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Abstract

Background: Bone marrow-derived progenitors for both epithelial and endothelial cells have been observed in the lung.
Besides mature endothelial cells (EC) that compose the adult vasculature, endothelial progenitor cells (EPC) are supposed to
be released from the bone marrow into the peripheral blood after stimulation by distinct inflammatory injuries. Homing of ex
vivo generated bone marrow-derived EPC into the injured lung has not been investigated so far. We therefore tested the
hypothesis whether homing of EPC in damaged lung tissue occurs after intravenous administration.

Methods: Ex vivo generated, characterized and cultivated rat bone marrow-derived EPC were investigated for proliferation
and vasculogenic properties in vitro. EPC were tested for their homing in a left-sided rat lung transplant model mimicking a
severe acute lung injury. EPC were transplanted into the host animal by peripheral administration into the femoral vein (106
cells). Rats were sacrificed |, 4 or 9 days after lung transplantation and homing of EPC was evaluated by fluorescence
microscopy. EPC were tested further for their involvement in vasculogenesis processes occurring in subcutaneously applied
Matrigel in transplanted animals.

Results: We demonstrate the integration of intravenously injected EPC into the tissue of the transplanted left lung suffering
from acute lung injury. EPC were localized in vessel walls as well as in destructed lung tissue. Virtually no cells were found in
the right lung or in other organs. However, few EPC were found in subcutaneous Matrigel in transplanted rats.

Conclusion: Transplanted EPC may play an important role in reestablishing the endothelial integrity in vessels after severe
injury or at inflamatory sites and might further contribute to vascular repair or wound healing processes in severely damaged
tissue. Therapeutic applications of EPC transplantation may ensue.
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Background

Aimed at a huge surface between blood and ambient air to
accomplish the optimal external breathing, the lung is a
high-throughput blood spongue that has matched its
endothelial surface virtually to the same size as the alveo-
lar space [1]. Endothelial cells (EC) regulate the transport
of nutrients and mediators, the traffic of inflammatory
cells, and regulate the vascular tone, density and selectiv-
ity of the blood-interstitial barrier [2]. In many patho-
physiologic  processes, e.g. during haemostasis,
inflammation and angiogenesis they thus are suggested to
play a key role [3].

Due to the lung's serial position in the blood circulation
the whole amount of cardiac output has to pass through
the pulmonary capillary network, giving the lung an
important role as a capillary filter. This capillary network
has furthermore been organized as an intravascular stor-
age pool for polymorphonuclear neutrophil granulocytes
(PMN). This strategical position in a serially circulated
organ like the lung may be an advantage to rapidly over-
come infective agents, but may be dangerous in case of
overwhelming inflammatory stimuli during pneumonia,
trauma or sepsis, conditions that may cause acute lung
injury (ALI). ALI and consecutively, the Acute Respiratory
Distress Syndrome (ARDS) are characterized by a diffuse
transmural alveolar wall damage leading to severe epithe-
lial injury and cell death [4]. Pulmonary EC death and
dysfunction of the vessel network seem to be characteristic
for this severe lung damage which is still leading in a high
proportion to patients death [5]. Besides vascular lesions
in main pulmonary arteries [6], up to 50% of lung capil-
laries have been shown to be lost during ALI/ARDS [7].
The importance of EC cell death has been further sup-
ported by data observed in animal models inducing ALI
after lipopolysaccharide injection [8,9]. Severe tissue
injury in ALI/ARDS is suggested to result further in an
acute inflammatory response followed by repair processes
that may result in additional apoptosis/necrosis of EC or
epithelial cells [3,8-10]. The replacement of these dead
cells during this repair process was formerly uniquely
believed to be derived from cells in the vicinity of the
damage within a given tissue [11]. However, recently pub-
lished data suggest that repair mechanisms may in part
also rely on bone marrow-derived progenitor cells that are
capable of differentiating in the directions that the injured
site needs [3,12,13], and that there is a dose-relationship
beween the degree of lung injury and the amount of repair
cells stemming from the bone marrow [14].

Indeed, bone marrow has become a recognized source for
progenitor cells of several cell types [15], including EC
[13,16,17], epithelial cells [13,18-23], mesenchymal stem
cells [24,25], hepatocytes [26], cardiac [27], striated [28]
and smooth muscle cells [29], fibroblasts or myofibrob-
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lasts [30,31] and neurons [32,33]. However, a number of
observations have been made on rare engrafted cells,
where circulating blood cells, dead cells, cell fusion, or
artifacts like autofluorescence might lead to misinterpre-
tation. Therefore, the reconstitution of lung epithelium by
bone marrow cells has recently been questioned [34].

Nevertheless, therapeutic trials aiming for organ repair
utilising cell progenitors are evolving [35-42]. Addition-
ally, EPC can circulate in the peripheral blood and track to
other organs [17,43].

In contrast to mature EC that compose the adult vascula-
ture, EPC are supposed to be released from the bone mar-
row into the peripheral blood after stimulation by distinct
inflammatory injuries [3,44]. EPC have been shown to
display a higher proliferative potential [45] and may
migrate to regions of the circulatory system with injured
endothelia, including sites of traumatic, degenerative, or
ischemic injury and thus promote repair or the formation
of new vessels [13,45-52]. Whereas in blood the mature
endothelial cells may originate from sloughing off the ves-
sel wall following some form of vascular insult, higher
numbers of circulating EPC seem consistently associated
with a more normal vascular function or less endothelial
dysfunction, and less cardiovascular risk factors [43], car-
diovascular events and death [53]. Functional circulating
EPC are thus interpreted as the repair cells of vascular beds
[54]. A recent study suggests a superior survival of patients
with acute lung injury and higher number of circulating
EPC than their counterparts with lower numbers [55].
Also in pneumonia patients, circulating EPC increase.
Imaging data further imply persistent fibrotic changes if
circulating EPC numbers remained low during pneumo-
nia, therefore suggest some role in the evolution or repair
of such tissular injury [56]. In healthy adults, the concen-
tration of EPC in peripheral blood is low (2-3 cells/ml)
[57], but vastly depends on the determination technique
[54]. EPC levels have been shown to be about threefold
higher in human umbilical cord blood.

