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Abstract

bleomycin-induced pulmonary fibrosis.

Background: Antiflammin-1 (AF-1), a derivative of uteroglobin (UG), is a synthetic nonapeptide with diverse
biological functions. In the present study, we investigated whether AF-1 has a protective effect against

Methods: C57BL/6 mice were injected with bleomycin intratracheally to create an animal model of
bleomycin-induced pulmonary fibrosis. On Day 7 and Day 28, we examined the anti-inflammatory effect and
antifibrotic effect, respectively, of AF-1 on the bleomycin-treated mice. The effects of AF-1 on the transforming
growth factor-beta 1 (TGF-B1)-induced proliferation of murine lung fibroblasts (NIH3T3) were examined by a
bromodeoxycytidine (BrdU) incorporation assay and cell cycle analysis.

Results: Severe lung inflammation and fibrosis were observed in the bleomycin-treated mice on Day 7 and Day 28,
respectively. Administration of AF-1 significantly reduced the number of neutrophils in the bronchoalveolar lavage
fluid (BALF) and the levels of tumor necrosis factor-alpha (TNF-a) and interleukin-1 beta (IL-1() in the lung
homogenates on Day 7. Histological examination revealed that AF-1 markedly reduced the number of infiltrating
cells on Day 7 and attenuated the collagen deposition and destruction of lung architecture on Day 28. The
hydroxyproline (HYP) content was significantly decreased in the AF-1-treated mice. In vitro, AF-1 inhibited the
TGF-B1-induced proliferation of NIH3T3 cells, which was mediated by the UG receptor.

Conclusions: AF-1 has anti-inflammatory and antifibrotic actions in bleomycin-induced lung injury. We propose
that the antifibrotic effect of AF-1 might be related to its suppression of fibroblast growth in bleomycin-treated
lungs and that AF-1 has potential as a new therapeutic tool for pulmonary fibrosis.
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Background

Pulmonary fibrosis is a progressive disorder character-
ized by the excessive proliferation of fibroblasts and de-
position of extracellular matrix, which destroy normal
tissue architecture and function. The mechanisms of pul-
monary fibrosis are not completely understood, and the
effects of drugs on idiopathic pulmonary fibrosis (IPF), a
fatal respiratory disease in humans, are not satisfactory
[1]. Therefore, it is crucial to find new therapeutic strat-
egies for pulmonary fibrosis.
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Clara cells are secretory cells that are mainly distrib-
uted in terminal respiratory bronchioles and the respira-
tory bronchiole epithelium. Clara cell secretory protein
(CCSP) is mainly secreted from Clara cells. CCSP is often
called uteroglobin (UG) because UG/CCSP was initially
found in the endometrium of early-pregnancy-phase rab-
bits. UG/CCSP is a small secretory protein that has a var-
iety of pharmacological and physiological effects in vitro
and in vivo. UG/CCSP has potent anti-inflammatory, anti-
chemotactic and immunomodulatory properties [2,3] and
also inhibits the proliferation of various cell lines [4-6]. In
our previous study, we found that after bleomycin treat-
ment, Clara cell-ablated mice that were exposed to naph-
thalene vapor exhibited more severe lung pathology and
collagen deposition [7]. Lee and colleagues also reported
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that UG knockout mice were extraordinarily sensitive to
bleomycin and were highly susceptible to developing pul-
monary fibrosis [8]. These results suggest that UG, as an
endogenous protective factor, plays an important role in
inhibiting pulmonary fibrosis.

Antiflammin-1 (AF-1), a peptide with the sequence
methionine - glutamine - methionine - lysine - lysine -
valine - leucine - aspartic acid - serine (MQMKKVLDS),
is equivalent to the carboxyl-terminal part of the third
a-helix of uteroglobin and has biological characteristics
similar to those of its parent protein [9,10]. AF-1 has a
wide range of functions. For example, in vitro, AF-1 can
inhibit leukocyte adhesion and function, suppress macro-
phage activation, reduce platelet aggregation, prevent mast
cell degranulation, block lymphatic vessel contraction and
decrease inflammatory mediator production and release
[11-15]. In vivo, AF-1 has highly potent anti-inflammatory
activity in different animal models, tissues and organs
[9,16-18]. Despite progress in recent decades, our under-
standing of the biological properties of AF-1 remains in-
complete. Although AF-1 has been explored by numerous
groups, there is no research on this molecule in the field
of fibrosis.

