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Abstract
Background: IL-10 is a cytokine mainly produced by macrophages that plays key roles in tolerance
to inhaled antigens and in lung homeostasis. Its regulation in alveolar macrophages (HAM), the
resident lung phagocytes, remains however unknown.

Methods: The present study investigated the role of intracellular signalling and transcription
factors controlling the production of IL-10 in LPS-activated HAM from normal nonsmoking
volunteers.

Results: LPS (1–1000 pg/ml) induced in vitro IL-10 production by HAM, both at mRNA and protein
levels. LPS also activated the phosphorylation of ERK, p38 and JNK MAPkinases (immunoblots) and
Sp-1 nuclear activity (EMSA). Selective inhibitors of MAPKinases (respectively PD98059, SB203580
and SP600125) and of Sp-1 signaling (mithramycin) decreased IL-10 expression in HAM. In addition,
whilst not affecting IL-10 mRNA degradation, the three MAPKinase inhibitors completely abolished
Sp-1 activation by LPS in HAM.

Conclusion: These results demonstrate for the first time that expression of IL-10 in lung
macrophages stimulated by LPS depends on the concomitant activation of ERK, p38 and JNK
MAPKinases, which control downstream signalling to Sp-1 transcription factor. This study further
points to Sp-1 as a key signalling pathway for IL-10 expression in the lung.

Background
Strategically located on the alveolar surface, alveolar mac-
rophages represent highly specialized macrophages that
function primarily in lung defence against inhaled particle
matter, microorganisms and environmental toxins.
Among microorganisms, gram-negative bacteria and
more precisely, the lipopolysaccharide (LPS) component
of the outer cell wall, is a very potent activator of macro-
phages. LPS binds to LPS-binding protein and is delivered
to the cell surface receptor CD14, before being transferred

to the transmembrane signaling receptor toll-like receptor
4 (TLR4) and its accessory protein MD2 [1]. LPS stimula-
tion activates several intracellular signaling pathways
including the three mitogen-activated protein kinase
(MAPK) pathways: extracellular signal-regulated kinases
(ERK) 1 and 2, c-Jun N-terminal kinase (JNK) and p38.
These signalling pathways in turn activate a variety of tran-
scription factors which coordinate the induction of many
genes encoding inflammatory mediators as well as anti-
inflammatory cytokines.
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The control of inflammatory responses is critical to the
host to allow resolution and avoid tissue damage. IL-10 is
a key anti-inflammatory factor and pleiotropic cytokine
produced by a variety of cell types among which mono-
cytes/macrophages are the main sources [2]. IL-10 medi-
ates the inhibition of pro-inflammatory cytokines such as
TNF-α, IL-8, IL-6, IL-1β, IL-12 [3-7]. IL-10 has also been
shown to inhibit antigen-presenting cell function, includ-
ing the maturation of dendritic cells [8] and the expres-
sion of MHC class II and co-stimulatory molecules [9,10].
IL-10 gene regulation can occur both at the transcriptional
and posttranscriptional levels [11]. Several studies have
shown that the transcription factor Sp1 plays an impor-
tant role in IL-10 transcription (an Sp1 responsive ele-
ment in the IL-10 promoter is localized at -89 to -78) [12-
14]. Moreover, detailed studies showed that p38 mitogen-
activated protein regulates LPS-induced activation of Sp1
in THP-1, a human monocytic cell line [14]. The STAT3
transcription factor may also bind to an element in the IL-
10 promoter gene and the use of a dominant negative
form of STAT3 was able to decrease IL-10 transcription
[15]. More recently, the protooncogene c-Maf has been
shown to be an essential transcription factor for IL-10
gene expression in macrophages [16] while a role for C/
EBP in cooperation with Sp1 has also been suggested [17].
However, the intracellular signalling pathways governing
IL-10 gene regulation in human alveolar macrophages are
poorly understood. Thus, alveolar macrophages are the
main source of IL-10 in the alveoli where they play an
important role to control lung homeostasis. One study on
human alveolar macrophages [18] showed that activation
of PKC decreases IL-10 production whereas activation of
protein phosphatases PP1 and PP2A enhance IL-10 secre-
tion. In the present work, we evaluate the ability of
human alveolar macrophages to produce IL-10 upon LPS
stimulation and the role of MAPkinases (ERK, p38 and
JNK) and Sp1 transcription factor as intracellular signals
leading to IL-10 expression.

