREB) phosphorylation
could be tested. For these experiments we used amounts
of Rla. and RIla required for complete inhibition of
Cal and CB2 respectively.

After 24 hours cell extracts were diluted to 1 mg total
protein/mL and analyzed for cAMP dose-dependent
induction of PKA kinase activity against Kemptide
(Figure 6A, C). Both Rlo. and RIlo. were able to inhibit
Cal and CB2 kinase activity completely in the absence
of cAMP. When increasing the concentrations of cAMP
from 5 to 5000 nM, kinase activity was peaking, in the

case of Cal at 100 nM cAMP when co-expressed with
Rlo. and between 500 and 5000 nM when co-expressed
with Rlla. In the case of CB2, maximum activity was
achieved at concentrations between 500 and 5000 nM
cAMP when co-expressed with both Rla and RIla. We
further analyzed C subunit activity in vivo by measuring
luciferace activity. Activity was measured after stimula-
tion of the transfected cells with increasing concentra-
tions of 8-CPT-cAMP (0 - 320 uM) for 1 hour prior to
harvesting. We observed that activity associated with
Cal and CB2 released from both Rlo and Rlla
increased in a dose-dependent manner, reaching maxi-
mum between 160 and 320 puM 8-CPT-cAMP (Figure
6B, D). However, a more than two fold higher activity
was observed against CREB when Cal and CB2 were
released from Rla than from RIla. Together these
results indicated that the ability of C to phosphorylate
nuclear substrates in vivo at saturating concentrations of
cAMP when associated with PKAII was lower than



Stakkestad et al. BMC Biochemistry 2011, 12:7
http://www.biomedcentral.com/1471-2091/12/7

Page 7 of 13

450
400
350
300
250 - *
200 -

ns

150
100

pmol ATP/ min/mg protein

N\

| I—

(bars 5 and 7, ns).

M CB2 Cal

Figure 5 Ca1 and CP2 proteins are stabilized by Rlo. 293T cells were untransfected (M) or transfected with fixed amounts of either pDeCa1
(300 ng) or pDeCP2 (1400 ng) in conjunction with 1280 ng (bars 4 to 7) or without (bars 1-3) pDeRlo. for 24 h. Cell extracts were adjusted to 1
mg total protein/mL and assayed for PKA-specific phosphotransferase activity in the absence (- cAMP) and presence (+ cAMP) of 320 nM cAMP.
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Cp2 Cal

when associated with PKAI This was apparent despite
that total C subunit activity in vitro was comparable and
protein concentrations were equal (Figure 6A to 6D).
Since these results were seen regardless of C subunit
isoform we suspected that the differences observed were
associated with R subunit identity. To quantify the dif-
ferent efficacy of PKAI and PKAII to phosphorylate
CREB in vivo, we therefore co-transfected pDeRla (640
ng) and pExRIla (320 ng) with Cal (300 ng pDeCal)
and monitored [*H]-cAMP binding. This showed equal
activities (Figure 7A) and hence comparable levels
(Table 2) revealed as 22 + 1.5 and 23 + 1.5 pmol per
mg total protein of Rla. and Rlla, respectively. We next
determined C subunit activity in vitro after transfecting
cells as described in Figure 7A, and in the absence (0
nM) and presence of two concentrations of cAMP (5
and 5000 nM). This revealed basal activity in the
absence, and low level activity in the presence of 5 nM
cAMP whereas 5000 nM cAMP resulted in comparable
high levels of total C subunit activity released from both

PKAI and PKAII (Figure 7B). The C activities were
equal to 25 + 1.4 and 24.2 + 2.9 pmol Coal per mg total
protein for PKAI and PKAIIL respectively (Table 2). This
concluded that PKAI and PKAII were expressed at com-
parable levels under the present conditions. The latter
was substantiated by a calculated R to C ratio close to 1
for both RIa versus Cal (ratio 0.88) and RIla versus
Cal (ratio 0.96, Table 2).

