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Abstract
Background: Evolutionarily conserved sequences likely have biological function.

Methods: To determine whether variation in conserved sequences in non-coding DNA
contributes to risk for human disease, we studied six conserved non-coding elements in the Th2
cytokine cluster on human chromosome 5q31 in a large Hutterite pedigree and in samples of
outbred European American and African American asthma cases and controls.

Results: Among six conserved non-coding elements (>100 bp, >70% identity; human-mouse
comparison), we identified one single nucleotide polymorphism (SNP) in each of two conserved
elements and six SNPs in the flanking regions of three conserved elements. We genotyped our
samples for four of these SNPs and an additional three SNPs each in the IL13 and IL4 genes. While
there was only modest evidence for association with single SNPs in the Hutterite and European
American samples (P < 0.05), there were highly significant associations in European Americans
between asthma and haplotypes comprised of SNPs in the IL4 gene (P < 0.001), including a SNP in
a conserved non-coding element. Furthermore, variation in the IL13 gene was strongly associated
with total IgE (P = 0.00022) and allergic sensitization to mold allergens (P = 0.00076) in the
Hutterites, and more modestly associated with sensitization to molds in the European Americans
and African Americans (P < 0.01).

Conclusion: These results indicate that there is overall little variation in the conserved non-coding
elements on 5q31, but variation in IL4 and IL13, including possibly one SNP in a conserved element,
influence asthma and atopic phenotypes in diverse populations.

Background
Comparison of human DNA sequences with those of
other mammalian species is a powerful method for iden-
tifying functionally important sequence elements in the

human genome because sequences with function tend to
be evolutionarily conserved whereas those without func-
tion tend to accumulate variation over time. In fact, ~50%
of the DNA sequences that are evolutionarily conserved
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between humans and mice lie outside of coding
sequences of known genes [1]. Some of these conserved
non-coding sequences have been shown to be long-range
transcriptional regulatory elements participating in the
temporal and tissue-specific expression patterns of genes
[2,3].

Previous comparison of a 1 Mb region on human chro-
mosome 5q31, which includes the cytokine genes encod-
ing the T-helper 2 (Th2) cytokines, interleukin (IL)-4, IL-

5, and IL-13, with the syntenic murine segment identified
highly conserved non-coding sequences [4]. Examination
of these conserved non-coding sequences in five addi-
tional mammalian species demonstrated that these ele-
ments are frequently conserved in all mammals. The
longest conserved non-coding sequence, called CNS-1, is
located between the IL4 and IL13 genes and showed a
high degree of conservation across species [4]. Functional
evaluation of CNS-1 in mutant mice revealed its role in
the control of the global expression of IL4, IL5 and IL13,

VISTA plot [24] displaying evolutionarily conserved sequences identified by the comparison of ~48 kb of human 5q31 DNA encoding the IL4, IL13 and KIF3A genes with murine sequences (BAC clone AF276990)Figure 1
VISTA plot [24] displaying evolutionarily conserved sequences identified by the comparison of ~48 kb of human 5q31 DNA 
encoding the IL4, IL13 and KIF3A genes with murine sequences (BAC clone AF276990). On the horizontal axis, conserved 
sequences are plotted in relation to their position in the human reference sequence; kb distances are shown under the hori-
zontal bar. The height of the peaks on the vertical axis indicates the level of conservation in percent identity between the 
human reference sequence and the murine sequences. Conserved sequences (>100 bp and >70% identity) defined as coding 
exons (dark blue), untranslated exons (light blue) and non-coding (red) are shown. The exons in each of three genes are shown 
as rectangle boxes; only the 3' end (exons 9 through 16) of KIF3A is shown. Six conserved non-coding elements were examined 
in this study (CNE-A -- CNE-F). The SNPs identified or genotyped in this study and their approximate locations are shown. 
CNE-B corresponds to CNS-1 and CNE-F corresponds to CNS-2 described by Loots et al. [4].
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suggesting that CNS-1 acts as a coordinate regulator of
these three genes [4,5].