Methods
Reagents
LPS from Salmonella typhimurium, PMSF, Nonidet, DTT,
BSA, Tween 20, Thiazolyl Blue Tetrazolium Bromide and
Actinomycin D were purchased from Sigma (Sigma
Chemical Co., St Louis, MO). PD98059, SB203580 were
purchased from BioMol (Plymouth Meeting, PA) and
SP600125 from AG Scientific (San Diego, CA). Anti-CD14
was purchased from R&D Systems (Abingdon, UK). All
other reagents were from VWR International (Darmstadt,
Germany).

Isolation of Human Alveolar Macrophages (HAM)
HAM were obtained from bronchoalveolar lavages from
normal non smoking volunteers as previously described
[19]. Briefly, the lavage fluid was passed through a layer of

sterile gauze to remove gross mucus and then centrifuged
at 500 g for 10 min at 4°C to separate cells from fluid. The
cell pellet was washed twice in complete culture medium
: RPMI 1640 medium (Cambrex Corporation, East
Rutherford, NJ) supplemented with 10% decomple-
mented (30 min at 56°C) FCS, 2 mM L-glutamine, 100 U/
ml penicillin and 100 µg/ml streptomycin. HAM were
>95% pure with less than 1% of neutrophils and mono-
cytes. HAM were allowed to adhere during 30 min and
non-adherent cells were removed by two washes.

Nuclear extract and Electrophoretic Mobility Shif Assay 
(EMSA)
Nuclear extracts were prepared from HAM as described by
Carter with minor modifications as reported previously
[19]. 1.106 HAM were washed in cold PBS and collected in
400 µl of ice-cold EMSA lysis buffer (10 mM HEPES pH
7.9, 10 mM KCl, 2 mM MgCl2, 2 mM EDTA, 1 mM DTT,
1 mM PMSF) supplemented with 10 µg/ml of each pro-
tease inhibitors (leupeptin, aprotinin, pepstatin, trypsin
inhibitor) and then incubated on ice for 10 min. Nonidet
(NP-40) 10% was added to lyse the cells which were vor-
texed and centrifuged 1 min at 4°C at 13000 rpm. Nuclei
were resuspended in 25 µl of extraction buffer (50 mM
Hepes pH 7.9, 10% glycerol, 50 mM KCl, 300 mM NaCl,
0,1 mM EDTA, 1 mM DTT, 0.5 mM phenylmethylsulfo-
nylfluoride and protease inhibitors) for 30 min on ice.
The nuclear suspension was then centrifuged 3 min at
13000 rpm and supernatant stored at -70°C until use.
Proteins were assayed using the Blue coomassie method.
Sp1 consensus oligonucleotides (5'-ATTCGATCG-
GGGCGGGGCGAGC-3') were purchased from Invitrogen
Life Technologies (Carlsbad, CA) and were 3' biotinylated
using Biotin 3' End DNA Labeling Kit (Pierce, Rockford,
IL) following manufacturer's instructions. EMSA was per-
formed using the LightShift Chemiluminescent EMSA kit
(Pierce, Rockford, IL). Briefly, 2, 5 µg of nuclear extract
was incubated at room temperature during 20 min with
20 fmol of biotinylated double-stranded oligonucleotide
in presence of 50 ng of salmon sperm and reaction buffer.
The protein-DNA complexes were separated on a 7% non-
denaturating polyacrylamide gel and bands were visual-
ized using Biorad Chemidocs XRS apparatus (Bio-Rad
Laboratories, Hercules, CA).

