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Abstract

Background: Non-invasive phenotyping of chronic respiratory diseases would be highly beneficial in the
personalised medicine of the future. Volatile organic compounds can be measured in the exhaled breath and may
be produced or altered by disease processes. We investigated whether distinct patterns of these compounds were
present in chronic obstructive pulmonary disease (COPD) and clinically relevant disease phenotypes.

Methods: Breath samples from 39 COPD subjects and 32 healthy controls were collected and analysed using gas
chromatography time-of-flight mass spectrometry. Subjects with COPD also underwent sputum induction.
Discriminatory compounds were identified by univariate logistic regression followed by multivariate analysis: 1.
principal component analysis; 2. multivariate logistic regression; 3. receiver operating characteristic (ROC) analysis.

Results: Comparing COPD versus healthy controls, principal component analysis clustered the 20
best-discriminating compounds into four components explaining 71% of the variance. Multivariate logistic
regression constructed an optimised model using two components with an accuracy of 69%. The model had 85%
sensitivity, 50% specificity and ROC area under the curve of 0.74. Analysis of COPD subgroups showed the method
could classify COPD subjects with far greater accuracy. Models were constructed which classified subjects with 22%
sputum eosinophilia with ROC area under the curve of 0.94 and those having frequent exacerbations 0.95. Potential

biomarkers correlated to clinical variables were identified in each subgroup.

Conclusion: The exhaled breath volatile organic compound profile discriminated between COPD and healthy
controls and identified clinically relevant COPD subgroups. If these findings are validated in prospective cohorts,
they may have diagnostic and management value in this disease.

Keywords: Chronic obstructive pulmonary disease, Biomarkers, Breath tests, Metabolomics

Background

Chronic obstructive pulmonary disease (COPD) is defined
clinically on the basis of airflow obstruction [1,2]. This
simple definition does not reflect the heterogeneous na-
ture of COPD with individual variations in pathophysi-
ology, aetiology, symptoms, prognosis and treatment
response. For example, chronic cough and mucus are poor
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prognostic features [3], frequent exacerbations are asso-
ciated with progressive loss in lung function [4], and the
presence of sputum eosinophilia predicts response to
inhaled corticosteroids [5]. Identifying these and other
subtypes will be critical for appropriate management of
these patients in the future, allowing targeted therapy and
more accurate disease monitoring [6].

The breath contains as yet unknown numbers of volatile
organic compounds (VOCs), both exogenous and en-
dogenous in origin. Endogenous VOCs will arise not only
from all levels of the airway but also the circulation via the
alveolar-capillary interface, as a result of metabolic pro-
cesses occurring both in health and disease. Exogenous
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VOC:s can be altered by processes within the airways, both
physical (e.g. adsorption into surface liquid) and biochem-
ical (e.g. oxidation). Controlled measurement of these
exhaled compounds could therefore potentially give us
novel insights into airway biology, physiology and pharma-
cology, and provide us with phenotype-specific biomar-
kers. Previous work has suggested that patterns of VOCs
in breath gas may be useful in identifying patients with
COPD [7], [8], and that individual compounds correlate
with inflammatory cell numbers and markers of activation
[9], whilst another method for metabolomic analysis
has employed nuclear magnetic resonance spectroscopy
of exhaled breath condensate to classify COPD and
healthy controls [10]. To our knowledge the possibility of
identifying clinically relevant disease phenotypes, such the
eosinophilic or exacerbation-prone phenotypes, has not
been investigated.

We have developed a method that enables us to non-
invasively sample the late-expiratory breath in patients
with respiratory disease, and used it to discriminate simi-
larly relevant phenotypes in asthma [11]. To ensure detec-
tion of potential compounds of interest present at
extremely low concentration we have allied our sampling
methodology (which concentrates a high volume of
breath) to highly sensitive separation and detection instru-
mentation [gas chromatography-time-of-flight mass spec-
trometry (GC-ToF-MS)]. The aim of the current study
was to use this to characterise the exhaled VOC profile in
patients with COPD in comparison to healthy controls.
We have then investigated whether VOC profiles can dis-
criminate subgroups defined by inflammatory-cell pheno-
type and exacerbation frequency.