In this study we tested the hypothesis whether the homing
of intravenously administered bone marrow-derived EPC
occurred in damaged lung tissue after the setting of severe
tissue injury, as previously shown in part in an abstract
[58]. As these cells are suggested to be important for
repairing tissue damage, are rather homogeneous com-
pared to bone marrow [59], and we ought to investigate
their presence in the lung, we chose a unilateral model of
severe ALL. Due to a prolonged ischemia of 20 h, such
severe lung injury occurred as ischemia-reperfusion injury
in a model of left-sided rat lung allotransplantation. Such
transplantation of EPC would primarily elucidate key
pathogenic aspects of repair. It may also open prospects to
modulate biological responses by such cells for gene
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delivery, drug- or chemosensitization or apoptosis in
tumor vasculature as Trojan horses [60].

Methods

Isolation and culture conditions of endothelial progenitor
cells (EPC) from rat bone marrow

EPC were collected from the femurs of 6 to 8 weeks old
male Sprague-Dawley rats (220-280 g). Aspirated bone
marrow was mixed with 1000 U/ml heparin (Immuno,
Vienna, Austria), deoxyribonuclease I 1000 U/ml (Sigma,
St. Louis, MO) in Dulbecco's PBS (PAA Laboratories, Aus-
tria) as described [61]. The mononuclear cell fraction was
obtained from a Lymphoprep density gradient
(Nycomed, Norway) after centrifugation for 30 min at
1700 rpm (centrifuge GPR, Beckman, Hettich, Germany).
The mononuclear cell fraction was carded, washed and
centrifuged at 800 rpm for 10 min. The cell pellet was then
suspended in EBM-2 medium (Clonetics, San Diego, Cal-
ifornia) supplemented with 20% fetal calf serum (FCS,
PAA Laboratories, Austria) and plated on rat-derived
fibronectin-coated (10 pg/ml, Sigma, F0635, St. Louis,
MO) 12-well plates (Costar, Corning, The Netherlands).
After 24 h the non-adherent cell population was aspirated
and transferred to a new fibronectin-coated plate. After
another 24 h this procedure was repeated to remove rap-
idly adherent hematopoietic cells or mature EC being pos-
sibly present in the aspirate. Only the non-adherent cell
population harvested after 48 h was evaluated further in
all experiments. This fraction was cultured in EBM-2
medium containing vascular endothelial growth factor
(VEGF), human fibroblast growth factor-B (hFGF-B), R3-
insulin like growth factor (R3-IGF-1), human epidermal
growth factor (hEGF), ascorbic acid, hydrocotisone, gen-
tamycin, amphotericin B (MV-Kit, Clonetics, San Diego,
California) and stem cell growth factor (SCGF, Prepro-
Tech EC Ltd., USA). After 2-3 days a kind of angioblast-
like cells were observed and spindle-shaped cell out-
growth documented. After 7 to 10 days confluence of the
outgrowing cell population was reached and cells were
divided by collagenase (Type CLS-CI-22, Biochrom AG,
Berlin, Germany).

Characterization of EPC from rat bone marrow

Cells were primarily characterized by phase contrast
microscopy evaluating cobblestone morphology which is
typical for confluent EC. EPC were further imaged for their
incorporation of acetylated low density lipoprotein
(aLDL) labeled with fluorescent Dil dye (Dil-acLDL; Bio-
medical Technologies, Stoughton, Massachusetts). Indi-
rect immunofluorescence for detection of CD31
(PharMingen, USA), was performed using rabbit anti-rat
PECAM-1 antibody by a standard protocol as given by the
manufacturer. Secondary FITC-labeled antibodies (swine
anti-rabbit Ig) were purchased from DAKO (Carpenteria,
California). Von Willebrand Factor (vWF) was detected by
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direct immunofluorescence using a FITC-marked anti-
vWF antibody (DAKO, Carpenteria, California). Direct
and indirect immunofluorescence microscopy was done
using a Olympus BH-2 RFCA fluorescence microscope
and KAPPAImage software (Kappa Optoelectronics, Ger-
many).

Additionally, flow cytometry (FACS) analyses were per-
formed for further characterization of EPC. EPC were
checked for the presence of CD146-PE (P1H12) (Chemi-
con, Temecula, USA), CD133-PE (Milteny-Biotec, Ber-
gisch-Gladbach, Germany), VEGF receptor-2 (KDR; R&D,
Wiesbaden, Germany) and CD106 (clone 1.G11B1, Sero-
tec, Oxford, UK). Expression of cell surface markers were
measured in a LSR flow cytometer (Becton Dickinson,
USA) using the Cell Quest software (Becton Dickinson,
USA).

Isolation and culture conditions of arterial endothelial
cells from rat thoracic aorta (rAEC)

Female Sprague-Dawley rats weighing 230-280 g were
housed in a light-, temperature-, and humidity-controlled
environment and provided with food and water ad libi-
tum. Before killing by decapitation, rats were anesthetized
with dietylether and thoracic aortas prepared immediately
after removal. Aortas were cut into consecutive 2 mm seg-
mental rings, mounted on the plastic surface of 24-well
tissue culture plates coated with a distinct mixture of col-
lagen type I (0.1 mg/ml; Collaborative Biomedical Prod-
ucts, Bedford, MA), fibronectin (10 pg/ml; Collaborative
Biomedical Products) and porcine gelatin (0.2%; Sigma,
St. Louis, MO). Cells were cultured in M199 with 10%
FCS, 100 U/ml penicillin, 100 mg/ml streptomycin and
100 mg/ml endothelial cell growth factor supplement
(Sigma, St. Louis, MO) and kept in a humidified incuba-
torat 37°Cin 5% CO,. Rat aortic endothelial cells (rAEC)
were used between passages three and five for all experi-
ments.