RNA extraction and real-time PCR
Total RNA was extracted from 106 HAM using TRIzol rea-
gent (Invitrogen) and 2 µg of total RNA was used to gen-
erate first strand cDNA synthesis using Superscript II
(Invitrogen/Life Technologies, Carlsbad, CA). The reac-
tion mix containing 1 µg of RNA, poly-dT, and 10 mM
dNTP mix was diluted to 24 µl in sterile water, heated to
65°C for 5 min, and chilled on ice for 1 min. First strand
synthesis was then performed in 50 µl total reaction vol-
ume by adding 50 mM Tris (pH 8.3), 75 mM KCl, 3 mM
Page 2 of 10
(page number not for citation purposes)



Respiratory Research 2007, 8:71 http://respiratory-research.com/content/8/1/71
MgCl2, 20 mM DTT, 40 U of RNaseout, and 200 U of
Superscript II reverse-transcriptase enzyme (Invitrogen) at
42°C for 1 h. The reaction was inactivated by heating at
72°C for 10 min. cDNA was stored at -20°C until ampli-
fication. The quantitative PCR was performed by real-time
PCR on a Lightcycler System (Roche Applied Science,
Basel, Switzerland) using predevelopped primers set for
human IL-10 (Search LC, GmbH Heidelberg, Germany).
PCR conditions were those described in manufacturer's
instruction. The reaction mix contains 5 µl cDNA, 1 mM
of primers, water and Master mix (Faststart DNA Master
plus Sybr Green I-Roche Applied Science) in a final vol-
ume of 20 µl. β-actin primers were designed following
sequence published in GenBank (access number :
M10277) in two different exons. They were synthesized by
Life technologies : sense : 5'-gtgacattaaggagaagctgtgcta-3'
(position : 2294–2317), antisense : 5'-cttcatgatggagttgaag-
gtagtt-3' (position : 2588–2612). PCR conditions were :
denaturation at 95°C, 10 s – hybridization, 60°C, 5 s –
elongation, 72°C, 7 s. After amplification step, a melting
curve is performed to ensure that only one product has
been amplified. Moreover, separation of the products on
2% agarose gel confirmed the size of the amplicon.

IL-10 ELISA
IL-10 was assayed in the supernatant by ELISA using a pair
of antibodies (BD Biosciences, San Diego, CA) following
manufacturer's instructions. The sensitivity of the ELISA
was 1.5 pg/ml.

Western-Blot analysis
5 × 105 HAM were collected in 200 µl Laemmli sample
buffer and heated at 100°C, 5 min to denature proteins.
20 µl of protein lysate was loaded onto a 12% SDS-PAGE
gel and run at 180 V for 1 h. Cell proteins were then trans-
ferred to nitrocellulose (Hybond-C, Amersham Bio-
sciences, UK) membrane at 70 mA for 1 h 30 at room
temperature. Membrane was blocked with 5% BSA in
TTBS (Tris-Buffered saline with 0.1% Tween 20) for 1 h at
room temperature, washed, and then incubated with the
primary Ab 1/1000(anti-phospho ERK, anti-phospho p38
or anti-phospho JNK – Cell Signaling Technology, Bev-
erly, MA) overnight at 4°C. The blots were washed 3 × 5
min with TTBS and incubated for 1 h with HRP-conju-
gated anti-rabbit IgG Ab 1/2000(Cell Signaling Technol-
ogy, Beverly, MA). Immunoreactive bands were revealed
using a chemiluminescent substrate (ECL, Amersham Bio-
sciences, UK) and chemiluminescence was detected with
chemidoc XRS apparatus. The intensity of each blot was
measured with the densitometry program Quantity One
(Bio-Rad Laboratories, Hercules, CA).

IL-10 mRNA degradation assay
1 × 106 HAM/well were stimulated with LPS (1 µg/ml) for
16 h, translation was stopped by using Actinomycin D

(2.5 µg/ml) and then, PD98059, SB203580 or medium
(25 µM) was added for various time periods. HAM were
collected for RNA extraction and real time PCR for IL-10
mRNA was performed.

MTT assay
2.5 × 105 HAM/well were incubated with PD98059,
SB203580, SP600125 (25 µM) or medium for 24 h.
Supernatants were discarded and 100 µl of Thiazolyl Blue
Tetrazolium Bromide (MTT, 1 mg/ml) was added to the
cells for 1 h. DMSO was then used to stop the reaction and
optical density was read at 550 nm.

Statistical analysis
Comparisons were performed using two-tailed paired t
test or Mann-Wittney U test as appropriate. All analyses
were performed using a statistics software package
(GraphPad Prism, PA, USA). p values < 0.05 were consid-
ered as statistically significant.