In lymphoid cells, it has been demonstrated that R subu-
nits are more stable in the holoenzyme form compared to
the free R subunit [47]. To test if the presence of Cal
alone and in conjunction with cAMP would influence R
subunit levels we transfected 293T cells with either
pDeRla (640 ng) or pExRIIa (320 ng) alone or in conjunc-
tion with pDeCa1 (300 ng). Transfected cells were treated
without (0) or with incremental doses (1-320 uM) of
8-CPT-cAMP for four hours before harvesting. Equal
amounts of cell extracts (50 pg total protein per lane) were
analyzed for proteins immunoreactive to anti-RIo. and
anti-Rlla, respectively. Figure 7C shows that 8-CPT-cAMP
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Figure 6 Both PKAI and PKAII are activated to phosphorylate Kemptide but not CREB at saturating conditions of cAMP. 293T cells were
co-transfected with a fixed amount (1280 ng) of either pExRllo. or pDeRla together with pDeCa.1 (300 ng) (A and B) or pDeCB2 (1400 ng) (C
and D) for 24 hours. Cell extracts were adjusted to 1 mg total protein/mL and assayed for enzyme activity (com,) in the presence of increasing
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stimulation appeared not to influence R subunit levels and
thus the cAMP sensitivity of the system.

Based on our observations (Figure 6B and 6D), we
transfected cells as described in Figure 7B with equal
amounts of PKAI and PKAII and monitored luciferace
activity after stimulation with two concentrations of 8-
CPT-cAMP (1 and 320 uM) for 1 hour before harvest-
ing. As depicted in Figure 7D 320 pM 8-CPT-cAMP
induced more than a 13-fold increase in luciferace activ-
ity when associated with RIo. compared to untreated
cells. When associated with Rlla the induction was 3-
fold. This difference was reflected in a relative induction
of luciferace activity which was nearly twice as high for
PKAI compared to PKAII (1.94 fold, p < 0.01).

Discussion

Despite that PKAI and PKAII are located to different
areas when expressed in the same cell, it is believed that
when dissociated by cAMP, the C subunits are all
released to phosphorylate relevant substrates both in the
cytosol and nucleus [48]. We formed PKAI and PKAII
holoenzymes by co-transfecting 293T cells with Rlo or
RlIla together with either Cal or CB2.

We found that C subunits, irrespective of isoform,
appeared more efficient in inducing Cre-luciferase when
released from PKAI than PKAIL

To monitor total PKA activity in vitro and in vivo we
applied cAMP and the cAMP analogue 8-CPT-cAMP.
In vitro activation of PKA by cAMP was done to
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vector, M), pDeCa.1 (300 ng) together with either pExRlla (320 ng) or pDeRla (640 ng) for 24 h (A- C). (A) R subunit-specific activity (pmol
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monitored as relative luciferase activity at 560 nm. Data points represent relative luciferase activity +/- SD (n = 2-6).

monitor if we had achieved comparable amounts of
PKAI and PKAII in our experiments. For monitoring in
vivo endogenous activity 8-CPT-cAMP was used
because it has cell membrane permeable properties and
is resistant to phosphodiesterase degradation [49]. The
observation that cells transfected with PKAI induced
higher levels of luciferace activity upon 8-CPT-cAMP
stimulation than cells transfected with PKAII may have

Table 2 Ratios of transfected R and C subunits

PKA subunits [RI* [C] R/C ratio
Holoenzyme

PKAI 22+£15 25+ 14 0.88
PKAII 23+ 15 24 +£29 0.96

*Concentration of R and C subunit (pmol/mg protein) were determined at
saturating concentrations of cCAMP and assuming two cAMP binding sites per
R subunit and 600 pmol phosphate transferred by pure bovine C per min per
mg [65].

been due to relative affinities of the cAMP analogue.
We consider this unlikely since 8-CPT-cAMP is a B-site
selective cAMP analogue with higher affinity for RII
than RI [49]. Further support for 8-CPT-cAMP as a
competent activator of PKAII in vivo is found in that
the concentration of 8-CPT-cAMP used is capable of
displacing the C subunit from the RII subunit interact-
ing with the centrosome in vivo in U20S cells [50].
Taken together we conclude that 8-CPT-cAMP is fully
capable to activate PKAII and does not selectively acti-
vate PKAI, implying that PKAII is less potent compared
with PKAI in inducing Cre-luciferase activity.

An explanation for the biological significance of the
phenomenon observed may rely on several factors.
Despite that 25% of PKA is undissociated even in the
presence of saturating concentrations of cAMP [51] it
may not account for the differences we observed since
this is observed for both PKAI and PKAIIL. However, it
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has been demonstrated that cAMP-dissociated RII and
C reassociate much faster and to a much greater extent
than RI and C. In fact it has been suggested that C does
not really leave RII under physiological conditions due
to a rapid reassociation [52]. Hence, incomplete disso-
ciation of C subunit from RII even at saturating concen-
trations of cAMP could be a mechanism explaining the
phenomena observed here. Moreover, the biological sig-
nificance of differential effects of activating PKAI and
PKAII independent of C subunit identity may be multi-
ple. Recently a paper by Di and co-workers [53] demon-
strated that PKAI and PKAII define distinct intracellular
signaling compartments. They demonstrated that PKAI
and PKAII activity were regulated by distinct, spatially
restricted cAMP signals generated in response to speci-
fic G protein-coupled receptors and which were regu-
lated by unique subsets of the cAMP degrading
phosphodiesterases.