This interval on human 5q31 is particularly intriguing
because in addition to housing a cluster of genes encoding
many Th2 cytokines, linkage to this region has been dem-
onstrated with asthma-related phenotypes in at least six
different populations [6-11]. Moreover, variation in the
promoter, -589C/T (also referred to as -590C/T) [12],
intron 2, +3017G/T [13], and 5'-untranslated region
(UTR), +33C/T [14], of the IL4 gene and in the promoter,
-1112C/T (also referred to as -1055C/T) [15], and coding
region, Arg130Gln (also referred to as Arg110Gln)
[16,17], of the IL13 gene have been associated with
asthma and atopic phenotypes in many studies (reviewed
in ref[18]. However, the specific variation that underlies
the linkages described above has not been identified
(reviewed in ref. [19].

It is likely, therefore, that additional variation in this inter-
val contributes to susceptibility to both asthma and atopic
phenotypes. In the present study, we screened six non-
coding elements on 5q31 that are evolutionarily con-
served between the human and murine genomes and are
thus possible regulatory elements. We studied 10 poly-
morphisms across this region, including two within and
two flanking conserved non-coding elements, and evalu-
ated their relationship to asthma and atopy in members of
a large Hutterite pedigree and in well-defined African
American and European American patient populations.

Methods
Sample composition
Conserved non-coding elements (Figure 1) were screened
for SNPs in DNA from 10 African American and 10 Euro-
pean American unrelated controls, and from 10 individu-
als who are members of a founder population, the
Hutterites. The 10 Hutterites were selected to represent
distant branches of their pedigree but without regard to
disease status.

Associations with asthma and atopy were evaluated in a
large Hutterite pedigree [9] and in outbred individuals
ascertained in Chicago. Six hundred thirty eight Hutterites
were evaluated for asthma and atopy, as previously
described [9]; 71 had a diagnosis of asthma, 156 were
bronchial hyperresponsive to methacholine, and 311
were atopic. The Chicago samples included 205 African
Americans and 126 European Americans with asthma and
388 control subjects with a negative personal and family
history of asthma (183 African Americans and 205 Euro-
pean Americans). Subjects included in this study reported
having had at least three grandparents who were either of
African American or European ancestry. Given the allele
frequencies observed in these samples (Table 4), we had
80% power to detect a relative risk of ≥ 1.7 in the African
Americans and ≥ 2.2 in the European Americans [20].

Evaluation of phenotypes
The Hutterites were evaluated for asthma and atopy using
previously described protocols [9]. Exposure to cigarette

Table 1: Distribution of SNPs identified in screening sets by ethnic group. The numbers show how many individuals in each group of 10 
with the minor allele. AA = African American, EA = European American, HT = Hutterites.

CNE Location in Bac clone 
AC004039.1

SNP Location in Bac clone 
AC004039.1

Population

AA EA HT

CNE-A 48566–48741 - - - - -
SNP1-C/T 43038 3 0 0

CNE-B^ 42346–42674 - - - - -
CNE-C 32694–33033 SNP2-C/T 32711 6 3 3

SNP3-C/T 31971 1 0 0
SNP4-G/A 31695 1 3 3

CNE-D 31406–31590 - - - - -
SNP5-T/C 21794 1 0 0

CNE-E 21595–21737 - - - - -
SNP6-C/T 21432 4 6 1
SNP7-G/A 21425 4 6 1

CNE-F* 17615–17863 SNP8-G/C 17713 2 4 1

*Corresponds to CNS-2 [4]
^Corresponds to CNS-1 [4]
Page 3 of 12
(page number not for citation purposes)



Respiratory Research 2005, 6:145 http://respiratory-research.com/content/6/1/145
smoke among the Hutterites was rare. The 331 unrelated
asthma cases were recruited in Chicago as part of the Col-
laborative Study on the Genetics of Asthma (CSGA) and
met the same diagnostic critieria as that used for the Hut-
terites [21,22]. Subjects with a history of cigarette smok-
ing (>3 pack-year equivalent) were excluded from these
studies. Atopy was defined by skin prick test. No clinical
testing was performed on the control subjects. These pro-
tocols were approved by The University of Chicago Insti-
tutional Review Board; written consent was obtained from
all subjects.

Identification of conserved sequences
An ~40 kb interval on human 5q31 was compared to the
syntenic region in the mouse using AVID alignment pro-
grams [23] and visualized as a VISTA plot [24]. Conserved
non-coding sequences were defined as having every con-
tiguous subsegment of length 100 bp to be ≥ 70% identi-
cal to its paired sequence. These regions differ slightly
from the earlier study [4] because in that study the CNE
calculation was made using PIPMaker and here we used
VISTA, which was developed after the Loots study.

