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Abstract
Seawater is constantly circulating through oceanic basement as a low-temperature hydrothermal
fluid (<150°C). In cases when ultramafic rocks are exposed to the fluids, for instance during the
initial phase of subduction, ferromagnesian minerals are altered in contact with the water, leading
to high pH and formation of secondary magnesium hydroxide, among other – brucite, that may
scavenge borate and phosphate from seawater. The high pH may promote abiotic formation of
pentoses, particularly ribose. Pentoses are stabilized by borate, since cyclic pentoses form a less
reactive complex with borate. Analyses have shown that borate occupies the 2' and 3' positions of
ribose, thus leaving the 5' position available for reactions like phosphorylation. The purine coding
elements (adenine, in particular) of RNA may be formed in the same general hydrothermal
environments of the seafloor.

Background
Oceanic basement consists of basalts and ultramafic rocks
that have relatively low silica contents (45–52% and
<45%, respectively) but a high content of ferromagnesian
minerals like olivine and pyroxene. Alteration of these
minerals in contact with water during free hydrothermal
circulation leads to 'serpentinization', a process in which
olivine reacts with water. This may lead to the formation
of serpentine, magnetite, brucite, and molecular hydrogen
[1]. The process may also be associated with high alkalin-
ity [2]. Alkaline fluids are characteristic of deep aquifers of
ultramafic rocks such as the Oman ophiolite (pH 10–12
[3]), the Coast Range ophiolite (pH 11–12 [4]), as well as
hydrothermal systems of ridge flanks (Lost City; pH 9–9.8
[5,6]) and non-accretionary suprasubduction zones (Mar-
iana forearc; pH 12.6 [7]). Serpentinite-hosted hydrother-
mal vent fields appear to be common along slow and
ultraslow spreading ridges [8,9].

Brucite is a single-layer magnesium hydroxide mineral
that may be transformed into double-layer hydroxides if a
fraction of the divalent Mg2+ is replaced by common triva-
lent cations such as Al3+, Fe3+ and Cr3+ [10,11]. Magnetite
is an efficient catalyst in Fischer-Tropsch type (FTT) reac-
tions and the abiotic synthesis of organic compounds
[12,13]. Different classes of mostly linear organic com-
pounds are formed in FTT reactions from H2 and CO or
CO2 in the presence of mixtures of native transition metals
or their oxides. The type of organic compound formed
depends on the catalyst or mixture of catalysts present.
Geochemists often refer to the FTT reaction pathways for
the reduction of CO2 to CH4 in aqueous environments
even though the industrial term normally covers only the
reduction of CO to a variety of organic compounds under
anhydrous conditions [1,14-16]. Experimental data by
Berndt and co-workers suggested that magnetite's catalyz-
ing effect on FTT synthesis is maintained during reaction
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under high water pressures [17]. Subsequent studies by
McCollom and Seewald have shown that their interpreta-
tion was probably not correct, and that ethane and pro-
pane do not form from FTT processes under the
conditions used by Bernd et al. [18]. However, Foustou-
kos and Seyfried have found that abiotic formation of
hydrocarbons in hydrothermal fluids is promoted by a
mix of iron- and chromium-bearing minerals [19]. These
results may suggest that the chromium component in
ultramafic rocks is an important factor for FTT synthesis
under hydrous conditions.

In addition, Madon and Taylor have shown that magnet-
ite is much less susceptible to poisoning by compounds
such as H2S than metallic iron, and therefore, is efficient
under a wide range of conditions in natural environments
[20].