Because UG plays an important role in inhibiting pul-
monary fibrosis, we sought to determine whether AF-1
could also protect against pulmonary fibrosis. We found
that AF-1 attenuated bleomycin-induced pulmonary fi-
brosis. Our findings suggest that AF-1 has potential as a
new therapeutic tool for pulmonary fibrosis.

Materials and methods

Ethics statement

The Ethics Committee Institute of Clinical Pharmacology
of the Central South University (Changsha, China) ap-
proved the experiments, which were performed in accord-
ance with National Institutes of Health guidelines. All
surgery was performed using anesthesia, and all efforts
were made to minimize suffering.

Animal treatment protocol

Adult male C57BL/6 mice were obtained from the la-
boratory animal unit of Central South University. After
being anesthetized, mice were intratracheally injected with
50 pL of bleomycin (5 mg-kg') on Day 0. For time course
experiments, lung samples were collected on Days 0, 3, 7,
10, 14, 21 and 28 for further analysis.

AF-1 was synthesized according to the standard solid-
phase method by the Shanghai Shenggong Bioengineer-
ing Company (China) and stored at —20°C until use [19].
To investigate the antifibrotic effect of AF-1, mice were
randomly divided into four groups: (1) intratracheal saline
plus intraperitoneal saline (control group); (2) intratracheal
saline plus intraperitoneal AF-1 (AF-1 group); (3) intra-
tracheal bleomycin (BLM) plus intraperitoneal saline (BLM
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group); (4) intratracheal BLM plus intraperitoneal AF-1
(BLM + AF-1 group). For the preventive antifibrotic treat-
ment, AF-1 (2 mg-kg - day™) was administered from Day
0 to Day 27, and lung samples were collected on Day 28.
For the therapeutic antifibrotic treatment, AF-1 (2, 5 or
10 mg-kg'-day™) was administered from Day 11 to
Day 27, and mice were sacrificed on Day 28. To deter-
mine whether continuous treatment with AF-1 (2 mg-
kg™ -day™) could inhibit the inflammatory response in
the bleomycin mouse model, AF-1 was injected from
Day 0 to Day 6, and mice were sacrificed on Day 7.

ELISA for cytokine measurements

An enzyme-linked immunosorbent assay (ELISA) was used
to determine the concentrations of several cytokines (tumor
necrosis factor-alpha (TNF-a), interleukin-1 beta (IL-1p)
and IL-6) in the lungs. After a thoracotomy, the lungs
were removed and homogenized in phosphate-buffered
saline (PBS, pH 7.4) containing protease inhibitors (Roche,
Germany). The lung homogenates were centrifuged at
10,000 x g to remove insoluble debris. The supernatants
were assayed with ELISA kits according to the manufac-
turer’s instructions (Invitrogen, CA).

Bronchoalveolar lavage

The mice were anesthetized, and after exposure of the
trachea, a plastic cannula was inserted into the trachea.
A syringe was used to inject 1 mL of 0.9% saline solution
into the lungs and was then withdrawn. This injection pro-
cedure was repeated five times. After the number of cells in
the bronchoalveolar lavage fluid (BALF) was counted, BALF
samples were centrifuged, and the cell pellets were re-
suspended in PBS. Then, the cells were cytospun onto glass
slides and stained with Wrights-Giemsa Stain for cell
classification.

Hydroxyproline assay

The collagen content in the lung homogenates was ex-
amined by a hydroxyproline (HYP) assay (HYP kit from
Nanjing Jiancheng Bioengineering Company, China). All
steps of the HYP assay were performed according to the
manufacturer’s instructions. The absorbance of each
sample at 550 nm wavelength was read by a microplate
reader (Thermo Fisher Scientific, USA).

Histopathology

The lung samples were fixed in 4% buffered paraformalde-
hyde and embedded in paraffin. Sections were stained with
hematoxylin-eosin and Masson’s trichrome. The Ashcroft
score was used for the quantitative histologic analysis [20].

