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Abstract

Fueled by the promise of regenerative medicine, currently there is unprecedented interest in stem
cells. Furthermore, there have been revolutionary, but somewhat controversial, advances in our
understanding of stem cell biology. Stem cells likely play key roles in the repair of diverse lung
injuries. However, due to very low rates of cellular proliferation in vivo in the normal steady state,
cellular and architectural complexity of the respiratory tract, and the lack of an intensive research
effort, lung stem cells remain poorly understood compared to those in other major organ systems.
In the present review, we concisely explore the conceptual framework of stem cell biology and
recent advances pertinent to the lungs. We illustrate lung diseases in which manipulation of stem
cells may be physiologically significant and highlight the challenges facing stem cell-related therapy

in the lung.

Introduction

According to Greek mythology, the immortal Prometheus
stole fire from the Gods as a gift for humankind. As pun-
ishment, he was shackled to a rock, whereupon each day
for 30,000 years an eagle consumed as much of his liver as
would regenerate. There is some debate whether the eagle
ate his liver or heart, but what if the bird had a taste for
lung? And what if Prometheus was a mere mortal?

Analogous to Prometheus and the eagle, the ambient air-
exposed lung is subject to an array of potentially damag-
ing agents, including chemical oxidants and proteolytic
enzymes. Presumably, daily oxidant and protease wear
and tear on structural components such as elastin and col-
lagen contributes to inevitable age-related declines in pul-

monary function in normal individuals [1,2]. Acute and
chronic lung disease, or its treatment with oxygen and
positive pressure ventilation, may further damage lung tis-
sue in excess of the capacity for orderly repair, resulting in
characteristic pathologic changes including tissue destruc-
tion or fibrotic scarring [3-5]. But what determines the
lungs' capacity for repair? Certainly, one factor must be
the ability of stem cells to proliferate and differentiate to
replace damaged cells and tissues. As discussed later in
this review, the traditional view is that, during develop-
ment, self-renewing tissues are imbued with resident, tis-
sue-specific stem cells, so-called adult somatic stem cells.
However, recent but highly controversial evidence sug-
gests that stem cells from one type of tissue may generate
cells typical of other organs. In this fashion, circulating
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Cell lineage determination during embryogenesis and generation of pluripotent embryonic cells. The three primary germ layers form
during normal development (path |). Embryonic stem cells from the inner cell mass (path 2) or embryonic germ cells from the
gonadal ridge (path 3) can be cultured and manipulated to generate cells of all three lineages.

cells derived from bone marrow may augment resident
stem cells, and we comprehensively review such data from
lung. Finally, there is great hope that embryonic stem
cells, embryonic germ cells, or even adult somatic stem
cells can be engineered as an unlimited source of cells to
enhance organ-specific repair or replace lost tissues.
Below, we concisely review stem cell biology, focusing on
recent findings relevant to the lungs. Diseases in which
alterations in stem cells contribute to lung dysfunction are
discussed, as are the challenges facing the nascent field of
pulmonary regenerative medicine.

Embryonic and adult (somatic) stem cells

For links to more in-depth information on general princi-
ples in stem cell biology, a comprehensive glossary, and
the latest updates in this quick moving field, the reader is
referred to the International Society for Stem Cell Biology
http://www.isscr.org. During embryonic development,
the inner cell mass of the blastocyst forms three primary
germ layers, which generate all fetal tissue lineages
(reviewed in [6], illustrated in Figure 1, path 1). Embry-
onic stem cells (derived from the blastocyst inner cell
mass), or embryonic germ cells (derived from the gonadal
ridge), when cultured on embryonic mouse fibroblast
feeder cell layers in the presence of a differentiation-sup-
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Figure 2

Traditional view of cell lineage in adult renewing tissues. Organ-
specific (somatic) stem cells generate characteristic cell types
through a linear set of commitment and differentiation steps.
Arrow thickness represents self-renewal potential.

pressing cytokine (leukemia inhibitory factor), proliferate
indefinitely and remain pluripotent. Manipulation of cul-
ture conditions can coax the cells to undergo
differentiation characteristic of many tissue types (Figure
1, paths 2 and 3). Theoretically, pluripotent embryonic
cells can serve as an unlimited resource for therapeutic
applications [7,8].