Ribose and the formose reaction
A couple of decades ago many scientists believed that the
formation of ribose, a constituent of RNA, occurred
through the formose reaction [21,22]. In this reaction,
pentoses like ribose can be formed under alkaline condi-
tions from simple organic precursors (formaldehyde and
glycolaldehyde) [22,23]. The condensation of formalde-
hyde to sugars is catalyzed by divalent cations and layered
minerals, such as clays. The reaction proceeds by the step-
wise condensation of formaldehyde to a dimer (glycolal-
dehyde), trimer, etc. Under experimental conditions it has
been possible to convert as much as 50% of the original
formaldehyde to glycolaldehyde [24]. However, this reac-
tion has for a while been an outdated concept in prebiotic
chemistry. A major reason for this is that the reaction, as
we have known it, is nonselective and leads to a large vari-
ety of aldoses, ketoses, and sugar alcohols with only small
fractions of potentially bioactive compounds such as
ribose [25-27]. A general opinion has been that if ribose
were used in the first RNA, an unknown selection process
must have operated to segregate ribose from the other sug-
ars that were formed. A second reason why the formose
reaction has been outdated is that the reaction proceeds at
a constructive rate only under naturally 'improbable' con-
ditions, like under highly alkaline conditions
[11,21,22,28]. Natural environments with the pH condi-
tions required for the abiotic formation carbohydrates
have previously been considered to be relatively rare on
Earth. However, the recent discovery of alkaline hydro-
thermal systems in ultramafic rocks, like the Lost City
Hydrothermal Field on the Mid-Atlantic Ridge [5,6], indi-
cates that alkaline environments may be much more com-
mon on Earth than we thought just a few years ago.
Therefore, the formose reaction must still be considered to
be of great potential if we could identify some selective
mechanism that would interact with it. Below, we propose
that such a mechanism is known today.

Pentoses are stabilized by borate
It has recently been shown that borate minerals stabilize
ribose [29,30]. Both boric acid and borate readily form
complexes with a wide variety of sugars and other com-
pounds containing cis-hydroxyl groups [31,32]. Once
formed, the cyclic form of the pentose like ribose forms a
stable, less reactive complex with borate. The binding
preferences of borate to pentoses has been determine to
be ribose>lyxose>arabinose>xylose (Fig. 1) [33]. NMR
analysis shows that borate occupies the 2' and 3' positions
of ribose, thus leaving the 5' position available for poten-
tial reactions like phosphorylation [30,34]. In biological
systems, the purine nucleotides are synthesized by con-
structing the purine base on a pre-existing ribose-5'-phos-
phate [21]. However, results by Etaix and Orgel show that
adenosine-5'-triphosphate can be synthesized directly
from adenosine and trimetaphosphate if the 2'- and 3'-
OH groups are blocked by borate [35]. On the other hand,
even though Yamagata and coworkers have found trimet-
aphosphate in fumaroles of Mount Usu, Japan [35], it is
perhaps not the most likely phosphorylating agent under
natural conditions. Yamagata and coworkers also identi-
fied about equal concentrations of pyrophosphate in the
fumaroles (0.45 µM) [35]. Pyrophosphate is a phospho-
rus compound that appears to form under more varied
conditions and is, therefore, probably a more likely candi-
date for abiotic phosphorylation (see below).

Purines and amino acids may be formed in the 
same prebiotic environments
Unlike ribose, the purine coding elements of RNA can be
synthesized in the same abiotic reactions that yield amino
acids [22,23,26,37]. Amino acids may be synthesized in
putative prebiotic chemistries like Strecker type reactions
(synthesis of amino acids from cyanide and aldehyde in
the presence of ammonia) in hydrothermal environments
at fairly low temperatures (150°C) [38]. Amino acids can
also be released by hydrolysis of HCN oligomers that
form by the self-condensation of hydrogen cyanide in
aqueous solution [23]. Such reactions do not require alka-
line conditions. Purines are formed from HCN via two
routes. One route is via the HCN oligomers that also
forms amino acids; the second one is via the HCN
tetramer diaminomaleonitrile (DAMN) [22,23]. HCN
may be formed in a variety of ways but normally occur in
trace amounts. In order to participate in abiotic organic
reactions they must first be concentrated. One possibility
is concentration to a reservoir of iron cyanide at relatively
low pH from which free HCN can be released upon local
elevation of the pH [11]. This would avoid the 'Miller par-
adox', which refers to the side reaction of stable cyanohy-
drin formation from free HCN and ubiquitous
formaldehyde. Russell and coworkers have presented a
model involving alkaline hydrothermal mounds as flow
reactors in which strongly polar compounds such as the
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cyanide ion is retained by fresh FeS/Fe3S4 membranes [2].
According to their model, the fluctuations in pH at the
interface between hydrothermal fluid and seawater would
determine adsorption and desorption of the cyanide. In
natural environments, the occurrence of ferrocyanides in
hydrothermal systems has so far been reported from the
Kurile Islands and the Kamchatka Peninsula [39,40].