Isolation and culture conditions of arterial endothelial
cells from rat pulmonary arteries (rPAEC)

As given above two female Sprague-Dawley rats weighing
230-280 g were killed by decapitation: rats were anesthe-
tized with dietylether and main pulmonary arteries pre-
pared immediately after removal. Pulmonary arteries were
cut into consecutive 2 mm segmental rings, mounted on
the plastic surface of 24-well tissue culture plates coated
with rat 10 pg/ml fibronectin. Rat pulmonary artery
endothelial cells (rPAEC) were cultured in endothelial
culture medium (Promo Cell, Heidelberg, Germany) con-
taining 10% FCS and 2% endothelial cell growth supple-
ment (Promo Cell, Heidelberg, Germany), 1% penicillin/
streptomycin solution (Sigma, St. Louis, MO) and kept in
a humidified incubator at 37°C in 5% CO,. rPAEC were
used between passages three and five for all experiments.
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Culture conditions of human lung microvascular
endothelial cells (hL-MVEC)

Primary human lung microvascular endothelial cells (hL-
MVEC; Clonetics, San Diego, CA, USA) were cultured
according to the manufacturer's protocol in EBM-2
medium containing vascular endothelial growth factor
(VEGF), human fibroblast growth factor-B (hFGF-B), R3-
insulin like growth factor (R3-IGF-1), human epidermal
growth factor (hEGF), ascorbic acid, hydrocotisone, gen-
tamycin, amphotericin B (MV-Kit, Clonetics, San Diego,
California).

Proliferation experiments

After incubation at 37 °C for various time periods cellular
proliferation was measured using a colorimetric assay for
cell growth and chemosensitivity. This colorimetric assay
based on the tetrazolium salt MTT ((3-(4,5-dimethyldia-
z0l-2-yl)-2,5-diphenyl tetrazolium bromide; Sigma, St.
Louis, MO) detects living but not dead cells, and the sig-
nal generated is directly proportional to the number of
cells [62]. After 6 h of incubation, medium was aspirated
from adherent cells without disturbing formazan crystals
formed within the cells. Subsequently, dimethylsulfoxide
(Merck, Darmstadt, Germany) was added to each well, the
plates were agitated on a plate shaker, and the optical den-
sity was read with an enzyme-linked immunoabsorbent
assay reader at 570 nm (MR 700; Dynatech Labs, Guern-
sey, United Kingdom).

In vitro capillary tube formation assay in Matrigel

For analysis of capillary tube formation, 150 pl Matrigel
(Becton Dickinson, Heidelberg, Germany), an extracellu-
lar mouse sarcoma matrix (Engelbreth-Holm-Swarm
tumor) known to be in vivo and in vitro a pro-angiogenic
stimulus, was laid into the wells of a 48-well plate (Fal-
con, Heidelberg, Germany) and incubated at 37°C for 60
minutes. EPC or hL-MVEC were harvested and 3 x 104
cells resuspended in 200 pul EBM-2/MV medium and
plated. Conditions with EBM-2/MV with 10% FCS or sup-
plemented with 50 ng/ml VEGF were studied. Capillary
tube formation on Matrigel was observed under an
inverted Zeiss Axiovert microscope after 5 or 18 h of incu-
bation.

Application of subcutanous Matrigel

200 pl of Matrigel (Becton Dickinson, Heidelberg, Ger-
many) was subcutanously administered into the left-sided
flank subcutis of lung transplant recipients with EPC
injection eight days before transplantation in order to
assess angiogenesis as shown in figure five.

Ex vivo cell tracer labeling of EPC

EPC were kept on fibronectin-coated culture flasks within
EBM-2/MV medium as given above without further com-
plementation prior to in vivo coloration. After a washing
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procedure in buffer solution EPC were stained with the
anionic sulfophenyl cell tracer SP-DilC,4(3) (Molecular
Probes, Leyden, The Netherlands), a formaldehyde and
acetone resistant Dil dye at a concentration of 2 pg/ml
solution in standard PBS. Staining was performed on
adherent EPC at 37°C for 10 min followed by a further
incubation period of 35 min at 4°C. After staining, cells
were washed in EBM-2 supplemented with 10% FCS. Effi-
ciacy of coloration and cell morphology was checked by
fluorescence microscopy twice before transplantation.
Furthermore, growth, morphology and fluorescence
intensity of SP-DiIC,4(3)-in vivo staining was checked at
the end of each experiment. No differences in biological
functions of SP-DilC,4(3)-stained EPC tested have been
observed (data not shown). SP-DilC,4(3) staining was
detectable up to 14 days in in vitro cultured EPC (data not
shown).

Flow cytometry (FACS) of EPC in rat blood samples

100 pl of EDTA blood was withdrawn from an EPC-
injected lung transplant recipient 12 h post reperfusion
from the jugular vein. Whole blood was stained with 10 pl
anti rat CD42d-FITC (Becton Dickinson, Heidelberg, Ger-
many), 10 pl anti rat CD45-FITC (Becton Dickinson), and
10 pl anti human CD146-PE (clone P1H12, Chemicon,
Hotheim, Germany) for 30 min at room temperature. Red
blood cells were lysed with 1 ml of BD Lysing Solution
(Becton Dickinson) for 10 min at room temperature. After
washing twice with 3 ml PBS, cells were measured in a BD
LSR flow cytometer (Becton Dickinson) using Cell Quest
software (Becton Dickinson). To quantify the amount of
circulating EC in the blood samples a standardized
amount of 6 um latex microspheres (Polyscienes, Eppel-
heim, Germany) was added to each blood sample. With
this internal standard it was possible to calculate the
amount of circulating EC per ml of blood.