General principles of tissue renewal by adult stem cells
have been reviewed recently [9] and can be summarized
as follows. The traditional view of cell lineages is that
adult somatic stem cells maintain cell populations in
adult tissues. The adult lung falls into the category in
which cell proliferation is very low in the normal steady-
state but can be induced dramatically by injury (see
[10,11] for recent reviews of lung stem cells). The condi-
tional nature of lung cell proliferation complicates the
search for lung stem cells. Cell lineages are much better
understood in continuously proliferating tissues such as
the gut, skin and hematopoietic system (reviewed in [12-
14], respectively). The long-standing view, developed
from these other organs, is that stem cells reside in well-
protected, innervated, and vascularized niches that pro-
vide cues regulating cell fate decisions such as prolifera-
tion, migration, and differentiation [15]. Adult stem cells
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are capable of abundant self-renewal and can also gener-
ate the specific cell lineages within the tissue compart-
ment (Figure 2). Proportional to tissue needs, stem cells
may undergo asymmetric cell division, in which they gen-
erate one stem cell and a committed progenitor. The
capacity for self-renewal decreases progressively as com-
mitted progenitors differentiate. The wisdom of the body
is to conserve stem cells. They cycle infrequently and the
majority of cell replacement is accomplished by commit-
ted progenitors within the so-called transiently amplify-
ing compartment. Eventually, individual cells become
incapable of further cell division. In tissues, there are spe-
cific temporal and spatial hierarchic relationships
between stem cells in their niches and their differentiated
progeny. Within this axis, cell proliferation, migration,
differentiation, function, death, and removal are tightly
regulated to maintain tissue homeostasis.

Cell compartments in the lung and functional
integration

In the architecturally complex lung, cells of multiple ger-
minal lineages interact both during morphogenesis and to
maintain adult lung structure. Even within derivatives of a
single germ layer, cells become subdivided into separate
cell lineage "zones". For example, the endoderm generates
least four distinct epithelial regions, each with a different
cellular composition (Figure 3). Additional cell types,
including airway smooth muscle, fibroblasts, and the vas-
culature, are derived from mesoderm. Airway and alveolar
architecture, and in turn, function, result from interaction
among epithelium, smooth muscle, fibroblasts, and vas-
cular cells, all within an elaborate structural matrix of con-
nective tissue. The complexity of even this oversimplified
view, which omits pulmonary neuroepithelial cells and
bodies, innervation, and classical hematopoietically-
derived cells such as dendritic cells, mast cells, and macro-
phages, has hindered identification of lung stem cells and
patterns of cell migration during tissue renewal. Neverthe-
less, the prevailing view is that airway basal and Clara cells
and alveolar type II cells serve as epithelial progenitors
[11,16-19]. Cell lineages in the mesodermal compart-
ments remain less well understood.

Stem cell plasticity and the lung

Recent studies challenge the view that tissues are main-
tained solely by organ-specific stem cells. There is evi-
dence that adult stem cells from a variety of sources can
generate not only their own lineages, but those of other
tissues, sometimes crossing barriers of embryonic deriva-
tion previously thought impenetrable [20,21,8]. There are
a few controversial reports that adult stem cells from out-
side the bone marrow may reconstitute the hematopoietic
system, but most of the evidence flows in the other direc-
tion- namely, that cells from the bone marrow can gener-
ate diverse non-hematopoietic cell types. Both
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Figure 3

Stem cell compartments in the lungs. The endoderm-derived epithelium can be subdivided into at least 4 types whereas smooth
muscle, fibroblasts, and vascular cells are derived from mesoderm. The coordinated interaction of multiple cell types, including
alveolar epithelium, interstitial fibroblasts, myofibroblasts and pulmonary endothelium, is necessary to form alveolar septa.
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experimental studies in animals and human clinical stud-
ies, summarized in Table 1, provide evidence for, and
against, circulatory delivery of lung progenitor cells. While
bone marrow-derived cells, such as alveolar macrophages,
dendritic cells, mast cells, and lymphocytes, normally
migrate to the lung, the surprise in the recent literature is
that under certain circumstances circulating cells can
apparently generate lung resident cells, including epithe-
lial, endothelial, and myofibroblast cells. The technical
approach towards identification of these cells is often
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technically challenging and involves co-localization of a
donor cell marker, for example, the Y chromosome, in
sex-mismatched transplantation, or a genetically engi-
neered marker in mouse experiments, and proteins char-
acteristic of the differentiated cell type in the lung, for
example, keratin in epithelial cells or collagen in fibrob-
lasts. As discussed below, the results are highly variable
and often contradictory, depending on factors including
the starting cell population, the methods for marker
detection, and the amount of injury to the lung.

Table I: Evidence for, and against, circulating progenitor cell generation of non-hematopoietic lung cell types.