Methods

Subjects

Subjects were recruited from the Medicines Evaluation
Unit clinical trials database, University Hospital of South
Manchester, UK. Some of the COPD subjects were also
taking part in the Evaluation of COPD Longitudinally to
Identify Predictive Surrogate End-points (ECLIPSE)
study [12]. The study was approved by a local Research
Ethics Committee and subjects provided written
informed consent. All COPD subjects had a clinical
diagnosis of the disease, and met Global Initiative for
Chronic Obstructive Lung Disease (GOLD) criteria [1].

Inclusion and exclusion criteria

Participants with COPD had baseline post-bronchodilator
forced expiratory volume in one second (FEV1)/forced
vital capacity (FVC) less than 0.7 and a smoking history of
at least 10 pack years. Healthy volunteers had baseline
FEV1 greater than 80% predicted, FEV1/FVC greater than
0.7, and were categorised as healthy smokers (current
smokers with at least 10 pack year history) or healthy
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never-smokers. Abstinence from smoking was checked by
measurement of exhaled carbon monoxide with a cut-off
of <5 ppm (Smokerlyzer, Bedfont Scientific, Maidstone,
UK). Exclusion criteria included: other chronic respiratory
disorders or systemic inflammatory disease, (e.g. rheuma-
toid arthritis), malignancy within last five years, moderate
or severe exacerbation (requiring oral corticosteroids and/
or antibiotics) within the four weeks prior to study visit
(all courses of oral corticosteroids and antibiotics must
have been completed at least 2 weeks before study visit),
long term (more than three months) oral corticosteroids.

Study procedures

Subjects were asked to refrain from eating, drinking
(except for water) and smoking for two hours prior to
breath collection, and from using their inhaled medication
on the morning of the visit. Demographic data were
collected, and subjects from the ECLIPSE cohort had
prospectively recorded exacerbation frequency in the
previous year. Study procedures were then performed in
the following order: exhaled breath collection, spirometry,
and sputum induction.

Spirometry

Spirometry was performed according to American Thor-
acic Society / European Respiratory Society guidelines
[13], using the MasterScope CT pneumotach (Viasys
GmbH, Hoechberg, Germany).

Sputum induction

Sputum induction was performed using inhaled hyper-
tonic saline in increasing strengths (3, 4, and 5%) from an
ultrasonic nebuliser (Medix Sonix 2000, Clement Clarke,
Essex, UK) as previously described [14]. Sputum induction
was stopped early if the patient’s FEV] fell below the safety
cut-off (80% of baseline). Sputum samples were stored on
ice and processed within two hours. A minimum of 400
leukocytes were counted. Slides containing > 20% squa-
mous cells were regarded as representing salivary contam-
ination and excluded.

Exhaled breath collection and analysis

All the breath samples were collected in the same room,
used solely for this study, minimising the effect of vari-
ation in background air. Breath samples were collected
and analysed as previously described [11,15]. In brief
subjects breathed VOC-filtered air, while respiratory pat-
tern was tracked via a pressure transducer and visualised
using bespoke software, enabling selective sampling of
late expiratory breath, minimising contamination from
the mouth, nose and deadspace. Sampling was performed
during tidal breathing, and commenced after the subject
had been breathing VOC filtered air for five minutes,
allowing a degree of equilibration as well as ensuring the
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subjects were relaxed at the start of sampling. Three
litres of selected exhaled breath per sample were col-
lected directly onto adsorbent tubes packed with Tenax
TA/Carbotrap (Markes International, Rhondda Cynon
Taff, UK) for analysis by GC-ToF-MS. Due to differing
tidal volumes between subjects, and with sampling trig-
gered only during late expiration, collection of each 3 L
sample typically took between five and seven minutes.