In vivo experimental protocol including the intravenous
injection of EPC

All experiments were performed according to the Helsinki
convention for the use and care of animals and were
approved by the local review boards for animal care.
Briefly, weight matched female Sprague-Dawley rats of
220 - 270 g received orthotopic single left lung allografts
under general anesthesia with 2% halothane from female
Sprague-Dawley rats after a total graft ischemia of 20 h. A
standard cuff technique for the vessel anastomoses and a
running suture for the bronchial anastomosis were
applied, as well as for the donor procedure and transplan-
tation [63]. Immediately before injection of EPC into the
host rat, SP-DilC,4(3)-labelled cells were harvested,
washed and resuspended in EBM-2 medium at a concen-
tration of 1 x 10°/ml. Injection of EPC was done under
general anesthesia with 2% halothane into the saphenous
vein of the right hind leg under microscopic vision to
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ascertain the successful and complete venous administra-
tion into each host animal. Intravenous application of
EPC was performed 50 to 120 min after reperfusion of the
transplanted left lung (n = 9). Two further control animals
were not lung transplanted but received labelled EPC as
given above.

In vivo experimental protocol

Host animals

Weight matched female Sprague-Dawley rats of 220 - 270
g received orthotopic single left lung allografts from
female Sprague-Dawley rats after a total graft ischemia of
20 h. A cuff technique for the vessel anastomoses and a
running suture for the bronchial anastomosis were
applied. The experiments were performed according to
the Helsinki convention for the use and care of animals
and were approved by the local review boards for animal
care.

Donor procedure

Animals were anaesthetized by intraperitoneally adminis-
tered pentobarbital (50 mg/kg) and heparinized (500
I.U./kg). After tracheotomy the animals were ventilated
through a 14 gauge cannula (FiO, = 1.0) by a Unno rodent
ventilator (Hugo Sachs Harvard Apparatus, March-Hug-
stetten, Germany) at a tidal volume of 8 ml/kg at 100/
min. After division of the inferior vena cava and resection
of the left appendix of the heart, a small silicon tube was
inserted into the main pulmonary artery. Both lungs were
flushed with 20 ml of Low Potassium Dextrane (LPD)
solution (Perfadex, kindly provided from Xvivo, Gote-
borg, Sweden) at a pressure of 20 cm H,O. The trachea
was tied in end-inspiration, the heart-lung block removed
and 16 gauge cuffs (Abbocath-T, Abbott, Sligo, Ireland)
were placed around the pulmonary artery and vein. The
vessels were inverted and tied onto the cuff with an 8-0
monomeric filament. The lung was stored in LPD solution
at 1.5°C until implantation.

Recipient procedure

Transplantation was performed after 20 h of cold
ischemia at 1.5°C. The recipient rat was anesthetized by
breathing 4% halothane in a glass chamber followed by
intubation. Anesthesia was maintained throughout the
operative procedure with 2% halothane. A left lateral tho-
racotomy was performed in the 4t intercostal space. The
left hilum was dissected and after clamping of the left pul-
monary artery and vein with removable microvascular
clips, the pulmonary vein was opened, flushed with
heparinized saline solution, and the cuff was inserted and
fixed with 6-0 Silk. With the same technique, the pulmo-
nary artery was anastomosed. The native left lung was
removed and the bronchial anastomosis performed with
a running over-and-over suture with 9-0 Monosof (Tyco
Healthcare, Wollerau, Switzerland). The lung was first
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reventilated and then reperfused. A chest tube was
inserted and the thoracotomy closed. The chest tube was
removed after restoration of spontaneous breathing when
the animal was extubated.

Intravenous injection of EPC

Immediately before injection of EPC into the host rat, SP-
DilC,4(3)-labelled cells were harvested, washed and
resuspended in EBM-2 medium at a concentration of 1 x
10%/ml. Injection of EPC (1 x 106 cells) was done under
general anesthesia with 2% halothane into the saphenous
vein of the right hind leg under microscopic vision to
ascertain the successful and complete venous administra-
tion into each host animal. In preliminary experiments
tolerability of intraveinous application of EBM-2 (1 ml)
alone turned out to be safe. Intravenous application of
EPC was performed 50 to 120 min after reperfusion of the
transplanted left lung.

Assessment of transplanted EPC in the host animal

To evaluate the incorporation of EPC into rat organs, ani-
mals were anesthetized by intraperitoneal pentobarbital
(50 mg/kg) and ventilated after tracheotomy with an FiO,
of 1.0 at 100/min, a tidal volume of 8 ml/kg, and a posi-
tive end-expiratory pressure (PEEP) of 5 cm H,0O. Lung
transplanted animals were sacrificed after one day (n = 7),
3 days (n=1), or 9 days (n = 1) post transplantation. Con-
trols were killed at day one after peripheral EPC injection.
Animals were sacrificed after median thoracotomy and
intracardiac heparinization with 500 U/kg, when lungs
were flushed with 20 ml saline solution through the pul-
monary artery. The heart-lung block was excised and the
lungs separated: Each lung was divided and one part put
into 10% PBS-buffered formalin solution, and the
remainder part was deep-frozen in liquid nitrogen and
stored at -70°C.

Further organs of the host rats (spleen, liver, kidney and
adrenals, stomach, small intestine, colon, bone) were pre-
served in 10% PBS-buffered formalin solution as well as
deep-frozen in liquid nitrogen and stored at -70°C.