Wet/Dry weight ratio assay
The wet/dry (W/D) method was used to measure pul-
monary edema. After a thoracotomy, the lungs were
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collected and weighed before and after drying in the in-
cubator at 60°C for 72 h.

Cell line

Murine lung fibroblasts (NIH3T3) were obtained from
the National Genetics Laboratory (Changsha, China). The
cells were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) (Gibco) supplemented with 2 mM L-glutamine
(Sigma, USA) and 10% fetal bovine serum (FBS) (Gibco).

Antibody preparation

The peptides corresponding to mouse UG receptor (Ac-
cession No.AY052398.1, GI:23707077) were synthesized
with free N and C terminus according to the standard
solid phase method by Jingmei bioengineering company
(Beijing, China) for experimental immunization [19].
Adult New Zealand white rabbits were injected subcuta-
neously with 2.5 mg peptides in Complete Freund’s Ad-
juvant (CFA) (Sigma, USA) six times, every 3 weeks.
Animals were bled before immunization and 8-10 days
after each injection, and the serological response of im-
munized rabbits was tested by ELISA. The absorbance
(optical density) at 405 nm (OD 405 nm) was measured
using a microplate reader. The animals were sacrificed
60 days later (when a strong serological response was
detected), and the specific antisera were finally obtained.
The antisera were further purified using CNBr-activated
Sepharose 4B (Pharmacia, USA) according to protocol
provided by the manufacturer. Purity and reactivity of
the antisera were checked by SDS-PAGE and ELISA, re-
spectively. The antisera were then stored at —70°C until
use, as described for UG receptor antibody.

Bromodeoxycytidine (BrdU) incorporation assay

NIH3T3 cells were seeded in 48-well plates and grown
for 24 h. Before the experiments, the medium was changed
to the incubation medium containing transforming growth
factor-p1 (TGF-P1) (10 ng-mL™) (RD Systems, USA) in
the absence or presence of AF-1 (10 uM) and with or
without anti-UG receptor antibody (50 pg-mL™). Then,
cells were cultured for an additional 12 h and were pulsed
with BrdU for 2—6 h. Cell proliferation was assessed using
a BrdU colorimetric cell proliferation ELISA kit (Roche,
Germany). Similar experimental conditions were used in
the following methods.

Cell cycle analysis

The stages of the cell cycle were determined by flow
cytometry. In brief, NIH3T3 cells were resuspended in
a mixture of 0.3 mL of PBS and 0.7 mL of ice-cold
ethanol. Propidium iodide (50 pg- mL™) and ribonucle-
ase A (20 pug-mL™") were added to the mixture, which
was then incubated overnight at 4°C. The cell cycle his-
tograms were acquired on a FACSCalibur instrument
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using CELLQUEST software (Becton Dickinson) and
were analyzed using ModFit LT V3.1 software (Verity
Software House).

Cyclin measurements

The protein levels of cyclin D1 and p27 were detected
by flow cytometry. In brief, cells were resuspended in
0.5 mL of PBS, mixed with 0.5 mL of 4% paraformalde-
hyde and then permeabilized with Triton X-100 (Promega,
USA). The permeabilized cells were stained with the
phycoerythrin-conjugated antibody of anti-cyclin D1 or
anti-p27 (Santa Cruz, USA). Single-color histograms were
acquired on the FACSCalibur and analyzed using CELL
QUEST software.

Statistics

Comparisons were made using one-way analysis of vari-
ance followed by the Student-Newman-Keuls (SNK) test
for multiple comparisons or using the nonparametric
test (Mann—Whitney U test), depending on the distribu-
tion of the data. Survival rates were evaluated with a
log-rank test over a period of 28 days. P <0.05 was con-
sidered significant.