Identification of polymorphisms
Amplified PCR products that included the conserved non-
coding elements (Additional File, Table 1) were screened
for polymorphisms by denaturing high performance liq-
uid chromatography (DHPLC) [25], which detects nearly
100% of mutations in fragments of 600 bp or less [26-29].
PCR products with variant DHPLC patterns were
sequenced; the complement of human BAC clone
AC004039.1 was used as the reference sequence for iden-
tifying SNPs.

Genotyping
The genotyping methods used in this study are described
in Additional File Table 2. In addition to four SNPs in or
flanking conserved sequences, we genotyped six known

SNPS in the IL4 and IL13 genes to evaluate LD patterns
between these genes and the CNEs and evaluate the rela-
tive magnitude of their effects. These SNPs were IL13_-
1112C/T [15], IL13_+1923 [17], IL13_Arg130Gln (A/G)
[16,17], IL4_-589C/T [12], IL4_+3017 [13], and
IL4_+8374A/G (previously identified in our lab).

Statistical analysis
In the Hutterites, genotyping errors were detected using
PEDCHECK [30] and deviations from Hardy-Weinberg
equilibrium (HWE) were determined using an applica-
tion modified to allow for related individuals [31]. To test
for associations with SNPs and haplotypes, we used a
case-control test developed for large pedigrees, as previ-
ously described [32]. Haplotypes comprised of 10 SNPs
across the interval were constructed manually by the
direct observation of alleles segregating in families. Dur-
ing haplotype construction, missing genotypes were filled
in if they could be directly inferred from family data but
no inferences were made regarding the haplotype compo-
sition when there was more than one possible haplotype.
Two locus (pairwise) haplotypes were then generated
from the larger 10 SNP haplotypes. We corrected for mul-
tiple comparisons using a Bonferonni correction for 4
SNPs and 6 pairwise haplotypes (see Results), and we con-
sidered significant P-values to be <0.0125 (0.05/4) and
<0.00833 (0.05/6), respectively.

Deviations from HWE and differences in allele and geno-
type frequencies between outbred cases and controls were
examined using the program FINETTI [33]. Estimation of
haplotype frequencies and testing for associations
between cases and controls were conducted using the pro-
gram FAMHAP [34]; 1,000 permutations were used to
assess significance. If empiric P-values were <0.001,
10,000 permutations were performed. We used the Bon-
feronni correction for multiple comparisons (10 SNPs, P
< 0.005; 45 pairwise comparisons, P < 0.0011). This is a

Table 2: 10-SNP haplotype frequencies in the Hutterites. Haplotypes were constructed manually (see Methods). Only individuals with 
complete haplotype information for both chromosomes are included (N = 1168 chromosomes). SNPs in the IL13 gene that are 
associated with IgE and +SPT in the Hutterites are in bold font.

IL13 IL4 Intergenic Region

Haplotype Frequency -1112C/T +1923C/T Arg130Gln (G→ A) -589C/T SNP2C/T SNP4G/A +3017G/T +8374A/G SNP7A/G SNP8C/G

1 0.660 C C G C C G G A A G
2 0.070 T C G C C G G A A G
3 0.008 C T A C C G G A A G
4 0.021 T T A C C G G A A G
5 0.021 C C G C C G T A G C
6 0.034 T T A C C G T A G C
7 0.019 C T A C C G T A G C
8 0.068 C C G T T A T G G C
9 0.098 T T A T T A T G G C
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conservative correction because these SNPs are not truly
independent; some occur in the same gene and some are
in LD. On the other hand, we did not correct for the
number of phenotypes examined because these are also
highly correlated. Within each ethnic group we compared
the asthmatic and atopic cases to the non-asthmatic con-
trols.

Linkage disequilibrium
LD plots were generated in the Chicago samples using
publicly available software [35].