Study Type Disease or Model Tissue of Origin Lung Cell Type Formed / Frequency Method of Detection Ref.
Animal, in-vivo  BMT MSC Undefined mesenchymal cells / occasional PCR for collagen gene [30]
marker
Animal, in-vivo  Bleomycin fibrosis ~ MSC Type | pneumocytes / rare B galactosidase protein [23]
Animal, in-vivo  BMT HSC enrichment Type Il pneumocytes / up to 20%, Y chromosome FISH, [31]
bronchial epithelium / 4% surfactant B mRNA
Animal, in-vivo Radiation Whole bone marrow Type Il pneumocytes, bronchial Y chromosome FISH, [25]
pneumonitis epithelium / up to 20% of type Il cells surfactant B mRNA
Animal, in-vivo BMT Whole bone marrow/ Type Il pneumocytes / 1-7% EGFP, keratin immunostain,  [33]
EGFP retrovirus surfactant protein B FISH
Animal, in-vivo BMT and parabiotic HSC Hematopoietic chimerism but exceedingly EGFP [32]
animals rare lung cell types
Animal, in-vivo  Bleomycin fibrosis ~ MSC Type Il pneumocytes / ~1% Y chromosome FISH [22]
Animal, in-vivo Radiation fibrosis MSC or whole bone Fibroblasts / common EGFP, Y chromosome FISH,  [26]
marrow vimentin immunostain
Animal, in-vivo BMT Bone marrow, EGFP Fibroblasts, Type | pneumocyte / Flow cytometry [34]
labeled occasional to rare
Animal, in- Hypoxia-induced Circulating BM-derived c-kit positive cells in pulmonary artery Flow cytometry and [27]
vitro and in- pulmonary c-kit positive vessel wall; In hypoxia, circulating cells immunohistochemistry
vivo hypertension generate endothelial and smooth muscle
cells in-vitro
Animal, in- Ablative radiation GFP + fetal liver Alveolar epithelium and endothelium; Immunohistochemistry for [28]
vivo and elastase frequency not reported but increased by = CD45-, GFP* cells
induced G-CSF and retinoic acid
emphysema
Animal, in- Bleomycin fibrosis ~ Whole marrow GFP* GFP* type | collagen expressing Flow cytometry and [24]
vivo immunohistochemistry, RT-
PCR
Human, in- Heat shock in cell MSC and SAEC Cell fusion / common Immunostaining, microarray  [39]
vitro culture
Animal, in-vivo OVA-sensitized CD34 positive, collagen|  Myofibroblasts / ? CD34-positive, collagen |, a-  [29]
Human, in-vivo mouse model expressing fibrocytes Myofibroblasts / ? smooth muscle actin
Allergen — CD34 positive, collagen | CD34-positive, collagen |, a-
sensitized expressing fibrocytes smooth muscle actin
asthmatics
Human, in-vivo Human heart and Sex-mismatched donor No lung cell types of recipient origin X and Y chromosome FISH,  [36]
lung transplant lung or heart antibody stain for
hematopoeitic cells
Human, in-vivo Human lung Sex-mismatched donor Bronchial epithelium, type Il Y chromosome FISH, short  [35]
transplant lung pneumocytes, glands of recipient origin /  tandem repeat PCR
Human BMT Sex-mismatched donor 9 —24% Y chromosome FISH, short
bone marrow No lung cell types of donor origin tandem repeat PCR
Human, in-vivo Human BMT Sex-mismatched donor  Lung epithelium and endothelium of Xand Y chromosome FISH,  [38]
bone marrow donor origin / up to 43% keratin and PECAM
immunostain
Human, in-vivo Human BMT Sex-mismatched donor No nasal epithelium of donor origin Y chromosome FISH, [37]

bone marrow

cytokeratin immunostain

BMT = bone marrow transplant (with prior ablation), MSC = mesenchymal stem cells (bone marrow stromal cells, adherent bone marrow cells),

EGFP = enhanced green fluorescent protein, HSC = hematopoietic stem cells, FISH = fluoresence in situ hybridization, SAEC = small airway