Results

Time course of pulmonary fibrosis in bleomycin

mouse model

C57BL/6 mice were intratracheally injected with bleomycin
(5 mg-kg™) on Day 0. The expression of inflammatory re-
sponse markers in the lung tissue was measured by ELISA.
The protein levels of TNF-o, IL-1p and IL-6 exhibited simi-
lar changes over the entire experimental period. The ex-
pression of pro-inflammatory cytokines increased rapidly
during the first 3 days and remained high until Day 10.
However, the expression of pro-inflammatory cytokines sig-
nificantly decreased after Day 10 and continued to decrease
until the end of the experiment (Figure 1B). The collagen
content was tested using a HYP assay, which showed that
there was no significant change in collagen deposition in
the first 10 days. After Day 10, the collagen deposition in-
creased rapidly and peaked on Day 21 (Figure 1C).

The anti-inflammatory and antifibrotic activities of AF-1 in
the bleomycin mouse model

Next, we sought to determine whether AF-1 also dis-
plays anti-inflammatory activity in response to bleomycin-
induced lung injury. We administered AF-1 (2 mg-kg™)
to bleomycin-treated mice during the inflammatory phase
of the model. A large increase in inflammatory cells
was observed in the bleomycin-treated lungs on Day 7
(Figure 2B - b and Table 1). In contrast, following AF-1
treatment, the number of inflammatory cells was mark-
edly reduced (Figure 2B - c and Table 1). Likewise,
compared with the bleomycin-treated mice without AF-1,
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Figure 1 Time Course for Bleomycin Induced Pulmonary Fibrosis. (A). Experimental design 1: Mice were injected with bleomycin (BLM)
(5mg- kg'w) intratracheally (IT) at DO. For time course experiment, at DO (DO = untreated control), D3, D7, D10, D14, D21 and D28, mice were
killed and lung samples were collected for further analysis. (B). The expression profile of inflammatory cytokines in the bleomycin mouse model.
Bleomycin (5 mg-kg ') was injected on DO. The lung tissues were collected at the indicated time points. The investigated inflammatory cytokines
were tumor necrosis factor-alpha (TNF-a), interleukin-1beta (IL-13) and IL-6. (C). The expression profile of collagen was estimated by
hydroxyproline (HYP) assay at the indicated time points. n =4-7. Bars: median values (IL-1{3, IL-6, TNF-a) or mean + SD (HYP). *P < 0.05.
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the mice treated with AF-1 showed a significant reduction
in the lung W/D ratio (Figure 2C). We also found that
AF-1 decreased the levels of TNF-a (Figure 2D) and IL-1
(Figure 2E) in bleomycin-treated mice. These data suggest
that AF-1 inhibited the inflammatory response in this
bleomycin-induced fibrosis model.

Next, because the inflammatory response may play an
important role in the development of bleomycin-induced
pulmonary fibrosis, we used the report by Chaudhary et al.
to design two treatment schedules. We used a preventa-
tive treatment and a therapeutic treatment to determine
whether AF-1 reduces pulmonary fibrosis by preventing
the progression of fibrosis or solely by interfering with the
inflammatory response [21]. For the preventative treat-
ment schedule, we treated bleomycin-induced mice with
AF-1 (2 mg-kg') over the entire experimental period.
Severe fibrosis was found using light microscopy in all
bleomycin-treated mice (Figure 3B - ¢, g). In contrast, the

lung fibrosis was markedly alleviated in the AF-1-treated
mice (Figure 3B - d, h). Bleomycin induced an increase in
the HYP content. Again, AF-1 (2 mg - kg™) significantly re-
duced the HYP content (Figure 3D). We also examined
the effect of AF-1 on the survival rate each day (Figure 3E)
and the weight loss on Day 28 (Figure 3F) in bleomycin-
treated mice. The preventative treatment with AF-1 (2 mg-
l(g’l) improved the survival rate (P=0.0506) and the
weight loss of mice injected with bleomycin. For the thera-
peutic treatment schedule, AF-1 (2, 5 or 10 mg-kg™) was
injected during the fibrotic phase of the model. However,
AF-1 (10 mg - kg™ but not 2 mg- kg or 5 mg-kg™) (5 mg-
kg data not shown) alleviated the pulmonary fibrosis
(Figure 4A - C). The AF-1 effective dose (10 mg-kg’l)
for the therapeutic treatment was higher than that
(2 mg-kg) in the preventive treatment. These results in-
dicate that AF-1 has anti-inflammatory and antifibrotic ac-
tions in bleomycin-induced lung injury.
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Figure 2 The antiinflammatory effects of AF-1 on bleomycin-induced lung injury. (A). Experimental design 2: AF-1 (2 mg-kg'-day ") was
injected intraperitoneally from DO to D6. On D7, mice were killed and lung samples were collected for further analysis. The degree of acute lung
injury was assessed by H&E staining (x200, Scale bar =100 pm) (B) and W/D ratio (C). The levels of TNF-a (D) and IL-1{3 (E) in lung homogenate
were quantified by ELISA. n=5-11. Bars: median values (TNF-a and IL-1B) or mean + SD (W/D). *P < 0.05 vs BLM group.