Immunofluorescence staining of tissue specimens

The formalin-fixed tissue was paraffin-embedded and cut
at4 pm to 10 pm (as given in detail in some experiments).
Slides were heated in an incubator at 70°C for 30 min
before they were deparaffinized in xylene and hydrated in
graded ethanol. Slides were incubated with FITC-labelled
lectin from Bandeiraea simplicifolia (Griffonia simplicifolia)
BS-I (Sigma, St. Louis, MO) and 3', 6'-diamidino-2-phe-
nylindole, dihydrochloride (DAPI; Molecular Probes, Ley-
den, The Netherlands) according to the manufacturers'
protocol. Bandeiraea simplicifolia lectin was chosen due to
its affinity to EC, and DAPI staining was used to stain
nuclei specifically with blue fluorescence. Lectin was
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diluted at 1:100 and DAPI at 1:1000 in PBS containing
1% bovine serum albumin (BSA). Analysis was performed
by three of the authors (H. N., ].H., C.M.K.) using a Zeiss
Axioskop 2 light and fluorescence microscope (Zeiss, Got-
tingen, Germany). For additional confocal microscopic
analysis, histological sections with a thickness up to 10
pum (left-sided injured lung, right lung and the other
organs investigated) were examined with an Inverse Axio-
vert 100 M BP (Base Port) confocal microscope LSM 510
(Zeiss, Gottingen, Germany) using the following laser
emissions: DAPI: excitation 364 nm, emission BP 385-
470 nm; FITC: excitation 488 nm, emission BP 405-430
nm; SP-DilC,5(3): excitation 543 nm: emission LP 585
nm. Fluorescent signals from DAPI, FITC-lectin and SP-
DilC,4(3) were viewed simultaneously in separate detec-
tor channels. True color overlays of single and serial sec-
tions were generated with Zeiss confocal software 2.8 SP1.

Statistical analyses

Values are presented as mean + S.E.M. The values were
compared by Mann-Whitney U test as given in the text.
Differences were considered statistically significant at p <
0.05.

Results

Characteristics of ex vivo-generated bone marrow-derived
rat EPC

Cells were harvested from the non-adherent fraction of rat
bone marrow mononuclear cells after 48 h of culture on
fibronectin-coated culture dishes (Figure 1A). EPC
appeared to grow out of a so-called angioblast as had been
already described for human EPC [64] (Figure 1C, D). The
outgrowth cells first exhibited a spindle cell shape (Figure
1B), and after 7 to 10 days in culture a more endothelial
cell-like cobblestone morphology was observed (Figure
1D).

Utilizing phase contrast microscopy as well bone marrow-
derived EPC (Figure 2A) as rAEC (Figure 2B) showed typ-
ical endothelial cobblestone morphology after reaching
confluence. The endothelial phenotype was further con-
firmed by immunostaining with antibodies specific for
several endothelial markers and compared with mature
rAEC. EPC incorporated Dil-acLDL (Figure 2C) as
observed in mature rAEC (Figure 2D). Furthermore, EPC
(Figure 2E) as well as rAEC (Figure 2F) uniformly
expressed vWF in their cytoplasmic granules. EPC further
showed positive staining for CD34, CD31 and VEGF
receptor-2 (KDR; Flk-1) in immunofluorescence experi-
ments (data not shown).

Additionally, expression of endothelial surface markers
(Figure 2G) on EPC and hL-MVEC were compared by flow
cytometry. EC showed a bright staining with CD146-PE
(P1H12) and are not stained with the platelet marker

http://respiratory-research.com/content/8/1/50

CD42d-FITC and the leukocyte marker CD45-FITC. Those
antibody combinations ensure that no leukocytes or
platelet aggregates with non-specific CD146-PE staining
are gated as EC. As depicted, EPC and hL-MVEC express
the markers CD146 (P1H12), CD133, KDR and CD106.
However, EPC showed higher expression of the stem cell
marker CD133 as well as CD146 (P1H12) than mature
microvascular endothelial cells.

Appearance of these tested markers was comparable fur-
ther with staining intensity of mature rAEC. Thus, the
expression of diverse EC markers detected confirmed the
endothelial identity of the outgrowth cells of the non-
adherent cell fraction cultured from rat bone marrow. The
endothelial phenotype remained constant for more than
20 passages, demonstrating the stability of freshly isolated
EPC from rat bone marrow.

Proliferative kinetics of rat bone marrow-derived EPC in
vitro

As depicted in Figure 3A, EPC show a dramatic increase in
their proliferative kinetics when compared with mature
rPAEC after stimulation with 20% FCS. The increase in
cell number was about threefold when compared with
mature rPAEC. These observations are in good agreement
with published data by Bompais et al. [45]. Also increas-
ing concentrations of basic fibroblast growth factor
(bFGF) resulted in a significant increase of EPC cell
number with a maximal effect observed between 10 pg/ml
and 100 pg/ml after 72 h (maximal concentration tested;
Figure 3B).

Vasculogenic properties of rat bone marrow-derived EPC
Consistent with the observed endothelial phenotype
(phase contrast microscopy, detection of endothelial
markers by flow cytometry), EPC formed capillary-like
formations within 6-12 hours when plated on Matrigel
after stimulation with VEGF (50 ng/ml; Figure 4B) when
compared with the angiogenic potential of hL-MVEC (Fig-
ure 4A). Even spontaneous formations of capillary-like
structures were observed by EPC when seeded at low cell
numbers on fibronectin-coated (10 pg/ml) cell culture
plates (Figure 4C). However, after cell number of EPC
increased they showed a more cobblestone morphology
(Figure 1, 2). These observations suggest a high capacity of
EPC to form new vessels.

Flow cytometry analyses of circulating EC after peripheral
EPC transplantation

Flow cytometry analyses with species cross-reactive mon-
oclonal antibodies showed baseline levels of 302 (SD
222) circulating EC/ml peripheral blood in untreated ani-
mals. 12 h after reperfusion the amount of circulating EC
(presumably mainly including transplanted EPC)
increased to 22.300 (SD 14.190) circulating EC/ml
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Figure |

Rat bone marrow-derived EPC in culture. A highly purified population of EPC was isolated from hindlimb bone marrow of
male Sprague-Dawley rats and maintained in EBM-2 medium containing several growth factors (A). Typical morphology (spin-
dle cell shape) for rat EPC (B) occurred after a few days in culture (phase contrast microscopy 30x). Outgrowth of EPC
appeared to occur from an angioblast-like cell as already documented for human EPC (C, 30%). Maintaining of the endothelial
colonies in specific growth medium resulted in the proliferation of characteristic endothelial cobblestone colonies (D, 20x).

peripheral blood. An example of the flow cytometric
measurement and the gating is depicted in Figure 5. This
preliminary finding suggests that a rather high number of
circulating EC can be detected in the circulation already
few hours after initiation of ALI. However, as a limitation
of these observations, transplanted EPC could not be
determined directly by this method since the erythrocyte
lysis buffer, which must be used for the flow cytometric
analysis of blood samples, removed the fluorescence of
the tracer dye SP-DilC .