The self-condensation of HCN to produce purines is a
simple and efficient reaction [22]. Joyce has, therefore,
suggested that the first genetic material was based on
purine bases alone [21]. The hypothesis has been sup-
ported by experimental results of Sowerby and coworkers
[41]. Their experiments showed that both adenine and
hypoxanthine that was adsorbed on graphite surfaces
modulated the interaction of amino acids with the crystal
surface. Adenine and hypoxanthine are the coding ele-
ments of a putative purine-only genetic alphabet and the
observed effects on amino acids were different for each of
the bases. However, Cohn and coworkers have shown that
adenine is far displaced toward adsorption onto pyrite,
quartz and pyrrhotite, which are all common minerals of
hydrothermal environments [42]. It would, therefore,
normally be useless to search for the purine bases in the
fluid phase of hydrothermal systems [43].

Aldehydes in hydrothermal systems
Due to the postulated difference in requirements for the
formation of the ribose and the nitrogen base, the sponta-
neous formation of RNA under prebiotic conditions has
been doubted [26]. The differences in required environ-
ment may, however, be illusive. We mentioned before
that formaldehyde is necessary for the formation of carbo-
hydrates in the formose reaction. Schulte and Shock have
shown that aldehydes may be intermediates in the forma-
tion of carboxylic acids from hydrocarbons in sedimen-
tary basin brines as well as in hydrothermal systems [44].
Furthermore, they concluded that the presence of alde-
hydes should normally be difficult to detect in natural sys-
tems if metastable equilibrium is reached between
aldehydes and carboxylic acids at expected redox condi-
tions. On the other hand, this suggests that aldehydes are
always present as reaction intermediates if organic acids
and hydrocarbons exist in natural hydrothermal systems.
In fact, low concentrations of formaldehyde have been
identified in hot spring environments in Iceland, Mexico
and Southern California [45].

The Mariana forearc
The Mariana forearc in the western Pacific Ocean, where
the Pacific plate subducts beneath the Philippines plate,

The preferential order of binding of pentoses to boron is ribose>lyxose>arabinose>xyloseFigure 1
The preferential order of binding of pentoses to boron is ribose>lyxose>arabinose>xylose. Reprinted with permission from Li 
et al. [33]. Copyright 2005 American Chemical Society.
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seems to be of particular interest in the context of abiotic
organic synthesis. The Mariana forearc is a non-accretion-
ary forearc with numerous seamounts. The sedimentation
rate of pelagic material is very slow and the carbon con-
tent of the serpentinite mud on the seafloor is extremely
low (0.01–0.1 wt.%) [7]. 'Contamination' by biogenenic
input into the system is thus at minimum. Interstitial flu-
ids of pH 12.5 associated with serpentinized mud at the
South Chamorro seamount are enriched in dissolved car-
bonate, light hydrocarbons, borate and ammonia [7].
Pore fluids from Conical Seamount contain light hydro-
carbons as well as organic acids, while fluid inclusions of
the associated carbonate chimneys show the presence of
light as well as longer chain hydrocarbons, aromatics and
acetate [46]. These fluids derive from the subducting
Pacific plate at an early stage of dehydration. After the flu-
ids have been expelled from the subducting plate at mod-
erate temperatures they are cooled down to a few °C on
passage through the overriding Philippines plate/Mariana
forearc. The unusually high δ13C of the methane present
in the Mariana forearc fluids and the relatively low C1/C2
ratio suggest an abiotic origin of the carbon compounds
[7].

Seawater is the source of virtually all of the borate in
altered oceanic crust. Boron is rapidly taken up from sea-
water during low-temperature alteration of the oceanic
crust [47,48]. Boron is conspicuously enriched in serpen-
tinites and basalt altered by seawater at relatively low tem-
peratures [49,50]. At 150°C and below boron is removed
from the seawater and is incorporated into brucite, which
is the dominant alteration phase. It has been shown that
boric acid inhibits the dissolution of brucite at neutral and
weakly alkaline pH [51].

Brucite scavenges phosphate
Co-precipitation with brucite at high pH is used analyti-
cally for quantitative removal and the precise determina-
tion of nanomolar concentrations of phosphate in natural
fluids [52]. This is one of the few natural mechanisms to
concentrate phosphate relative to ambient conditions.
Also, Al-substituted Mg-hydroxide double layer minerals
have shown the intercalation of, for instance, phosphate,
sugar-, aldol-, and alkyl phosphates and nucleotides [53].