Table 1 Analysis of bronchoalveolar lavage

Groups Cells (x10% Cell classification (%)

Total Macrophages Neutrophils Lymphocytes Macrophages Neutrophils Lymphocytes
Control 11.51+£398 11.0£3.85 02£0.1 025+0.18 955+ 1.97 1.8+098 22£153
BLM 5593 +23.77 2559+15.28 18.08 +9.05 1098 +5.18 4495+ 1167 31.7+813 2054711
BLM + AF-1 32.81+1858* 22.55+1097 428 +4.54* 523 +3.36% 70.3 £8.28% 1145+52% 15.95+4.33

AF-1 2 mg-kg™ -day™) was injected intraperitoneally from DO to D6. On D7, mice were killed and bronchoalveolar lavage was performed as described in
METHODS. n =5-10. Data are presented as mean £ SD in each group. *P <0.05 vs BLM group.
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Figure 3 The antifibrotic effects of preventive treatment with AF-1 on bleomycin-induced lung fibrosis. (A). Experimental design 3: The
preventive treatment with AF-1 (2 mg-kg™'-day ') was performed from DO to D27. The therapeutic treatment with AF-1 (2, 5 or 10 mg-kg ™' - day ")
was performed from D11 to D27. On D28, mice were killed and lung samples were collected for further analysis. (B) The histopathologic
examination was determined by hematoxylin-eosin (H&E) staining (upper panel ) and Masson staining (lower panel) (x200, Scale bar =100 um).
(C). Ashcroft score was used to evaluate the degree of fibrosis. (D). Collagen content was estimated by hydroxyproline assay. Survival rate

(E) and Weight loss (F) were also monitored in the preventive treatment. n = 5-16. Bars: mean + SD . *P < 0.05 vs BLM group.
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The antiproliferative activity of AF-1 in TGF-B1-stimulated
NIH3T3 cells

To test for antiproliferative activity of AF-1 in vitro, the in-
corporation of BrdU into NIH3T3 cells was measured.
TGE-B1 (10 ng-mL™) significantly induced BrdU incor-
poration into NIH3T3 cells, while AF-1 (0-10 uM) inhib-
ited the effect of TGF-fl in a concentration-dependent
manner (Figure 5A). Cell cycle analysis also showed that
the TGF-P1-induced increase in S phase entry was reversed
by AF-1 (10 uM) (Figure 6B). We further quantified the ex-
pression of cyclin D1 and p27 by flow cytometry and found
that TGF-P1 increased the expression of cyclin D1 and
decreased the expression of p27. In contrast, after AF-1
(10 uM) treatment, the TGF-B1-induced changes to both
cyclin D1 and p27 were reversed (Figure 5B).

UG receptor plays an important role in the
antiproliferative activity of AF-1

In our previous study, we showed that AF-1 specifically
binds to the UG receptor and activates the mitogen-
activated protein kinase (MAPK) signaling pathway [22].

Therefore, in the present study, we sought to determine
whether the antiproliferative activity of AF-1 was related
to the UG receptor. Both the BrdU incorporation assay
(Figure 6A) and cell cycle analysis (Figure 6B) showed
that the antiproliferative effect of AF-1 (10 pM) was re-
versed by pretreatment with anti-UG receptor antibody
(50 pg - mL™). This result suggests that the antiproliferative
activity of AF-1 is mediated by the UG receptor.