Results
LPS induces IL-10 secretion in human alveolar 
macrophages
In a first series of experiments, we evaluated the ability of
HAM to release IL-10 after LPS stimulation. Figure 1 panel
A shows the production of IL-10 overtime. The release of
IL-10 begins after 6 h of incubation and reaches a maxi-
mum at 24 h. Moreover, IL-10 production is dose-
dependent and linear in the range of LPS concentration
between 1 ng/ml and 1 µg/ml (Figure 1, panel B). The
time-course of IL-10 induction by LPS was confirmed at
gene level by real time PCR (Figure 1, panel C).

To check if IL-10 production is CD14 dependent, we used
an anti-CD14 blocking antibody. Preincubation of HAM
with a neutralizing anti-CD14 (10 µg/ml) totally inhibits
LPS-induced IL-10 (data not shown).

Activation of MAPkinases by LPS
It is well-known that LPS activates ERK, p38 and JNK
MAPkinases. The ability of LPS to induce the phosphor-
ylation of ERK, p38 and JNK in human alveolar macro-
phages was evaluated by western-blotting. As shown on
Figure 2, LPS triggers ERK, p38 and JNK phosphorylation
in a time- and dose-dependent fashion. Panel A shows
that both ERK and p38 MAPkinases reached a maximum
of phosporylation at a concentration of 100 ng/ml and are
not activated at concentration below 100 pg/ml. Concern-
ing JNK MAPkinase, phosphorylation is dose-dependent
in the range of concentration between 0.1 and 10 ng/ml.
Experiments of time-dependence show that both ERK and
p38 are rapidly phosphorylated (within 5 min) and
reached a maximum of activation after 15–30 min fol-
lowed by a progressive decline and come-back to the basal
state after 90 and 120 min for ERK and p38 respectively
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(panel B). JNK phosphorylation is also rapid (within 5
minutes) and reached its maximum at 15 min but returns
to its basal state within 60 min.

MAPkinases are crucial for IL-10 production
Since we have shown that the three MAPkinases were acti-
vated following LPS stimulation, we therefore evaluated
the precise role of each MAPkinase in the production of
IL-10. To this aim, PD98059, SB203580 and SP600125,
three specific inhibitors of ERK, p38 and JNK respectively
were used. First, the specificity of each inhibitor was
checked by western-blot (Figure 3) and cell toxicity was
assessed by the MTT assay (Table 1). No significant cyto-
toxicity was observed for the three inhibitors at 25 µM
while 50 µM of SB or SP induced a 30–35% reduction in

MTT reduction (Table 1). Pre-treatment of HAM with
PD98059 (50 µM) clearly inhibits LPS-induced ERK acti-
vation and was without significant effect on p38 and JNK
phosphorylation (Figure 3). SB203580 (25 µM) partially
inhibits LPS-induced p38 phosphorylation without affect-
ing ERK and JNK activation while SP600125 (50 µM) is
able to prevent the phosphorylation of JNK MAPkinase
after LPS stimulation without affecting ERK phosphoryla-
tion. In the latter conditions, phosphorylation of p38
MAPkinase is slightly increased. Having shown that these
three inhibitors were specific of each MAPkinase, we used
them to evaluate the involvment of MAPkinases in the
production of IL-10. As shown on Figure 4, PD98059,
SB203580 and SP600125 dose-dependently inhibit LPS-
induced IL-10 in HAM. At the maximum concentration

Time and dose dependency of IL-10 production in HAM stimulated by LPSFigure 1
Time and dose dependency of IL-10 production in HAM stimulated by LPS. HAM were stimulated with LPS (1 µg/
ml) and supernatant were collected after different incubation time and assayed for IL-10 content by ELISA for Panel A and by 
real time PCR for Panel C. Panel B: HAM were stimulated for 24 hours with increasing concentration of LPS and supernatant 
were assayed for IL-10 by ELISA.
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(50 µM), SB203580 totally inhibits IL-10 production
(more than 99% of inhibition) whereas PD98059 is
slightly less active (80% of inhibition). The specific inhib-
itor of JNK MAPkinase, SP600125, at its maximal concen-
tration, only reduced IL-10 production by 50%.