Results
SNP discovery
Six conserved non-coding sequences were identified in
the interval between KIF3A and IL13 on human chromo-
some 5q31 (Figure 1). Of note is that none of the exons in
either IL4 or IL13 are conserved between human and
mouse, or between human and dog [36]. This is quite
unusual (see for comparison, the pattern in KIF3A) and
suggests possible divergence of function or accelerated

rates of evolution of the human IL-4 and IL-13 proteins
between humans and mice/dogs.

Eight SNPs, referred to as SNP1-SNP8, were identified
within or flanking the six conserved elements (Table 1).
One SNP (SNP2) in CNE-C was identical to a previously
reported SNP, +33C/T [14], and one SNP (SNP8) was in
CNE-F. Six additional SNPs were identified in the
sequences flanking CNE-B (SNP1), CNE-D (SNP3, SNP4),
and CNE-E (SNP5, SNP6, SNP7). No variation was
detected in CNE-B, which corresponds to CNS-1 in the
Loots study and was previously shown to coordinately
regulate IL4, IL5 and IL13 [4,5,37]. CNS-F, which corre-
sponds to CNS-2 in the Loots study, harbored one variant
(SNP8). We note that SNP4 resides within a conserved
element in the IL4 gene that was identified by Dubchak
and colleagues using human-dog sequence comparisons
[36]. Furthermore, other than one rare SNP in Chinese
(rs17772853; minor allele frequency 0.01), there is no
additional variation in these regions reported in dbSNP
[38] or in two previous studies of this region [39,40], sug-

Pairwise LD plots (r2) for cases (lower half) and controls (upper half) in a) African Americans and b) European AmericansFigure 2
Pairwise LD plots (r2) for cases (lower half) and controls (upper half) in a) African Americans and b) European Americans.
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gesting that we identified all common variation in these
conserved elements.

A description of the eight SNPs and their distribution
among the 30 individuals in the screening sample is
shown in Table 1. Three SNPs (SNP1, SNP3 and SNP5)
were present only in the African American sample. The
remaining five SNPs (SNP2, SNP4, SNP6, SNP7 and
SNP8) were present in all three groups. SNP6 and SNP7
were the only variants that appeared to be in perfect LD in
all three screening samples. Because so few SNPs were dis-
covered in the conserved non-coding elements and
because one of the SNPs (SNP7) fell within a conserved
element defined using different criteria in another study
[40], we genotyped SNP2, SNP4, SNP7 and SNP8, in addi-
tion to three known variants each in IL4 and IL13.

Patterns of linkage disequilibrium
Nine haplotypes, comprised of 10 SNPs, were present in
the Hutterites (Table 2). Three groups of SNPs were in per-
fect LD in this founder population: +1923C/T and
Arg130Gln in the IL13 gene; -589C/T, SNP2C/T, SNP4G/
A, and +8374A/G in the IL4 gene; and +3017G/T in the
IL4 gene with intergenic SNP7A/G flanking CNE-E and
SNP8G/C in CNE-F. For the remaining analyses in the
Hutterites, therefore, we used only one SNP from each of
these three LD groups, selecting the one with the most
complete genotype information (+1923C/T, SNP2C/T,
and +3017G/T), and one SNP that was not in perfect LD
with any other SNP (-1112C/T).

The patterns of pairwise LD between the 10 SNPs in the
outbred samples are shown in Figures 2a (African Ameri-
cans) and 2b (European Americans). In both control sam-
ples there was little long range LD (r2 ≤ 0.30) between
SNPs in the IL4 and IL13 genes and relatively strong LD
among SNPs within and in the 3' flanking region of the
IL4 gene, similar to the pattern in the Hutterites (Table 2).
The LD pattern among the African American cases and
controls looked similar. However, among the European
Americans, there was more LD between the IL4_-589 pro-

moter SNP and other variants in the IL4 gene in the cases
compared with controls. In the controls there was surpris-
ingly little LD between IL4_-589 and other IL4 SNPs.
Because there were few pairs of SNPs that showed perfect
LD in the outbred samples and they differed between
cases and controls, we analyzed all SNPs in the outbred
samples.