Solid magnesium hydroxides with adsorbed phosphate
have, furthermore, been shown to catalyze the synthesis
of pyrophosphate from orthophosphate [54]. Hermes-
Lima and Vieyra in their article claim that they synthesize
magnesium phosphate, although this is not verified by,
for instance, x-ray analysis. However, the method they
specify involves high pH [55], which suggests that they
produce brucite [56], in analogy to the procedure of Karl
and Tien [52], with phosphate being co-precipitated. The
formation of pyrophosphate was shown to be most effi-

cient above pH 9. Pyrophosphate that is formed in such a
way would stay concentrated on the magnesium hydrox-
ide after 'activation' of the adsorbed orthophosphate [54],
potentially together with an abiotic purine nucleoside.
Once pyrophosphate is available, phosphorylation of the
nucleoside is possible.

Krishnamurthy and coworkers have found that glycolal-
dehyde is converted to glycolaldehyde phosphate (GAP)
in the presence of amidotriphosphate [57]. The conver-
sion is complete only in the presence of 0.25 M MgCl2.
They concluded that 'the role of magnesium ion, while
essential for the reaction to proceed, is not easily specified
in detail'. The presence of magnesium is obviously impor-
tant for the progress of phosphorylation reactions in nat-
ural environments, but we do not yet know why.

Ferroan brucite – an intermediate on the way to 
brucite and magnetite
Recent work by Bach and coworkers suggests that serpen-
tinization goes through a sequence of reactions that start
with low fluid flux serpentinization of olivine to serpen-
tine and ferroan brucite [58]. Later-stage serpentinization
invokes formation of magnetite and brucite by the break-
down of the ferroan brucite [58]. This means that phos-
phate (orthophosphate and pyrophosphate) and borate
that is scavenged by the brucite will be in close contact
with the authigenic magnetite while it is being formed as
a microcrystalline compound with a large surface area
and, presumably, is most potent for the abiotic formation
of organic compounds.

The entire ocean floor is affected by fluids
The Ocean Drilling Program (ODP) Leg 201 was devoted
to the controls on microbial communities in deeply bur-
ied sediments and was carried out in 2002. Results from
ODP Leg 201 reveal that fresh seawater is channelled
upwards into deep-sea sediments from the rocks under-
neath [59,60]. This happens still 40 Ma or more after for-
mation of the basement and is illustrated by the
concentration profiles of dissolved nitrate in sediment
porewater from ODP Sites 1225 and 1231 (Fig. 2). Similar
profiles have been obtained for dissolved sulfate. Such
fluid flow must, therefore, be considered a global process
that occurs over a wide range of temperatures. The fact
that seawater circulates through ocean basement millions
of years after its formation shows that hydrothermal proc-
esses at moderate temperatures can be quite extended in
time. This, together with the recent discoveries of mecha-
nism of serpentinization and abiotic organic synthesis,
adds a dimension of universatility to possible scenarios
for the prebiotic formation of the first genetic material.
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Conclusion
It is, indeed, possible that the formose reaction is respon-
sible for the prebiotic formation of ribose in natural envi-
ronments and that this occurs in close vicinity to purine
synthesis and phosphorylation processes. Shapiro a cou-
ple of decades ago concluded: 'The evidence that is cur-

rently available does not support the availability of ribose
on the prebiotic Earth... This situation could change if
some alternative pathway for ribose synthesis were discov-
ered; one that produced it in better yield and was not as
vulnerable to interferences from nitrogen-containing sub-
stances' [26]. The discovery of the stabilization of pen-

Dissolved nitrate concentrations in sediment pore fluids at open-ocean ODP Sites 1225 and 1231Figure 2
Dissolved nitrate concentrations in sediment pore fluids at open-ocean ODP Sites 1225 and 1231. The nitrate values show that 
fresh seawater is channelled upwards into deep-sea sediments via the rocks underneath (from D'Hondt et al., 2003 [59]).
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toses – ribose, in particular – by borate has now changed
our view of the formose reaction from a seemingly ran-
dom and nonselective reaction into a very precise pre-
RNA process.
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