Incorporation of rat bone marrow-derived EPC into the
injured left-sided transplanted lung and in subcutaneously
administered Matrigel

SP-DiIC,4(3)-labeled EPC were administered intrave-
nously 50 to 120 min after reperfusion of the transplanted
left sided lung after a cold ischemia for 20 h. This unilat-
eral orthotopic lung transplant model leads to a severe

ischemia-reperfusion injury resulting in an ALI in the
transplanted lung leading to a P,O,/F,0, of about 50 - 70
mm Hg [63]. Already one day after transplantation, SP-
DilC,5(3) - labeled EPC were detectable in the injured
lung tissue. Specific immunofluorecence for SP-
DilC,4(3), was found throughout the left lung in all left
lung transplanted animals (n = 9) while in the right lung
or other organs of the same rats transplanted EPC were
virtually not found. In all lung sections investigated we
were able to detect injected EPC at a number of about 10
to 15 cells per slide. As a rat lung is about 30.000 pm long
we can suggest that about 30.000 (3%) up to 112.500
(11%) of EPC transplanted may home in the injured left
lung (Figure 6). However, as a limitation of the method
used (in vivo cell labeling) staining of partner cells upon
cell fusion can not be excluded completely. Ex vivo gener-
ated EPC seemed to be incorporated into pulmonary cap-
illaries as suggested by double-staining with lectin BS-I
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Figure 2

Characteristics of rat bone marrow-derived EPC. Utilizing phase contrast microscopy as well EPC (Figure 2A, 20x) as rAEC
(Figure 2B, 20%) showed a typical cobblestone morphology after reaching confluence. The endothelial phenotype was further
confirmed by immunostaining with antibodies specific for several endothelial markers and compared with mature rAEC: EPC
cultured from rat bone-marrow incorporated acetylated low-density lipoprotein (aLDL, Figure 2¢, 30%) to the same extent
than observed in mature rAEC (Figure 2d, 30x). Furthermore, as well EPC (Figure 2E, 30x) as rAEC (Figure 2F, 20%) uniformly
expressed von Willebrand factor (vWF). Figure 2G and 2H show the flow cytometric (FACS) characteristics of EPC (red lines)
compared to hL-MVEC (black lines). Staining was performed for PIH12 corresponding to CD 146, CD |33, the VEGF-receptor
2 (KDR) and CD 106 (VCAM-1) as given in Materials and Methods.

Page 8 of 17

(page number not for citation purposes)



Respiratory Research 2007, 8:50 http://respiratory-research.com/content/8/1/50

Al o
O rPAEC i%
W EPC —
—~ 0.5 '
g  —
@O
2
5 04
Q
©)
> dl
T %3 n.s.
é | —
E 0.2 4 >
ﬁ ns,
o]
0.1
04
4h 24 h 72h

time

0.6 -

0.5 -

!

0.3

*k

02 /§

0.1 __._._i._._._._._ib_,_.___i..;—:::'f_'f:ii_._._._._._._._._._._._._._

Optical Density (OD 570/630)

Control 100 ng/ml 1 pg'/ml 10 pg/ml 100 pg/ml FCS 20 %

bFGF Concentration

Figure 3

Proliferative characteristics of bone marrow-derived EPC. EPC and rPAEC were cultured in the presence of 20% FCS in
EBM-2 without further supplements (Figure 3A) or in EBM-2 containing bFGF (Figure 3B). Figure 3A shows the differential
growth capacities of EPC and mature rPAEC in the presence of EBM-2 supplemented with 20% FCS. Figure 3B shows the pro-
liferative kinetics of EPC cultured in EBM-2 supplemented with 0.5% FCS towards increasing concentrations of bFGF (100 ng/
ml to 100 pg/ml). Cells were seeded in 96-well plates, grown for 24 h in culture medium, washed twice with HEPES/EDTA and
treated with bFGF in EBM-2 medium containing 0.5% FCS for 48 h as indicated. Cells were incubated with MTT solution, lysed
and the absorbance was read. MTT activity is expressed as Optical Density and represents mean + SEM of five independent
experiments, ** p < 0.01, * p < 0.05.
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Figure 4

Capillary-like structures formed by rat bone marrow-derived EPC. Formation of tubular structures on Matrigel by EPC as
a form of organisation characteristic of EC. EPC stimulated with VEGF (50 ng/ml) exhibited more tubular formation and with a
particular tendency to multiple links between cell nest (Figure 4B) than observed with the control: hL-MVEC (Figure 4A) How-
ever, EPC have the capability to form capillary like structures when seeded at low cell numbers even in the absence of high
concentrations of cytokines which suggests their high angiogenic potential. Picture represents a 20 magnification phase con-

trast microscopic picture (Figure 4C).

and nuclear staining with DAPI (Figure 7). Still 9 days
after injection of SP-DiIC,4(3)-labeled cells, EPC were
detectable in the transplanted left lung and seemingly
integrated in capillary-like structures therein but not in
the non-transplanted right lung. EPC were attributed to
alveolar septal capillaries while we observed only few
immunofluorescent signals in larger pulmonary vessels.
Furthermore, SP-DilC,4(3)-labeled EPC were also
detected within widened septa of thickened alveoli. These
cells could not be directly attributed to patent vessels.
Interestingly, no EPC were found in alveolar spaces or in
vessel lumina ever. DAPI staining confirmed functional
integrity of injected EPC (Figure 7). In control animals (n
= 2) virtually no peripheral administered EPC could be
found in lung tissue. However, only about 0.5% of DAPI
positive cells were co-labeled SP-DilC,5. These observa-
tions are in good agreement with recently published data
concerning peripheral injection of GFP-expressing EPC in
immunodeficient (F344/N rnu/rnu) nude rats [65].