SNP studies in the hutterites
The minor allele frequencies of SNPs in the Hutterites
were: IL13_-1112T, 0.208; IL13_+1923T, 0.173; SNP2-T,
0.156; and IL4_+3017T, 0.226. Genotype proportions
were in HWE at all loci (P > 0.01). In the single SNP anal-
yses, there were modest associations between IL13_-
1112T and asthma (P = 0.025), BHR (P = 0.028), and
allergic sensitization to CR allergens (P = 0.032); and
between SNP2-T with allergic sensitization to molds (P =
0.034). None of these were significant after correcting for
multiple comparisons. However, highly significant associ-
ations were present between variation in the IL13 gene
and sensitization to mold allergens (lL13_-1112T, P =
0.00067; IL13_+1923T, P = 0.0074), which remained sig-
nificant after correcting for multiple comparisons. Moreo-
ver, only SNPs in IL13 were associated with total serum
IgE, with a highly significant association between high IgE
and the IL13_+1923T allele (P = 0.00022) and a more
modest association with the lL13_-1112T allele (P =
0.014). Adjusting for allergic sensitization to molds in the
analysis reduced the significance of the IL13_+1923T
allele, but did not eliminate the association (P = 0.0085).

To determine if susceptibility to asthma or atopic pheno-
types is determined by combinations of SNPs across this
interval or by specific haplotypes, we examined pairwise
combinations of the four SNPs (Table 3). Highly signifi-
cant associations (P < 0.001) with +SPT to mold allergens
were observed with haplotypes comprised of either SNP
in the IL13 gene (-1112C/T or +1923C/T) and SNP2 in the
IL4 gene. Less significant associations were observed with
these same pairwise combinations and allergic sensitiza-
tion to cockroach allergen. However, in all of these analy-

Table 3: Results of 2-SNP haplotype analyses in the Hutterites. In this sample, IL13_+1923C/T is in perfect LD (r2 = 1) with 
IL13_Arg130Gln (G→ A); SNP2C/Tis in perfect LD with IL4_-589C/T, SNP4G/A, and IL4_+8374A/G; IL4_+3017G/T is in perfect LD with 
SNP7A/G and SNP8C/G (Table 2). Only haplotypes and phenotypes with at least one P-value < 0.05 are shown. The number of cases in 
each analysis is shown in parentheses. P-values that were significant after adjusting for multiple comparisons are in bold font.

Specific IgE Response (+SPT) to

Locus 1 Locus 2 Mold (N = 75) Cockroach (N = 148)

IL13_--1112 IL13_+1923 0.0063 0.042
SNP2 0.00020 0.0022

IL4_+3017 0.033 0.0074
IL13_+1923 SNP2 0.00033 0.0017

IL4_+3017 0.017 0.042
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ses, the haplotypes carrying the common alleles at the
IL13 SNPs (-1112C and +1923C) were underrepresented
in the cases compared with controls, and the two haplo-
types carrying the minor alleles at the IL13 SNPs (-1112T
and +1923T) were overrepresented in the cases compared
with controls, regardless of the allele at SNP2 (i.e., C or T).
Therefore, the results of the haplotype analyses suggest
that the IL13 SNPs are primarily associated with allergic
sensitization to mold and cockroach allergens, and that

variation in the IL4 gene is not contributing to this associ-
ation in the Hutterites. None of the haplotypes were asso-
ciated with asthma, BHR, or the other atopic phenotypes.
Thus, in the Hutterites, variation in the IL13 gene is
strongly associated with total serum IgE and allergic sensi-
tization to mold allergens, and to a lesser extent to cock-
roach allergens, but not to any of the other phenotypes.
None of the SNPs in or near conserved non-coding
sequences contributed to susceptibility in the Hutterites.

Table 4: Allele and genotype frequencies in case and control samples. The number of individuals in each sample is shown in 
parentheses. Not all individuals in the samples were genotyped for all SNPs. Only SNP2-T showed a modest association with allergic 
sensitization to mold allergens in European Americans (Puncorrected = 0.04).