Discussion
The present study showed a role for AF-1 in the sup-
pression of pulmonary fibrosis. This report is the first to
demonstrate that AF-1 prevented bleomycin-induced in-
flammation and fibrosis in lungs. Furthermore, AF-1 sig-
nificantly inhibited the TGF-Bl-induced proliferation of
NIH3TS3 cells in vitro by interacting with the UG receptor.
The bleomycin animal model is the best available ex-
perimental tool for studying the pathophysiology of IPF
and testing novel pharmaceutical compounds for IPF
[23]. However, the IPF progression in humans differs the
development of pulmonary fibrosis in the bleomycin-
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Figure 5 AF-1 regulated the expression of cyclin and inhibited
the growth of NIH3T3. (A). The cells were cultured in medium
containing TGF-B1 (10 ng - mL") with various concentrations of AF-1
(0-10 puM). The OD values of BrdU incorporation were measured by
microplate reader. (B). The cells were cultured in medium containing
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the mean fluorescence intensity (MFI) of Cyclin D1 and p27 were
determined by flow cytometry. Before statistics and analysis, the
data divided by the mean of control group. NC: negative control.

n=3-4. Bars: mean £ SD . *P < 0.05 vs TGF group.

induced mouse model. In the mouse model, bleomycin
first induces gross inflammation in the rodent lung, and
this sustained damage leads to the initiation of fibrosis
[24,25]. Numerous anti-inflammatory agents inhibit fi-
brosis in bleomycin animal models, but none of them
has shown a comparable effect against IPF in humans
[26]. Therefore, it is important to distinguish the anti-
inflammatory and antifibrotic actions of test drugs in
this model. If compounds only work when administered
over the entire experimental period but are ineffective
when administered after most of the inflammatory re-
sponse is resolved, these compounds should only have
anti-inflammatory activity. However, if drugs work irre-
spective of the treatment regimen, the drugs should have
antifibrotic activity. In our study, we first performed a
time course experiment to determine the duration of the
inflammatory and fibrotic phases. After Day 10, the
inflammatory cytokines significantly decreased, accom-
panied by a significant increase in collagen deposition
(Figure 1). Therefore, we speculated that the course of
pulmonary fibrosis in this bleomycin model changed
from the inflammatory phase to the fibrotic phase after
Day 10. Our results show a process of inflammatory and
fibrotic phase development that is similar to previously
published data, and our results further confirm that the
bulk of the inflammatory response was resolved by ap-
proximately Day 10 after bleomycin injection [21]. There-
fore, comparison of the preventive treatment, which
began at the initiation of the inflammatory response (i.e.,
starting on Day 0), with the therapeutic treatment, which
commenced after most of the inflammatory response was
resolved (i.e., starting at Day 11), allowed us to distinguish
the anti-inflammatory and antifibrotic actions of AF-1.

As a novel antiinflammatory peptide, AF-1 has highly po-
tent anti-inflammatory activity in different animal models,
tissues and organs [16-18]. In the present study, continuous
treatment with AF-1 (2 mg-kg™) starting on Day O signifi-
cantly alleviated the inflammation on Day 7 and the colla-
gen deposition on Day 28 in the bleomycin-induced model
of lung injury (Figures 2 and 3). The anti-inflammatory ac-
tivity of AF-1 in this model may be due to its blockade of
neutrophil trafficking, suppression of the activation of mac-
rophages and reduction of the production and release of in-
flammatory mediators [11,12].
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Figure 6 AF-1 suppressed the NIH3T3 proliferation by interacting with UG receptor. The cells were cultured in medium containing TGF-f1
(10 ng- mL") in the absence or presence of AF-1 (10 uM), and with or without anti-uteroglobin (UG) receptor antibody (50 pg - mL ™). Cell
proliferation was assessed by BrdU incorporation (A) and flow cytometry (B). Before statistics and analysis, the data divided by the mean of

control group. n = 3. Bars: mean + SD . *P < 0.05 vs TGF group.

Next, we examined the antifibrotic effects of AF-1 in the
bleomycin mouse model. When therapeutic treatment
with AF-1 began on Day 11, AF-1 (10 mg-kg™" but not
2 mg-kg" or 5 mg-kg™) (5 mg-kg" data not shown) sig-
nificantly attenuated the collagen deposition on Day 28
(Figure 4). Our results clearly show that AF-1 alleviated
pulmonary fibrosis significantly by both anti-inflammatory
and antifibrotic actions, which were independent of the
treatment regimen. However, the effective AF-1 dose for
the therapeutic treatment was higher than that for the
preventive treatment.