We observed that Cal was more active than CB2
when expressed in non-holoenzyme form. This may sug-
gest differential K4 of Cal and CP2 against RI and RIIL.
This suggestion was supported in that the amount of R
plasmid required for complete inhibition of Cal and
CB2, respectively, was higher for RI compared to RII
regardless of C subunit identity (28 pmol Rla/mg pro-
tein and 15 pmol RIla/mg protein for Cal versus
~12 pmol Rla/mg protein and ~10 pmol RIlo./mg pro-
tein for CB2). However, we also observed that CB2, but
not Coal activity was stabilized when co-transfecting
with the R subunit implying that the differences
observed is due to protein instability of the CB2 subunit
and not lower Ky for the R subunit.

The latter is supported by the observation that R and C
dissociation by cAMP in vivo promotes degradation of C
subunits through posttranslational mechanisms which
may involve proteasome action [54]. Furthermore, it has
been shown that Cal and CB1 have identical Ky values for
RI [55]. To what extent CB2 is more sensitive to protea-
some degradation than Coal is not known. It should how-
ever be noted that the marked differences between the
Cal and CB2 at the N-terminus has been implicated in C
subunit stability. For Cal it has been demonstrated that
the a-helix and Trp 30 are vital moieties for Col stability.
This correlates with the location of the N-terminal at the
cleft interface where it orients the C-helix in the small
lobe and the activation loop in the large lobe so that these
subdomains are aligned in a way that allows for correct
configuration of residues at the active site [56]. Moreover,
we did not demonstrate a relative difference in potency of
CB2 versus Coal in inducing Cre-luciferase activity irre-
spective of association with Rla or Rlla. The latter may
suggest that Ca.l and CB2 behave identically in regulating
Cre-luciferase activities. Hence, we concluded that the dif-
ferential effects of PKAI and PKAII on luciferase activity
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detected in the present work are associated with R subunit
but not C subunit. The latter was unexpected since it has
been speculated if the marked sequence differences at the
N-terminus will influence PKA holoenzyme features as
such as localization. The latter has previously been
demonstrated in that the N-terminus of Col is implicated
in subcellular anchoring to A-kinase interacting protein 1
(AKIP1) [57]. Furthermore, at the N-terminal end the
myristoyl moiety, which binds to a hydrophobic pocket on
the surface of the large lobe when Cal subunit is in the
holoenzyme form [58,59], is exposed to the surroundings
upon binding to RII. This makes the holoenzyme more
hydrophobic [60]. In addition, whereas the N-terminal
Asn moiety, is involved in fine-tuning of the enzyme dis-
tribution within the cell in vivo [61], Ser10 phosphoryla-
tion is known to introduce electro statically mediated
forces which may help C to remain soluble even when
myristoylated [62-64]. Together this implies the N-term-
inal of Cal to contribute to regulation and tuning of sub-
cellular targeting. Despite lack of experimental evidence
the N-terminal amphiphatic a-helix in CB2 has been pro-
posed to function as a targeting domain for CB2 in vivo
[20]. Despite the obvious differences between Cal and
CB2 we did not observe any experimental evidence on the
C subunits contributing to understand the differential
effects of PKAI and PKAIL.

In perspective, the various reports referred to here
[51-53] together with our observations demonstrate dif-
ferential activities and regulation by PKAI and PKAII
which may add to understand the biological significance
of two PKA holoenzymes expressed in one cell.

Conclusions

This study is important because it points to how tissue-
dependent expression of genes encoding subunits of
PKA achieve specificity in the cAMP signaling pathway.
Our work shows that transfected PKAI holoenzymes are
more efficient than PKAII in phosphorylating CRE ele-
ments in vivo regardless of C subunit identity. Further-
more we show that CB2 appear more stable in the
presence of R subunit than Co.l.