Role of Sp1 transcription factor in the production of IL-10
Sp1 transcription factor is one of the main transcription
factor regulating IL-10 transcription in monocytes/macro-
phages. In order to evaluate the involvement of Sp1 in IL-
10 production in HAM, we first used mithramycin as a
specific inhibitor of Sp1. As shown on Figure 5, mith-
ramycin dose-dependently inhibits LPS-induced IL-10
production in HAM with a maximal inhibition at 500 nM.
Secondly, we set up an EMSA assay to confirm that Sp1

was activated and that the inhibition observed with mith-
ramycin was due to an effect on Sp1. Activation of Sp1 fol-
lowing LPS stimulation was assessed using a specific
probe containing the consensus binding site for Sp1. Fig-
ure 6 represents a representative EMSA gel where HAM
have been activated by LPS during 2 h. As control, the free
probe (without nuclear extract protein) shows no band
whereas in the control and LPS-treated HAM, two bands
(one major intense and one light) are found in both con-
ditions whereas the light band is more present in LPS-
treated HAM. To determine which of these bands is spe-
cific to Sp1, the following controls have been performed.
First, an excess of cold probe totally switch off all the
bands. Secondly, the use of a mutant probe (mutation in
the consensus binding site of Sp1) gives only one band

Table 1: MTT-based cytotoxicity assay of MAPk inhibitors in HAM. HAM were incubated for 24 h with PD98059, SB203580, SP600125 
or medium at different concentrations, and cell viability was assessed by using the MTT reduction assay, as described in Methods. 
Results are mean ± SD of one representative experiment in triplicates (expressed as % of control); *p value < 0.05 (one sample t-test).

Concentration of inhibitors PD98059 SB203580 SP600125

1 µM 96.2 ± 20.26 92.7 ± 14.2 92.6 ± 19.5
5 µM 93.4 ± 14 85.3 ± 34.6 104.9 ± 33.5
10 µM 79.9 ± 14.2 104.1 ± 15.7 110.1 ± 11
25 µM 122.3 ± 6.9 82.8 ± 7.2 89.3 ± 9
50 µM 104.6 ± 20.6 66.2 ± 10.1* 65.2 ± 9*

Activation of MAP kinases in HAM stimulated by LPSFigure 2
Activation of MAP kinases in HAM stimulated by LPS. Panel A: HAM were stimulated 30 min with increasing doses of 
LPS and phosphorylated ERK, p38 and JNK were detected by Western-blotting as described in Materials and Methods. Panel B: 
HAM were incubated with LPS (1 µg/ml) during different time and phosphorylated ERK, p38 and JNK were detected by West-
ern-blotting. Below the blots, the graph represents the phosphorylated MAP kinases to β-actin ratio obtained by densitometric 
analysis of each bands using Quantity One Sotware.
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corresponding to the major band meaning that this band
is a non-specific one. Thirdly, addition of an anti-Sp1 anti-
body decreased the light band and induces a super-shift.
Therefore, we can conclude that the light band represents
the complex Sp1/probe.

Preliminary experiments have shown that maximum Sp1
activation following LPS stimulation is reached between 1
and 2 h (data not shown), and that LPS was up-regulating
nuclear translocation of Sp1 (Figure 6B). In the following
experiments, we have assessed the role of the three MAP-
kinases using their specific inhibitors in the activation of
Sp1. Figure 7 shows that PD98059, SB203580 and

Effect of mithramycin on IL-10 production in HAMFigure 5
Effect of mithramycin on IL-10 production in HAM. 
HAM were preincubated (1 h) with increasing concentration 
of mithramycin and were stimulated with LPS (1 µg/ml) dur-
ing 24 h. Supernantants were assayed by ELISA to determine 
IL-10 production.

Inhibition of MAPkinases activation by PD98059, SB203580, SP600125Figure 3
Inhibition of MAPkinases activation by PD98059, 
SB203580, SP600125. HAM were preincubated during 1 h 
with inhibitors (50 µM) and then stimulated 30 min with LPS 
(1 µg/ml). Levels of phosphorylated ERK, p38 and JNK MAP 
kinases were evaluated by Western-blot analysis. Each bands 
was normalised by performing phospho MAP kinase to β-
actin ratio as by the graph representing the densitometric 
analysis.