Sample analysis and data processing

Samples were analysed in random order by thermal
desorption (TD) followed by GC-ToF-MS. To ensure
the instrument response was precise for the wide
range of VOCs that we expected to detect, a quality
control (QC) was made up of a mixture of 21 VOCs
(Sigma-Aldrich; purity 99%; solvent HPLC grade
methanol) and run through the instrument before each
study sample. A range of concentrations from pg/pl to
ng/pl were prepared to calibrate the instrument. D5-
bromobenzene was added to the breath samples and
QC as an internal standard prior to analysis at a 1.5
ng/pl concentration (RSD 5.14%). The analytical meth-
odology, including details of the QC and internal
standard, is described elsewhere [15]. Instrumental and
intra-individual (day-to-day) reproducibility have previ-
ously been shown to be excellent for breath samples
analysed by GC-ToF-MS [16].

Data were acquired and pre-processed using the on-
board software package MassLynx (Waters Corp., Man-
chester UK). Pre-processing entails detection, spectral
deconvolution and alignment of potential markers. Mar-
kers were presented as exact mass and retention time
pairs and the intensity of each marker for each sample
was recorded. Principal component analysis (PCA) was
performed on the marker intensities to visualise any
major differences between sample sets. In parallel Auto-
mated Mass Spectral Deconvolution and Identification
System (AMDIS) was used to extract spectra for individ-
ual components from GC-MS data and identifies com-
pounds by matching these spectra against specialised
libraries. A reference file containing straight chain
alkanes was used to build up a retention indices library
to allow alignment of data, and a library of 487 com-
pounds created by confirming the identity of compounds
against the National Institute of Standards and Technol-
ogy (NIST) library and elemental composition of mo-
lecular ions and their fragments. Absolute error was
acceptable at values lower than 1.5 mDa. Internal stand-
ard peak area was extracted and relative intensities of
library compounds calculated (i.e. normalised to the
internal standard). Statistical analysis was performed
on a final data matrix containing relative peak areas of
library components for all the samples.
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Statistical analysis

All data were analysed using SPSS version 15 (SPSS Inc.,
Chicago, IL, USA). For demographic data, descriptive
statistics were used, with between group comparisons
made using Pearson chi square, parametric (students t-test)
and non parametric tests (Mann Whitney U) where
appropriate.

The primary comparison of interest was the breath
profile of COPD patients versus healthy controls. It
was not possible to calculate a sample size for this
study as we had no a priori information regarding the
identity or variance of potential compounds of interest.
We anticipated that smoking status and inhaled cor-
ticosteroid use would represent obvious confounders
to the analysis, so planned to stratify by current smok-
ing status, and COPD subgroup analysis by inhaled
corticosteroid use. To investigate the potential for the
breath profile to predict clinical phenotypes, we
planned further COPD subgroup analyses by sputum
eosinophilia and exacerbation frequency. Cut-offs for
sputum eosinophilia and exacerbation frequency were
pragmatic: a cut-off for sputum eosinophils of 1% can
identify non-responders to inhaled corticosteroids in
COPD [5] whereas higher cut-offs such as 2% are typ-
ically used in severe asthma [17]; there are no similar
data to guide a cut-off for exacerbation frequency, so
we used the median value in our cohort of two exacer-
bations in the previous 12 months. The aim of the
data analysis was to generate a valid model for dis-
criminating between groups. Our analytical strategy
has previously been published [11], and is summarised
in Figure 1. One approach in metabolomics for dealing
with the very high number of variables in comparison
to the number of subjects is to perform initial data re-
duction prior to multivariate analysis (e.g. [18,19]). For
each comparison of interest this was achieved by be-
tween group univariate analysis (logistic regression) for
each of the identified compounds, in order to achieve
a balance between optimising the validity of the subse-
quent principal component analysis (PCA), whilst lim-
iting the risk of discarding potentially important
compounds. The principal components (PCs) were
then entered into multivariate logistic regression to
generate a best-fit model for between group discrimi-
nation, and the performance of this model described
by receiver operating characteristics [20]. Discriminant
function analysis (DFA) with leave-one-out cross valid-
ation (LOOCV) was used in parallel to check the per-
formance of the model. The relationship between
specific VOCs forming the PCs used in each model
and the corresponding phenotype-defining parameters
(e.g. sputum eosinophil count, number of exacerba-
tions per year) was explored further using Pearson’s
Correlation Coefficient.
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Figure 1 Flow-chart summarising the statistical approach adopted for variable reduction and model generation.
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Results

Breath samples were collected from a total of 71 subjects
(39 COPD and 32 healthy controls), including 23 COPD
subjects recruited from the ECLIPSE cohort. Demo-
graphic details are shown in Table 1. Apart from the
expected differences in lung function parameters, the
COPD group were also older and had more comorbidities
than the healthy group. None of the included subjects in
either group had a history of renal or hepatic impairment.