epithelial cells
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Transplantation studies in mice can be performed using
whole donor bone marrow, the fraction that adheres in
culture, termed marrow stromal cells (MSC), or prepara-
tions enriched for hematopoietic stem cells (HSC). Whole
body irradiation, which may injure lung tissue, is typically
used to deplete the host bone marrow. Importantly, lung
injury apparently enhances engraftment into lung [22-
29]. Whole bone marrow, MSC, or HSC have all been
reported to reconstitute lung parenchymal cells. MSC
transplantation resulted in collagen I expressing donor
cells in the lung [30], and in the presence of bleomycin
injury, MSC reportedly generated type I [23] or type II
pneumocytes [22]. Transplantation with HSCs yielded up
to 20% donor-derived pneumocytes and 4% bronchial
epithelial cells [31]. However, other investigators have
identified only hematopoeitic chimerism by HSCs [32].
Whole bone marrow infusion generated type Il pneumo-
cytes [33], or fibroblasts and type I pneumocytes [34].
Radiation pneumonitis augmented whole bone marrow
generation of type II pneumocytes and bronchial epithe-
lial cells [25] or fibroblasts [26]. Bleomycin lung injury
enhanced formation of type I collagen-producing cells
[24] from whole bone marrow, whereas elastase-induced
emphysema stimulated formation of alveolar epithelium
and endothelium [28]. Lung injury alone, without bone
marrow transplantation, may promote stem cell migra-
tion. For example, in the ovalbumin model of asthma, cir-
culating fibrocytes were recruited into bronchial tissue
[29], and in a bovine model of hypoxic pulmonary hyper-
tension, cells capable of generating endothelial and
smooth muscle cells in vitro were found in the circulation
[27].

Sex-mismatched lung and bone marrow transplantation
in humans provides a natural model for analysis of donor
and recipient cell behavior. Bronchial epithelial and gland
cells and type Il pneumocytes of host origin were reported
in one study of lung allografts [35], but not another [36].
After bone marrow transplantation, epithelial cells of
donor origin were not detected in the nasal passages [37].
Similar to lung allografts, following bone marrow trans-
plantation, epithelium and endothelium of donor origin
were found in one study [38], but not another [35].

Many questions remain unanswered. The mechanism
whereby cells assume lung cell phenotypes remains uncer-
tain. Several studies have demonstrated that cell fusion
occurs both in vitro and in vivo, which likely explains why
some of the cells contain both donor and lung cell
markers [see [39] for a study of fusion of MSCs and lung
epithelium and [40,41] for recent reviews]. Alternatively,
cells may reprogram in the lung environment- a concept
termed "transdifferentiation", which is defined as the abil-
ity of a particular cell from one tissue type to differentiate
into a cell type characteristic of another tissue. It has been
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Evolving view of cell lineages in the lungs. The functional signifi-
cance of circulating cells towards lung cell maintenance or
tissue repair remains unknown, as does the precise mecha-
nism whereby circulating cells generate lung cell types.

suggested that many of the events previously attributed to
transdifferentiation may actually represent cell fusions,
particularly due to the influx of fusion-prone myeloid
cells into damaged tissues from the repopulated bone
marrow [40]. New, more stringent, criteria have been put
forth for demonstration of transdifferentiation [41]. Bone
marrow harbors a generalized pluripotent stem cell [42]
and the bone marrow cell responsible for lung engraft-
ment has not been identified with certainty. It is possible
that rare transdifferentiation events represent migration of
a pluripotent bone marrow cell type resembling an
embryonic stem or embryonic germ cell still harbored in
the adult bone marrow. It remains unknown whether
bone marrow cells must transit through an intermediate
compartment prior to lung colonization (Figure 4) or
whether circulating stem cells can be mobilized from
sources other than bone marrow. It is important to note
that bone marrow derived cells of typical hematopoietic
lineage, chimeric cells created by fusion, or lung cells gen-
erated by transdifferentiation may all play a role in lung
repair by promoting the local production of stem cells or
reparative function of lung-specific cell types. A compel-
ling study suggests that mesenchymal stem cells from ble-
omycin-resistant mice can mitigate the pro-fibrotic effects
of bleomycin in sensitive mice [22], while another study
suggests that bone marrow cells actively contribute to the
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Table 2: Major lung diseases potentially treatable by stem cell manipulation.

Disease Category
Compartment*

Injured, Depleted, or Deranged Cellular

Therapeutic Goals

Congenital lung hypoplasia

Chronic lung disease of prematurity
Pulmonary emphysema

Neonatal RDS

Adult RDS

Pulmonary fibrosis

Capillary endothelium,

Asthma Airway epithelium, Myofibroblasts, Airway
smooth muscle
Cystic fibrosis Airway epithelium

Bronchiolitis obliterans Airway epithelium

Lung cancer Epithelium

Alveolar epithelium, Interstitial fibroblast,

Alveolar epithelium, Capillary endothelium

Alveolar epithelium, Interstitial fibroblast

Generate alveolar septa
Restore complex three dimensional structure

Enhance surfactant production

Reinforce endothelial and epithelial barriers

Prevent alveolar epithelial loss

Inhibit fibroblast proliferation

Create an anti-inflammatory environment

Inhibit airway wall remodeling

Inhibit smooth muscle hypertrophy and hyperplasia
Deliver functional CFTR

Reinforce the epithelium against toxic, viral or
immunologic injury

Detection, monitoring or treatment based on molecular
regulation of stem cell proliferation and differentiation