European Americans African Americans

SNP All Asthma +SPT Any 
Allergen

+SPT Molds Controls All Asthma +SPT Any 
Allergen

+SPT Molds Controls

(N = 126) (N = 82) (N = 46) (N = 205) (N = 205) (N = 160) (N = 68) (N = 183)
IL13_--1112T 0.259 0.264 0.275 0.213 0.418 0.409 0.375 0.407

CC 0.576 0.586 0.550 0.613 0.337 0.336 0.391 0.360
CT 0.330 0.300 0.350 0.348 0.489 0.510 0.469 0.467
TT 0.094 0.114 0.100 0.039 0.174 0.154 0.140 0.173

IL13_+1923T 0.245 0.282 0.238 0.227 0.666 0.664 0.672 0.660
CC 0.575 0.535 0.575 0.584 0.087 0.094 0.094 0.133
CT 0.359 0.366 0.375 0.376 0.495 0.483 0.469 0.413
TT 0.066 0.099 0.050 0.040 0.418 0.423 0.437 0.454

IL13_Gln (T) 0.221 0.254 0.272 0.202 0.192 0.191 0.161 0.169
Arg/Arg (C/C) 0.618 0.577 0.625 0.620 0.643 0.639 0.695 0.686
Arg/Gln (C/T) 0.324 0.338 0.325 0.355 0.330 0.340 0.288 0.290
Gln/Gln (T/T) 0.058 0.085 0.05 0.025 0.027 0.021 0.077 0.024

IL4_--589T 0.193 0.197 0.163 0.163 0.677 0.678 0.687 0.643
CC 0.670 0.662 0.700 0.702 0.115 0.128 0.125 0.133
CT 0.274 0.282 0.275 0.270 0.397 0.389 0.375 0.447
TT 0.056 0.056 0.025 0.028 0.478 0.483 0.5 0.420

CNE-C_SNP2-T 0.196 0.223 0.257 0.146 0.405 0.419 0.404 0.382
CC 0.667 0.600 0.541 0.730 0.333 0.316 0.333 0.382
CT 0.294 0.354 0.405 0.247 0.524 0.530 0.526 0.471
TT 0.049 0.046 0.054 0.023 0.143 0.154 0.141 0.147

SNP4-A 0.176 0.186 0.187 0.175 0.399 0.412 0.415 0.359
GG 0.692 0.661 0.656 0.675 0.340 0.323 0.321 0.415
GA 0.264 0.305 0.313 0.300 0.525 0.531 0.528 0.452
AA 0.044 0.034 0.031 0.025 0.135 0.146 0.151 0.132

IL4_+3017T 0.327 0.339 0.387 0.308 0.850 0.867 0.825 0.805
GG 0.490 0.452 0.382 0.478 0.045 0.061 0.067 0.051
TG 0.367 0.419 0.471 0.429 0.209 0.217 0.217 0.288
TT 0.143 0. 129 0.147 0.093 0.746 0. 727 0.716 0.661

IL4_+8374G 0.161 0.164 0.135 0.159 0.275 0.274 0.259 0.257
AA 0.708 0.687 0.730 0.703 0.526 0.533 0.554 0.541
AG 0.261 0.299 0.270 0.275 0.398 0.387 0.375 0.404
GG 0.031 0.014 0 0.022 0.076 0.080 0.071 0.055

SNP7-G 0.279 0.318 0.319 0.317 0.636 0.638 0.614 0.568
AA 0.548 0.485 0.472 0.458 0.156 0.152 0.123 0.213
AG 0.347 0.394 0.417 0.450 0.416 0.421 0.526 0.460
GG 0.105 0.121 0.111 0.092 0.428 0.427 0.351 0.327

CNE-F_SNP8-C 0.323 0.339 0.386 0.293 0.618 0.623 0.598 0.577
CC 0.131 0.113 0.143 0.081 0.393 0.401 0.328 0.335
CG 0.384 0.452 0.486 0.422 0.450 0.444 0.541 0.484
GG 0.485 0.435 0.371 0.497 0.157 0.156 0.131 0.181
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Studies in outbred case-control samples
Allele and genotype frequencies of the 10 SNPs in 337
subjects with asthma and 388 non-asthmatic controls are
shown in Table 4 by ethnicity and phenotype. Genotypes
were in HWE in the African American and European
American control samples (P > 0.01). In the single SNP
analyses, there was only a modest association between
SNP2-T and allergic sensitization to mold allergens in
European Americans (P = 0.04), which was not significant
after adjusting for multiple comparisons.