COPD versus healthy controls

From the 487 compounds identified, those with COPD
versus healthy control p < 0.10 (n = 20) were retained for
inclusion in the PCA. Four PC’s with Eigenvalues more
than one and explaining 70.8% of the total variance were
derived. When these four PC’s were used in logistic re-
gression analysis, a model consisting of PC 1 and PC 4
significantly predicted samples from subjects with
COPD. This model is shown in Table 2, and correctly
classified 33 (84.6%) of COPD samples and 16 healthy
controls (50.0%). A plot of the PCs used in the model
is shown in Figure 2. The ROC parameters for the
model were: sensitivity 85%, specificity 50%, precision
67%, accuracy 69%, area under ROC curve (AUROC)
0.74. These results were confirmed with discriminant
function analysis which showed the two factors sig-
nificantly discriminated the two groups with accuracy
of 70.4% [Wilk’s lambda = 0.84, chi square = 11.909,
p = 0.003], and this accuracy was confirmed using

LOOCV which also showed accuracy of 70%. A list of the
putative compounds (six of which were aldehydes) contri-
buting to the discriminatory model is shown in Table 3.

Table 1 Demographic data for patients with COPD and
healthy controls shown as mean (SD) or %

COPD (n=39) Healthy (n =32)

Age, yrs 65.7 (6.8) 553 (7.1) *
Gender (% male) 67 47
Smoking status (%):  Current 31 31

Ex 69 0

Never 0 69

Pack years 456 (18.9) 373 (19.1)
FEV,, | 148 (0.5) 3.26 (0.8) *
FEV;,% predicted 54.6 (154) 1024 (12.1) *
FVC, | 3.12(0.8) 420 (0.9) *
FVC,% predicted 89.7 (17.6) 1133 (14.6) *
FEV, / FVC 492 (13.1) 775 (6.6) *
BMI, kg / m? 27.8 (5.6) 274 (36)
GOLD class I/1I/111/IV (%) 2/19/16/2 NA
Inhaled corticosteroids (%) 64 NA
Dose, ug BDP equivalent 842 (978) NA
Long acting 3,-agonists (%) 56 NA
Long acting antimuscarinics (%) 56 NA

* p < 0.05 for COPD versus healthy controls.
GOLD = Global Initiative for Chronic Obstructive Lung Disease [1];
BDP = beclomethasone dipropionate.
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Table 2 Logistic regression model for COPD versus
healthy controls

B (SE) P value Odds ratio 95% Confidence
interval for
odds ratio

PC1 —0.751 (0.366) 0.040 0472 0.230 to 0.967
PC4 0.549 (0.284) 0.054 1.731 0.992 to 3.022
Constant 0.159 (0.265)

We speculated that this relatively poor discrimination
may have been due to the dominating effect of cigarette
smoke-related VOCs in some samples, and therefore
studied subgroup comparisons based on smoking status.
When comparing ex-smokers with COPD with healthy
non-smokers the multivariate model accuracy was 73%,
and ROC parameters: sensitivity 89%, specificity 55%
and AUROC 0.77. When data from current smokers
only were examined, the resultant model had accuracy
91% and ROC sensitivity 92%, specificity 90% and
AUROC 0.98.