EPC were not detectable in the investigated specimens of
other tissues such as myocardium, kidney and liver by flu-
orescence microscopy so far. However, EPC have been
found in subcutaneously administered Matrigel which
had been administered 8 days before lung transplantation
in six animals. Figure 5 confirms both, that vessels have
sprouted into the matrix and that about 24 h after left
sided lung transplantation and about 23 h after EPC
administration some of the peripherally injected EPC

have invaded the Matrigel as evidenced by confocal
microscopy (Figure 8).

Discussion

The main finding of this study of one-sided severe ALI by
ischemia and reperfusion is that incorporation of EPC
could be demonstrated in the injured lung vascular bed
and within the damaged tissue after peripheral adminis-
tration. EPC were detected at a percentage between 3 to
11% in the left lung in our model. Homing of ex vivo gen-
erated EPC was selectively found in the injured trans-
planted left-sided, but not in the right lung (not
transplanted). Also other organs like liver, spleen, kidney,
stomach or intestines showed no detectable homing,
whereas subcutaneously administered Matrigel gave evi-
dence of few cells having migrated in. However, the
number of EPC detected in the injured left lung and in the
administered Matrigel might be underestimated as after
cell division the fluorescent cell marker has been shown to
loose its intensity. These findings, together with that of
high amounts of circulating EC found after injection of
EPC in venous blood, also corroborated that EPC found
in the transplanted lung are not explained by simple
embolism and suggests that a tropism of such cells to vas-
culogenic or wound healing areas might occur.

Homing of EPC in injured lung tissue gives evidence of a
potential repair mechanism not yet observed in ALI.
Indeed, not only the capillary leak that underlines the
altered EC filter function of pulmonary microvessels, but
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Flow cytometry analysis of circulating EC after transplantation. Flow Cytometry Analysis of Circulating EC after Trans-
plantation. Example of a flow cytometric analysis of circulating EC in peripheral blood. The depicted data show a blood sample
from an EPC-injected lung transplant recipient 12 h post reperfusion. Whole blood was stained with CD42d-FITC to exclude
platelet aggregates and with CD45-FITC to exclude leukocytes, as well as CD146-PE (PIH12) as second fluorescence. Circu-
lating EC are defined as CD 146 positive and negative for CD45 and CD42d. The localization of that cell group in forward and
side scatter is shown in Panel A as the green cell group. Panel A and B contain furthermore as a red group a standard dose of
control beads in order to quantify cells. Panel A shows the forward and side scatter characteristics of the blood sample. In
panel B the latex beads which are used as internal quantification standard (gate Beads) and the CD45 and CD42a negative pop-
ulation (gate R2) are gated. In panel C the CD45 and CD42a negative population of R2 is analyzed for their expression of the
endothelial cell marker PIH12. Cells were counted as circulating endothelial cells when they were included in the depicted

gate CEC.

also cell death has been described to be a clear feature of
such transmural lung injury [5,7]. A high number of cap-
illaries may be destroyed, and EC may undergo apoptosis
or necrosis. It is therefore conceivable that EPC home at
these pulmonary vascular sites where the adult EC pheno-
type is demised. This hypothesis is supported further by a
recent study of Nagaya et al. [65]. They showed in a rat
model that homing of EPC in pulmonary hypertension
occurs and ameliorates monocrotaline-induced pulmo-
nary hypertension, similar to recent work of Zaho et al.
[66], suggesting that apoptotic mature EC are replaced by
novel functional cells. Further work from Davie et al. gave
evidence of a participation of EPC in adventitial vasa vaso-

rum in a hypoxia model [67]. A number of similar
approaches have been described. Mouse studies on hind-
limb ischemia have shown an enhanced tissue neovascu-
larization with increased blood flow and capillary density
[68] and a significantly lower number of lost limbs due to
the transplantation of human EPC in athymic nude mice
[69]. A pilot study and randomized controlled trial in
limb ischemia patients treated with autologous trans-
planted bone-marrow cells in ischemic limb muscles
showed a sustained significant effect of such therapeutic
angiogenesis [35].
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Figure 6

Localisation of EPC in the left-side transplanted lung. Lung specimens from rats after left-sided lung transplantation. EPC
were stained prior to transplantation with SP-DilC,4(3) (red). Figure 6A shows SP-DilC 4(3)-staining (red) of EPC prior to
intravenous transplantation. A-C, C-D and D-F show the same specimens, respectively. In the upper line confocal fluorescence
microscopy for SP-DilC 4(3)-stained EPC (red) is showed (A-C). In the lower row fluorescence is overlaid with light micros-
copy (D-F) for the same specimens. Abbreviation used: alv stands for alveoli.

Thereby, it is noteworthy that cell demise seems a critical
phenomenon in ALL. Apoptosis seems to be a major path-
way to EC death in ALI, and by the use of a caspase inhib-
itor to block the execution of apoptosis, there is some
indirect evidence that influencing such apoptosis may
affect animal survival [9]. On the other hand, apoptosis
may be under circumstances of infection protective for the
animal survival [70]. In our utilized lung injury model
such apoptosis has been demonstrated to occur [71]. Sec-
ond, it gives first evidence that such a stem cell-based
replacement of dying or dead cells in the lung may be
accomplished as a therapeutic strategy by an intravenous
cell transplantation approach in severe ALI [72].

Furthermore, a CD34-negative subpopulation of bone
marrow cells has been shown to uniquely engraft and
reconstitute a minute part of ischemic myocardium with
cardiomyocytes and EC [73]. The very similar finding of
EC engraftment contrasts with the quite dissimilar cell
population they used. Whether the difference in used
populations may be of less importance due to the plastic-
ity of such stem cells or progenitor cells [74,75] that may
be able to transdifferentiate or dedifferentiate and even

cross germ lines, or due to the difficulty to define such cell
populations [76] remains open. Also cell fusion [77-79]
might be a reason for such a trans-or dedifferentiation
hypothesis and may further increase the difficulty to cate-
gorize such cells. Observed controversies might be part of
the different origins of EPC used in these studies [80].