Effect of specific MAP kinase inhibitors on the production of IL-10 in HAMFigure 4
Effect of specific MAP kinase inhibitors on the pro-
duction of IL-10 in HAM. HAM were preincubated (1 h) 
with increasing concentrations of inhibitors and then were 
stimulated with LPS (1 µg/ml) during 24 h. Supernatants were 
assayed to determine the production of IL-10 by ELISA.
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SP600125 alone did not influence the binding of Sp1 to
the probe. However, in LPS-treated HAM, these three
inhibitors decreased the activation of Sp1 induced by LPS.

Effects of MAPkinases and Sp1 inhibitors on IL-10 mRNA
To further demonstrate the role of the MAPkinases and
the Sp1 transcription factor in the production of IL-10, we

performed quantitative assay of IL-10 mRNA using real-
time PCR. This technique allows the precise quantifica-
tion of mRNA using specific primers. Figure 8 shows the
relative quantification of IL-10 mRNA after different treat-
ments. First, as positive control, LPS induced IL-10 mRNA
production in HAM (Figure 8, panel A). Treatment of
HAM with PD98059 (50 µM), SB203580 (50 µM),
SP600125 (50 µM) or mithramycin (100 nM), decreased
IL-10 mRNA induced by LPS. This inhibition is more pro-
nounced for PD98059 (>99% inhibition) and SB203580
(90% inhibition) inhibitors whereas mithramycin (75%
inhibition) and SP600125 (45% inhibition) are less
active.

To assess a potential effect of PD and SB inhibitors on
post-transcriptional mechanisms of regulation for IL-10
production, real time PCR for IL-10 mRNA was performed
in HAM treated with Actinomycin D. Figure 8, panel B
shows that both MAPK inhibitors did not affect signifi-
cantly IL-10 mRNA degradation following LPS stimula-
tion.

Discussion
Lung homeostasis relies on the equilibrium between the
induction of efficient innate defensive responses to
inhaled infectious microorganisms and equally effective
mechanisms to downregulate the inflammatory response
to initiate resolution and tissue repair. As a predominant
immune effector cell in the airspaces, the alveolar macro-
phage is critical to these defence processes. Thus they pro-
duce a vast array of cytokines and inflammatory
mediators in particular after LPS stimulation, including
TNF-α and IL-10 as prototypic pro-inflammatory and
anti-inflammatory cytokines, respectively. While the sign-
aling events that mediate TNF-α in HAM have been exten-
sively studied [20-23,19], those responsible for IL-10
production have not been well characterized.

The present study is the first one showing that ERK, p38,
JNK and Sp1 are involved and essential in LPS-induced IL-
10 expression in HAM. These factors act at the transcrip-
tional level, as IL-10 mRNA stability was not affected by
MAPK inhibitors. It is well known that LPS drives intracel-
lular signaling pathways such as MAPKs and NF-κB
[23,24] to activate several pro-inflammatory genes includ-
ing cyclooxygenase-2 [25], inducible nitric oxygen syn-
thase [26], TNF-α and IL-1β [27]. In the present study, we
found that in HAM the MAPK signaling pathways were
also involved in LPS-induced gene activation of IL-10, a
major anti-inflammatory factor. A recent study in murine
macrophage raw 264.7 cells also reported that MAPKs
were necessary in IL-10 expression by LPS [28] whereas
other studies showed that only MAPK p38 was essential
for IL-10 expression induced by LPS and other ligands
[29-33]. Our study not only showed that all MAPKs were