We investigated whether any of the discriminatory
compounds were likely to arise from a corticosteroid
effect in the COPD group. Multivariate logistic re-
gression generated a model which discriminated the
COPD subjects taking inhaled steroid (n = 25) from
those not on inhaled steroid (n = 14) with accuracy
of 74% and AUROC of 0.83. Of the discriminatory

4.07

3.09

1.0

Factor Score 1

-1.0- T
-3.0

2.0 -1.0 0.0 1.0
Factor Score 4

Figure 2 Scatter plot of the principal components (labelled as
“factor scores”) used in the multivariate logistic regression
model for discriminating COPD (triangles) versus healthy
controls (circles). Each data point is linked to the centroid,
demonstrating the central point of each distribution.
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Table 3 Empirical formulae and putative identification of
volatile organic compounds used in the model classifying
COPD and healthy subjects, grouped by principal
component (PC)

PC Loading Compound ID
1 987 Undecanal C;;H,,0
949 Hexanal CgH;,0
901 Dodecanal C;,H,,0
874 Decanal C;oH500
867 Nonanal CoH150
764 Pentadecanal- C;5H300,
741 Oxirane, dodecyl- C;4H,50
740 CgH1403 Cyclohexanol, 5-methyl-2-(1-methylethyl)-,
[1R-(1a,24,5)]- C10H200
4 -829 Butanoic acid, 2,2-dimethyl-3-oxo-,
ethyl ester CgH1403
-710 Pentanoic ac CsH,40,
-498 Furan,2-pentyl CgH;,0

Also shown are PC loadings; loadings closer to one indicate compounds with a
higher influence in the PC.

compounds included in the COPD versus healthy
model (Table 3), only undecanal was also found
amongst the compounds included in the steroid
model.

Clinical subgroup analysis
Demographic details of the subgroups are shown in
Table 4.

a) Sputum eosinophilia
There were no significant demographic differences
between subjects with eosinophilic or non-eosinophilic
sputum using either cut-off (1% or 2%) in terms of age,
gender or lung function. Eleven of 24 COPD subjects
with evaluable sputum samples had eosinophil
count > 1%, and six = 2%. The logistic regression
models had accuracy of 79% and 92%, AUROC of
0.90 and 0.94, and LOOCV accuracy of 75% and
88% respectively. Plots of the PCs used in the
model are shown in Figures 3a and 3b, the ROC
curve in Figure 4, and compounds underlying the
PC’s in Table 5.
b) Exacerbation frequency

Data on the number of exacerbations in the previous
12 months were available for the 23 COPD subjects
recruited from the ECLIPSE cohort. Thirteen had had
two or more exacerbations in that time. Logistic
regression predicted the group with frequent
exacerbations with an accuracy of 87%, area under
ROC curve 0.95, and LOOCYV accuracy of 83%. A plot
of the PC’s is shown in Figure 3c, the ROC curve in
Figure 4, and relevant compounds in Table 5.
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Table 4 Demographic details for subgroup comparisons. Data are shown as mean (SD), except for gender

Sputum eosinophilia

Exacerbation frequency

>1% (n=11) <1%(nh=13) p >2% (nN=6) <2% (n=18) p <2(n=10) >2(n=13) p
Age 65.0 (6.7) 64.5 (7.3) 0.884 63.5 (83) 65.2 (6.6) 0713 67.0 (52) 66.5 (4.7) 0.686
Gender (male/female) 7/4 9/4 0.772 3/3 13/5 0317 7/3 9/4 0.968
Cigarette pack years 483 (19.8) 39.7 (12.0) 0.199 380 (14.1) 455 (16.9) 0338 49.7 (27.9) 499 (10.3) 0.983
% predicted FEV, 51.5(16.9) 594 (9.3) 0131 582 (19.3) 55.0 (11.7) 0.713 529 (11.9) 449 (14.3) 0.120
ICS total daily dose 570 (797) 818 (756) 0473 825 (826) 300 (346) 0.058 880 (855) 1364 (1196) 0400

(ug BDP equivalent)

Discussion
We have shown that this technique for breath collection
paired with metabolomic VOC analysis by GC-ToF-MS
is able to classifty COPD from healthy controls with
moderate accuracy. However we were able to demon-
strate much greater accuracy when looking at sub-
groups of clinical interest such as smokers with COPD
versus asymptomatic smokers, and COPD subjects with
sputum eosinophilia, or those liable to suffer frequent
exacerbations. If validated in prospective cohorts, this
technique may provide a non-invasive method for phe-
notyping COPD in the future, with clinical applications
for example in personalised therapeutics and prognosis.
Recent data have also shown discrimination between
COPD and healthy controls using GC-MS, but based
upon analysis of single breath samples [7]. Current work
in metabolomic analysis of exhaled VOCs is exploratory
and aimed at discovering potential novel biomarkers, so
it is critical that the sensitivity of the detection system
be optimised. Each of our breath samples contains the
VOCs absorbed from 3 litres of late-expiratory air, typi-
cally representing 50 to 100 breaths per subject. Paired
with GC-ToF-MS, we have a highly sensitive metho-
dology for both absorption and detection of VOCs that