RDS = respiratory distress syndrome, CFTR= cystic fibrosis transmembrane conductance regulator *Each cell type listed in this column is affected

in all of the specific conditions listed in the left hand column

formation of fibrotic tissue [24]. Mitigating or exacerbat-
ing roles for bone marrow derived cells in lung repair or
fibrosis are not mutually exclusive. The important con-
cepts of whether the lungs' capacity for repair is depend-
ent on circulating cells, and whether exogenously
delivered cells can enhance resistance to injury or pro-
mote healing, remain unanswered and controversial.

Lung "stem cell" diseases

Major lung diseases likely involving stem cells and the cel-
lular targets for stem cell therapy are summarized in Table
2. These may be broadly categorized whether they involve
stem cell deficiency, hyper-proliferation or possibly, a
combination of both. For example, impaired pulmonary
endothelial and/or epithelial barrier function may con-
tribute to the pathophysiology of adult respiratory distress
syndrome. Mobilization of endogenous endothelial or
epithelial stem/progenitor cells or delivery of adult
somatic stem cells, embryonic stem cells, or embryonic
germ cells may theoretically improve barrier function,
supporting the notion of treating a "stem cell deficiency".
Similarly, toxic, viral or alloimmune destruction of the
bronchiolar epithelium suggests stem cell deficiency in
bronchiolitis obliterans. However, fibrotic reactions and
scarring in response to epithelial injury can be viewed as
fibroblast "stem cell hyper-proliferation". The general
concept is that augmentation of stem cells may minimize
lung injury, augment repair, or possibly regenerate lost tis-
sue. However, one must also consider that inhibiting
excessive growth of stem cells may be a valid therapeutic
goal when hyper-proliferation contributes to disease
pathophysiology, as in fibrosis, smooth muscle hyperpla-
sia or lung cancer.

Challenges for lung regenerative medicine

What are the realistic prospects for beneficial stem cell
therapy of the lung? First, we must conclusively identify
lung diseases/cases/timing in which cell and tissue dam-
age occurs in excess of the capacity for timely endogenous
repair. Second, we must establish standardized sources of
relevant stem/progenitor cells and methods for their
delivery to the appropriate lung sub-compartment. Once
delivered, therapeutic cells must home to microscopic
sites of need and integrate to serve a beneficial function.
There is clearly potential for adverse effects, as exemplified
by the propensity of embryonic stem cells to form terato-
mas when implanted in vivo [43]. Major lung diseases
potentially addressable by stem cell therapy may pose
unique challenges. Reversal of lung developmental
anomalies resulting in hypoplasia, or repair of chronic
lung disease of prematurity and advanced pulmonary
emphysema in adults, will require neogenesis of alveolar
septa in which the endogenous "tissue blueprint" never
developed, or was completely destroyed. Until we gain a
much better understanding of lung tissue morphogenesis,
we must rely on stem cells intrinsically "knowing" where
to go and "how" to recreate alveolar septal architecture to
ultimately restore higher order complex three dimen-
sional relationships amongst alveoli, airways, and vessels.
Stem cell therapy to cure cystic fibrosis will require
heterologous, or gene corrected autologous, stem cells to
colonize the airway, proliferate, and differentiate into
columnar cells covering a significant portion of the airway
lumen. However, most evidence thus far suggests that
cells from the circulation may generate isolated, single air-
way basal cells. Stem cell therapy to mitigate respiratory
distress syndrome (RDS) will require cells capable of
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restoring alveolar endothelial and epithelial function in
the face of evolving injury. Whereas injury is thought to
promote stem cell recruitment, the relevant question is
whether it can occur quickly enough to meaningfully
reverse acute, widespread cellular dysfunction typical of
RDS.

Conclusion

Provocative, but controversial, recent evidence suggests
that circulating stem cells may home to the lung. There is
great excitement and hope that exogenous and/or
mobilized endogenous stem cells may be harnessed to
prevent or treat acute and chronic lung diseases and even
regenerate abnormally developed or lost tissue. Our
understanding of lung stem cells and the regulation of
lung morphogenesis is still rudimentary, and the com-
plex, integrated function of multiple cell types underlying
normal lung structure and function poses unique
challenges. Thus, the therapeutic prospects for stem cell
therapy in lungs appear more distant than in some other
organs. This realization should stimulate meaningful new
studies from the lung research community. Unlike the
mythical hero Prometheus, patients with lung disease can-
not wait 30,000 years!
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