EMSA analysis of Sp1 binding activity in nuclear proteins of HAMFigure 6
EMSA analysis of Sp1 binding activity in nuclear pro-
teins of HAM. Panel A : HAM were treated or not with LPS 
(1 µg/ml) during 2 h. Nuclear proteins were extracted fol-
lowing procedure described in Materials and Methods. Lane 
1: free labelled probe only (without nuclear proteins) – Lane 
2: Nuclear proteins from control HAM incubated with 
labelled probe specific for Sp1 – Lane 3: idem lane2 except 
that HAM were treated 2 h with LPS – Lane 4: idem lane 3 
except that an excess of unlabelled (cold) probe was added in 
the binding reaction – Lane 5: idem lane 3 except that a 
mutant labelled probe (mutation in consensus binding site) is 
used instead of the specific labelled probe for Sp1 – Lane 6: 
idem lane 3 except that nuclear proteins were preincubated 
with a specific anti-Sp1 antibody before addition of the spe-
cific labelled probe. Panel B represents a quantitative analysis 
of a EMSA gel from HAM following stimulation by LPS. Data 
are mean ± SD from 6 experiments; *p value = 0.0411 
(Mann-Whitney U test).
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necessary but that they also played an important role in
the downstream activation of Sp1 trancription factor.

Sp1 is the founding member of a family of zinc finger
transcription factors, which includes at least four Sp tran-
scription factors [34,35]. Among the Sp transcription fac-
tors, Sp1 has been extensively studied [36] and is known
to be widely expressed and to play a role in the regulation
of a vast array of genes. Thus, while not excluding a role
for other nuclear factors our data confirm previous studies
showing that IL-10 gene expression is controlled by the
transcription factor Sp1 [13,14,37] since mithramycin, an
inhibitor of Sp1, almost completely abrogated LPS-
induced IL-10 production at the mRNA and protein level.
EMSA assay confirmed this observation as it showed that
mithramycin decreased the activation of the nuclear pro-
tein Sp1 after LPS stimulation. Transfection of HAM by
antisense oligonucleotides to Sp1 could not be used as
another approach to confirm the role of Sp1 in IL-10
induction by LPS, as after the time period required to
silence Sp1 expression (minimum 16–20 hrs) following 4
hrs-transfection, HAMs were not anymore responsive to
LPS for IL-10 production (data not shown). Interestingly,
inhibition of MAPKs by their specific inhibitors, also
abolished LPS-induced Sp1 activation. These results are in
accordance with previous studies [14,38-42] showing that
Sp1 phosphorylation can be induced by ERK and p38
MAP kinases. In addition the present study also showed
that JNK MAP kinase is also required for the activation of
Sp1 induced by LPS. The three MAP kinases seem however

to have different contributions to LPS-induced IL-10 in
HAM, with a prominent role of p38 and ERK.

IL-10 production by alveolar macrophages has been
debated since some authors described the inability of
alveolar macrophages to produce IL-10 [43-45]. Other
investigators related this to a reduced production of IL-10
to allergic inflammation [46]. Our data clearly confirm IL-
10 production by normal HAM [47-54], provide new
information on the mechanisms involved in this produc-
tion and complete the studies of Boehringer et al [18] who
has studied the role of PP1 and PP2A in the regulation of
LPS-induced IL-10 in HAM.

Conclusion
Our study demonstrates the contribution of MAP kinases
to IL-10 expression in HAM upon endotoxin activation,
indicating that ERK and p38 and to a lesser extent JNK are
involved. In addition we show that ERK, p38 and JNK are
able to trigger the phosphorylation of Sp1, the major tran-
scription factor for the IL-10 gene. These findings are
highly relevant to lung immunity, alveolar macrophages
assuming front-line defense mechanisms and IL-10 repre-
senting a key factor for mucosal tolerance and resolution
of inflammatory responses.
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Sp1 binding activity in nuclear proteins of HAMFigure 7
Sp1 binding activity in nuclear proteins of HAM. HAM were preincubated 1 h or not with inhibitors (50 µM for 
PD98059, SB203580 and SP600125 or 500 nM for mithramycin) and then stimulated with LPS (1 µg/ml) during 2 hours. Con-
trol HAM were HAM cultured with medium alone. Nuclear proteins were extracted as previously described and were then 
incubated in the binding buffer with specific labelled probe and then subjected to electrophoresis for separation of the com-
plexes.

LPS -  + -   - -  -  + +  + +
PD -  - +   - -  -  + -  - -
SB -  - -   + -  -  - +  - -
SP -  - -   - -  +  - -  - +
Mithramycin -  - -   - +  -  - -  + -

Sp1

Non specific
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