Methods

Cell culture

293T HEK cells were maintained in RPMI medium 1640
(Sigma) containing 10% (v/v) Fetal Bovine Serum (Sigma),
2 mM L-Glutamine (Sigma) 1% Non-essential amino
acids (Gibco), 1% Na-Pyruvat (Gibco) and 1% (v/v) Peni-
cillin/Streptomycin (Sigma). The cells were subcultured
three times weekly. Twenty hours before transfection
293T cells were grown in 6 well plates from a population
of 0.7 x 10° cells per well containing 1.5 mL RPMI
medium without Penicillin/Streptomycin. Plates were kept
at 37°C in a humidified atmosphere under 5% CO,.
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Generation and expression of PKA vectors

pEF-DEST 51™(Invitrogen) expression vectors encoding
human regulatory and catalytic subunits Rla, Cal and
CP2 were created using Gateway LR Clonase Reaction®
(Invitrogen) and transformed into Library™ efficiency
DH5a™Competent cells (Invitrogen). Plasmid pBlue-
script containing Rllo encoding fragment was digested
with Eag I (New England Biolabs), ligated using T4
Ligase (Promega) in plasmid pExchange 6A (Promega)
previously digested with Not I (Promega), and trans-
formed into Ultramax®™ DH5a™Competent cells (Invi-
trogen). Plasmids expressing catalytic subunits Cal or
CB2 or/and regulatory subunits RIlo or Rla herby
termed pDeCal, pDeCB2, pDeRla, and pExRIla. where
transfected using Lipofectamine 2000 (Invitrogen). In
order to facilitate a reporter system, plasmids expressing
Luciferase reporter gene and -Galactosidase as a nor-
malization control was co-transfected with R subunit
and/or C subunit in constant amounts (0.7 pg Cage-
Cre-Luciferase reporter vector and 1 pug Psv-f-Galactosi-
dase vector) in all wells except wells kept as “mock”
controls. A vector without insert was used to keep the
amount of plasmid DNA transfected constant. Cells
were stimulated with 8-CPT-cAMP for 1 or 4 hours
(specified in the text) before being harvested 24 hours
post transfection.

Immunoblot analysis

Immuno blotting was performed as previously described
[15]. Membranes were incubated with mouse monoclonal
anti-RIIB (cat # 610625, BD Transduction laboratories) at
1:250 dilution, polyclonal rabbit anti-RIf (cat # SC-907,
Santa Cruz Biotechnology, Inc.), anti-RIla (cat # 612243,
BD Transduction laboratories) at 1:400 dilution or
mouse monoclonal anti-RIo (Clone 4D7, [65]) at 1:300
dilution. Immunoreactive proteins were detected with
HRP-conjugated secondary antibodies (ICN Diagnostics)
and SuperSignal® West Pico Chemiluminiscent (Pierce).

Phosphotransferase assays

PKA-specific catalytic activity was determined as
described previously [66]. Molar amounts of C subunit
were determined assuming 600 pmol phosphate trans-
ferred per min per mg pure bovine C.

Luciferase assay

Briefly, 24 hours post transfection cells were harvested,
lysed by sonication, and samples adjusted to equal protein
concentrations (1 mg/mL). Lysates were added appropri-
ate buffer containing 270 M Coenzyme A (Boehringer),
530 uM ATP (Boehringer), 470 pM Luciferin (SynChem),
and immediately placed in a Luminometer (TD20/20,
Turner Designs). Luminosity was measured after 2 sec-
onds delay at 560 nm for 15 seconds with 20.1% of
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intensity. Samples in the high end of luminosity were used
to create a standard curve to ensure measurement in the
linear range.

R-binding assay

The level of R-subunits was determined by specific [*H]-
cAMP binding in homogenates from transfected 293T
cells as previously described [15]. Molar amounts of R
subunits were calculated assuming two cAMP binding
sites per R subunit.

Indirect Immunofluorescence (IF)

IF of 293T cells were performed as previously described
[67]. Antibodies against RI (Clone 4D7, [65]) and RII
(cat # 612243, BD Transduction laboratories) were
diluted (see figure legend). The anti-C antibodies were
rabbit polyclonal anti-Co 1:100 (cat # sc 903, Santa
Cruz Biotechnology, Santa Cruz, CA).

Statistics

Data are presented as means + s.e.m and were analyzed by
unpaired two-tailed t test or by one-way analysis. A value
of <0.05 was considered statistically significant. All statis-
tics were calculated by the Graphpad prism 5.02 program.

List of abbreviations
C: catalytic subunit; CREB: cAMP-responsive element binding protein; PKA:
protein kinase A; R: regulatory subunit of PKA.
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