However, pairwise combinations of SNPs in the IL4 gene
were significantly associated with asthma and allergic sen-
sitization, primarily in the European American sample
(Table 5). In that sample, nearly all of the haplotypes that
were associated with asthma and the one most strongly
associated with atopy included the IL4_-589T allele and
other SNPs in the IL4 gene (SNP2-T, SNP4-A,
IL4_+3017T, IL4_+8374G, SNP8-C). A haplotype com-
prised of the IL13_+1923T and IL13_130Gln alleles was
also strongly associated with asthma in this sample. All
but one of the seven associations remained significant
after adjusting for multiple comparisons. In the African
Americans, the frequencies of the IL13_-1112T/
IL13_+1923T and IL13_-1112T/IL4_+3017T haplotypes
were increased in cases with allergic sensitization to mold
(P = 0.009 and 0.005, respectively), although this was not
significant after correcting for multiple comparisons.

However, because some of the controls may have been
SPT+ to mold allergens, this is a conservative test. Similar
to the Hutterites, there were no associations with asthma
or SPT to any allergen or with combinations of SNPs in
the IL4 gene in the African Americans.

Discussion and conclusions
Cross-species comparisons are powerful tools for identify-
ing potential functional elements in non-coding DNA
[3,4,36,41-44]. However, it is unknown whether con-
served non-coding elements in the human genome har-
bor variation that contributes to inter-individual
differences in susceptibility to common diseases. To
address this question, we surveyed variation in six con-
served non-coding elements in the Th2 cytokine gene
cluster on chromosome 5q31 to determine whether such
variation, if it exists, is associated with susceptibility to
asthma-related phenotypes.

Only one of these conserved non-coding elements, CNS-
1 (CNE-B in our study), has been shown to have regula-
tory properties: the deletion of CNS-1 in transgenic mice
results in the reduction of human IL-4, IL-5 and IL-13 pro-
ducing cells [5,37]. Similar to our results, neither Noguchi
et al. [39] nor Banerjee et al. [40] found sequence varia-
tion in CNS-1 in 48 individuals of Japanese origin [39] or
in 17 individuals of African origin and 23 individuals of
European origin [40]. These results combined with ours

Table 5: Results of 2-SNP haplotype analysis in a) European Americans cases and controls, and b) African American cases and controls. 
Empiric P-values are based on 1,000 or 10,000 permutations; only haplotypes with at least one P-value < 0.05 are shown. P-values that 
were significant after adjusting for multiple (45) comparisons are in bold font; ns, not significant (P ≥ 0.05).

Locus 1 Locus 2 Asthma vs. Controls +SPT to Any Allergen vs. 
Controls

+SPT Molds vs. Controls

a) European Americans
IL13_--1112 IL4_+3017 ns ns 0.0128
IL13_+1923 IL13_130 <10-4 0.0011 0.0121
IL13_130 SNP2 ns 0.0295 0.0101
IL4_--589 SNP2 <10-4 0.0004 0.0026

SNP4 <10-4 <10-4 0.0005
IL4_+3017 0.0003 0.0030 0.0269
IL4_+8374 <10-4 <10-4 0.0002

SNP7 0.0021 0.0279 0.0335
SNP8 0.0002 0.0072 0.0155

SNP2 SNP4 ns 0.0240 0.0042
IL4_+3017 ns 0.0131 <10-4

IL4_+8374 ns 0.0252 0.0054
SNP7 ns ns 0.0019
SNP8 ns ns 0.0128

IL4_+3017 SNP7 ns ns 0.014
SNP7 SNP8 ns ns 0.014

b) African Americans
IL13_--1112 IL13_+1923 ns ns 0.009

IL4_+3017 0.034 ns 0.005
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indicate that CNS-1 is highly conserved among humans
and is under strong selective constraints, consistent with
its role as a cis-acting regulatory element.

CNS-2 (CNE-F in our study) was also among the most
conserved non-coding elements identified in a compari-
son of human 5q31 DNA with conserved syntenic mouse
sequences, second only to CNS-1 [4]. We found one SNP
in this element (SNP8), similar to the study of Banerjee
[40]. However, this variant was not associated with
asthma or atopy in the Hutterites or outbred case-control
samples. However, we note that SNP8 in CNE-F (CNS-2)
is in very strong LD with IL4_+3017, which was associated
with IgE levels in a previous study in Caucasian subjects
[13]. We did not find any variation in CNE-E, although
one rare and two common SNPs (SNP5 and SNP6, SNP7,
respectively) were identified just outside the boundaries
of this element. SNP7 was in a conserved element defined
by Banerjee, but this SNP was also not associated with
asthma or atopy in our study.