The proliferation and extracellular matrix (ECM) pro-
duction of fibroblasts constitute the final common patho-
genic factor in fibrotic diseases. Numerous antifibrotic
strategies aim to target the activation, proliferation and/or
recruitment of fibroblasts, which occur in response to the
strengthened actions of profibrotic cytokines. TGF- is
one of the most important profibrotic cytokines and is
produced by various types of cells, including macrophages,
epithelial cells and fibroblasts. After being activated, TGEF-
[ becomes a pleiotropic cytokine with proliferative and
chemotactic properties [27]. As mentioned above, any
drugs that successfully ablate the activation and/or prolif-
eration of fibroblasts in vitro might have antifibrotic activ-
ity in vivo. Therefore, to further research the underlying
mechanisms of AF-1, we observed the effect of AF-1 on
TGEF-P1-induced proliferation in NIH3T3 cells. We found
that AF-1 inhibited the TGF-p1-induced proliferation in
NIH3T3 cells in a concentration-dependent manner, and
the inhibition induced by AF-1 might have been due to its
regulation of the expression of cyclin D1 and p27 (Kipl)
(Figure 5), which determine the transition from GO0/G1
phase to S phase [28-30].

The mechanism responsible for the antiproliferative ef-
fect of AF-1 on TGF-B1-induced proliferation in NIH3T3
cells is not clear. Recently, we found that AF-1 specifically
binds to a saturable membrane receptor, the UG receptor,
and activates the MAPK signaling pathway [22]. Kundu
and coworkers first identified the UG receptor in several
types of cells; treating the cells expressing the UG receptor
with UG dramatically suppressed cell growth and ECM in-
vasion, but such treatment had no effect on cells lacking
the UG receptor [5,31-33]. Subsequently, molecular clon-
ing and analysis of the UG receptor cDNA indicated that
it encodes a 55-kDa protein; on the basis of amino acid
similarity, the UG receptor was classified in the lipocalin

receptor family, which has remarkable functional diversity
[34,35].

As a synthetic peptide derived from UG, AF-1 has
similar activities to UG [10]. Because UG can inhibit cell
growth and ECM invasion by interacting with the UG
receptor, we sought to determine whether the antipro-
liferative activity of AF-1 was also related to the UG recep-
tor. Our results show that the antiproliferative effect of
AF-1 was reversed by pretreatment with anti-UG recep-
tor antibody (Figure 6). Therefore, AF-1 might suppress
TGF-B1-induced NIH3T3 proliferation by interacting
with the UG receptor.

According to our studies, the antifibrotic effect of AF-1
in bleomycin-treated mice may be related to its antipro-
liferative activity, which is mediated by the UG receptor.
Of course, the roles of the UG receptor in the develop-
ment of pulmonary fibrosis in vivo require further
rigorous investigation. Similarly to most drugs or the
UG protein itself, AF-1 has an antifibrotic effect that is
difficult to explain by a simple mechanism of action.
Moreno reported that AF-1 can inhibit the activity of
transglutaminase-2 (TG-2) [36]. TG-2 is a multifunctional
protein that plays an important role in bleomycin-induced
pulmonary fibrosis [37,38]. Overexpression of TG-2 in-
creases fibronectin deposition and matrix organization
in vitro. In contrast to wild-type mice, TG-2 knockout
mice develop markedly less severe pulmonary fibrosis
[37]. Therefore, inhibiting the activity of TG-2 by AF-1
may also be helpful in alleviating pulmonary fibrosis.

Conclusions

In summary, our in vitro results indicate that AF-1 could
inhibit fibroblast proliferation by interacting with the UG
receptor, and our iz vivo results indicate that AF-1 plays
an anti-inflammatory and antifibrotic role in inhibiting
bleomycin-induced lung injury. Thus, AF-1 has potential
as a therapeutic tool for pulmonary fibrosis.
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