Recently, Voswinckel et al. investigated after reporter gene
bone marrow grafting in a model of left-sided pneumon-
ectomy the compensatory lung growth that leads to
important alveolization in rodents [81]. They could not
find bone marrow-derived EC or smooth muscle cells,
pericytes or fibroblasts in their model of rather slow
regeneration and alveolarization where no injured lung
tissue is present. Their very thorough approach to use
three different mouse strains may imply, contrary to our
finding in an ALI model, that the proliferative capacity of
endogenous cell compartments of the lung [11] would be
sufficient for such regeneration in their model of rather
slow regeneration.

On the other hand it has been suggested that circulating

bone marrow-derived stem cells support tissue-specific
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Figure 7

Localisation of EPC in the left-sided transplanted lung. All pictures show the same lung specimens from rats after left-
sided lung transplantation and EPC injection. EPC were stained prior to transplantation with SP-DilC,4(3) (red), followed by
staining of histological specimens with the nuclear dye DAPI (blue) and the more endothelial specific FITC-labeled lectin from
Bandeiraea simplicifolia (Griffonia simplicifolia) BS-I (green) showing the distribution of EPC. A-C: A-SP-DilC 4(3) (red), B — SP-
DilC,g(3) (red) and DAPI (blue), C — merge: SP-DilC,4(3) (red), DAPI (blue) and FITC-labeled lectin from Bandeiraea simplicifo-
lia (Griffonia simplicifolia) BS-1 (green) — Orange reveals staining for red and green) [Figure 7C represent magnification and a
merge picture of a marked section of Figure 7A, B]; D-F: D: SP-DilC,4(3) (red), E: SP-DilC,g(3) (red) and DAPI (blue), F -
merge: SP-DilC4(3) (red), DAPI (blue) and FITC-labeled lectin from Bandeiraea simplicifolia (Griffonia simplicifolia) BS-1 (green) —
Orange reveals staining for red and green). F(a): Staining of EPC in culture with DAPI (blue) and FITC-labeled lectin from Ban-
deiraea simplicifolia (Griffonia simplicifolia) BS-I (green) Abbreviation used: alv stands for alveoli.

cells during periods of severe acute injury in different tis-
sues [82-84], or even repair more generally. A recent study
by Yamada et al. corroborated the cell substitution
hypothesis in the lung after pulmonary LPS exposure in
mice. They observed a rapid mobilization in terms of an
increase of bone marrow-derived progenitor cells in the
circulation 4 h after exposure by about a factor of four, an
accumulation of those cells within inflammatory sites and
then their differentiation to endothelial or epithelial cells

[13]. If progenitors were suppressed by body irradiation,
within one week the mice developed emphysema-like
lesions, probably due to missing substitution of apoptotic
or necrotic cells [10] and similar to an emphysema model
of repeated LPS exposure [85]. In contrast, mice with LPS
exposure and intact bone marrow did not have such struc-
tural changes one week later. These findings suggest that
an inflammatory stimulus does not only induce the
release of inflammatory cells from the bone marrow, but
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Figure 8

Localisation of EC and EPC in subcutanous matrigel.
Confocal fluorescence microscopic examination of a subcu-
tanously administered Matrigel, an extracellular mouse sar-
coma matrix (Engelbreth-Holm-Swarm tumor) known to be
in vivo a pro-angiogenic stimulus, that had been administered
to the rats with EPC injection one week before transplanta-
tion subcutanously. Matrigel showed invasion of cells building
up capillary like structures. EPC are positive for SP-DilC,g(3)
and DAPI. Figure A,B; blue: DAPI, red: SP-DilC 4(3)-labeled
EPC).

also that of progenitor cells. Furthermore, these cells
might be crucial to repair the lung in order to maintain the
organ structure, as they integrate in the tissue and seem to
differentiate or to fuse with other parenchymal cells to
endothelial or epithelial cells. Whether these progenitors
may have a more general therapeutic role in inflammatory
diseases to repair lung parenchyma or even in diseases
with important chronic lung destruction like emphysema
remains open [13].

http://respiratory-research.com/content/8/1/50

A number of studies addressed the role of such circulating
progenitors: their mobilization [86,87], homing [88] and
their association with inflammation [43,89], pneumonia
[56], pulmonary hypertension [65-67], acute lung injury
[55], or cancer [57,90,91]. Furthermore, we were able to
detect CD133-positive EPC in tumor tissue of patients suf-
fering from bronchial carcinoma [92], a concept that has
been questioned experimentally [93]. Further studies are
necessary to better understand their dynamics in such a
repair process in health as well as in the addressed disease
states.

As a limitation of our study protocol we can not give evi-
dence of functional improvement by EPC homing. How-
ever, there are other reports from studies on therapeutic
strategies that such transplantation of EPC may be favora-
ble. Indeed, injured arteries or bio-prosthetic grafts have
been shown to be early re-endothelialized with adminis-
tered EPC, apparently resulting in less neointima deposi-
tion [46,94]. The progressive loss over time of
transplanted cells in the grafts might be a result of rapid
cell turnover and simultaneous replacement by recipient
cells, be it from bone marrow or from nearby. Whereas
similar findings were also made with another study using
transfected cells [95], a definitive answer on the rapidity
of cell replacement is still lacking due to technical limita-
tions of such studies.

Conclusion

We could demonstrate the integration of intravenously
injected ex-vivo expanded bone marrow-derived EPC in
the injured vasculature uniquely of the transplanted lung
with ALI. Those transplanted EPC may play a central role
in reestablishing the endothelial integrity in injured ves-
sels [13] and might further contribute in wound healing
processes [21,55]. Our observations may have implica-
tions for novel cell-based therapeutic strategies [96], be it
as endothelia per se to establish the vascular integrity, be
it as vector for mediators as already shown with bone-
marrow derived cells for the pulmonary epithelium [97]
or as a "Trojan horse" aiming at tumor vessels for thera-
peutic interventions.
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