Only SNP2 (+33C/T) in CNE-C was associated with
asthma and atopy, and only when considered in combi-
nation with other SNPs in the IL4 gene. This SNP was pre-
viously associated with IgE levels in Japanese (P < 0.05)
[14]. However, our results indicate that either combina-
tions of SNPs in and near the IL4 gene act synergistically
to influence susceptibility, or other variation on a haplo-
type that includes the -589-T, SNP2-T, SNP4-G, +3017-T,
+8374-G, and SNP8-C alleles influences susceptibility. In
either case, the variation in IL4 that influences asthma and
atopy resides in non-coding regions. Similarly, the -589-T
and +3017-T alleles, which have been associated with
asthma and/or atopy in other studies [12,13,45-50], do
not by themselves or in combination with each other
account for the associations observed in this study.

Lastly, we identified an association between variation in
the IL13 gene and allergic sensitization to mold allergens
in the Hutterites, which was also present, albeit to a lesser
degree, in two outbred populations. Associations of other
atopic phenotypes with two functional polymorphisms
[15,51] in IL13 have been reported previously [15-17,52-
55], but this is the first report of a specific association with
+SPT to molds. Haplotypes comprised of SNPs in the IL13
gene were also associated with +SPT to mold allergens in
the African American and European American samples,
suggesting that either these SNPs interact to confer risk or
additional variation in this gene also contributes. In addi-
tion, the +1923T and/or 130Gln alleles were also very
strongly associated with total serum IgE (as a quantitative
trait) in the Hutterites. The association with IgE was only
partially accounted for by mold sensitization, indicating a
role for this gene in IgE mediated immune responses, con-
sistent with studies in other populations [16,17,54,55].

The fact that we identified associations between variation
in the IL13 gene and atopy in all three populations (and
with asthma in the European Americans), but between
variation in the IL4 gene and asthma only in the European
Americans, reflects the complexity of genetic susceptibility
to asthma and atopy. It is notable that allele frequencies
at SNPs across this interval differed considerably between
the African American and European American samples
(Table 4). For example, the minor allele in the European
American sample was the more common (major) allele in
the African American sample at five loci (IL13_+1923,
IL4_-589, IL4_+3017, SNP7, CNE-F_SNP8). At nearly all
other loci, the allele frequencies were more even (i.e.,
closer to 50%) in the African American than in the Euro-
pean American sample. Furthermore, although the overall
pattern of LD was similar in the African American and
European American control subjects (Figure 2), there was
more LD between the -589C/T alleles with alleles at other
IL4 SNPs in the European American cases compared with
controls. The latter is the expected pattern at a disease
locus [56], and is consistent with the highly significant
associations that we observed between IL4 haplotypes and
asthma in the European Americans. These differences in
allele frequencies and LD patterns may have reduced our
power detect associations in the African American sample,
particularly with respect to untyped SNPs that might be in
LD with IL4_-589. Alternatively, the observation that no
one SNP or combination of SNPs is penetrant in all pop-
ulations may reflect the modifying effects of background
genes or environmental exposures on risk [57, 58]. This
possibility is supported by a genome-wide linkage study
of asthma in which different linkage signals were detected
in Caucasian and African American families, despite the
fact that both groups were evaluated using identical pro-
tocols and ascertained at the same centers [10,21]. These
results highlight the challenges in elucidating the genetic
architecture of complex diseases, which is likely to differ
among individuals with different environmental expo-
sures and different genetic backgrounds, some of which is
captured by racial/ethnic ancestry.

In summary, these data indicate that the conserved non-
coding elements on human chromosome 5q31 in the
interval including the IL13 and IL4 genes do not contain
variation that influences disease risk among individuals.
SNP2 (+33C/T), in a conserved element (CNE-C) in the
IL4 gene, may influence susceptibility in combination
with other variation in IL4, or may merely be in LD with
other variation in the gene that influences susceptibility to
asthma and atopic phenotypes. Additional studies are
required to differentiate between these alternatives, to
fully characterize the functional variants in this region
that influence disease risk, and to provide a model for
understanding the role of non-coding variation on gene
function and disease susceptibility.
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