may well be present in minute concentrations in a single
breath. It is of interest that the classification model
developed in the Van Berkel study had higher accuracy
for discriminating COPD versus controls than ours. Al-
though the breath collection methodologies differed, the
analytical techniques, based on GC-ToF-MS, were simi-
lar. It may be that the large difference in demographics
between the COPD and healthy cohorts in that study
(the COPD group were 21 years older, and 76% were
current smokers) contributed to the differences seen.
Likewise the close matching of current smoking status
in our cohorts may have contributed to the moderate
success of our classification model, as active smoking is
clearly likely to be a dominant confounder in exhaled
breath analysis where data from both smokers and non-
smokers are analysed together. Indeed when we looked
only at smokers with and without COPD (thus neutralis-
ing this confounding effect in the analysis), we found
our model classified disease with far greater accuracy.
The scatter plot (Figure 2) shows the COPD data to be
clustered in one region of (but still within) the data from
the healthy controls. This is consistent with the concept
of COPD as a disease of accelerated lung aging [21], and
it is perhaps not surprising that the metabolomic profile
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Figure 3 Scatterplots of the principal components derived from the models predicting (blue triangles): a. sputum eosinophils > 1%; b.
sputum eosinophils > 2%; c. > 2 exacerbations per year. Figure 3b for example shows that plotting factor scores 1 versus 2 from the model
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Figure 4 Receiver operating characteristics curves for subgroup comparison. Key: solid line - sputum eosinophils >1%; dashed
line - sputum eosinophils >2%; dotted line - exacerbation frequency > 2 / yr.

of patients with this disease clusters at one extreme of

normality, rather than apart from it.

Sputum eosinophilia predicts steroid-responsiveness in
COPD [5], but the test is labour-intensive, time consum-
ing, and samples are not obtainable in a significant

minority of patients [22]. Whilst our technique for

breath collection and analysis is currently relatively

Table 5 Table of putative VOCs and empirical formulae associated with sputum eosinophilia and frequent
exacerbations, shown in order of decreasing strength of correlation (r) between compounds and sputum eosinophil
count, and number of exacerbations in the previous year

high-cost and labour-intensive, if a set of candidate bio-
markers were validated for predicting steroid responsive-
ness, work would focus on developing and producing

Eosinophils > 1%

r

Exacerbations > 2 / yr

a-Methylstyrene CoH,o

3-Cyclohexen-1-ol,
4-methyl-1-(1-methylethyl)-,
acetate C;,H,,0,

benzofuran, 4, 5, 6, 7 tetrahydro-3,
6-dimethyl C,4H,,0

Decane, 3-methyl C;,H,4

Pentanoic acid, 2, 2,
4-trimethyl-3-carboxyisopropyl,
isobutyl ester CygH3004

2 cyclopentenione 3, 5, 5 trimethyl
GgHi0

2(1 H)Naphthalenone, 3, 5, 6, 7, 8,
8a-hexahydro-4,
8a-dimethyl-6-(1-methylethenyl)-
Ci5H0

-051

=051

041

041

-0.33

-0.31

0.30

Eosinophils > 2% r

1, 1'-Biphenyl, -049
3-methyl- C;3H;;

dodecanoic ac methylethylester 031
Ci5H300,

benzene,1, 2, 3, 0.29
4-tetramethyl- CyoH14

bicycle carene type CioH1g 0.23
1, 5-Heptadiene, 2, 0.20

5-dimethyl-3-methylene- CyoH1¢

Undecane, 3, 7-dimethyl
C1 3H28

2, 2, 4, 4-Tetramethyloctane
c12H26

1,4-Methanoazulene, decahydro-4,
8, 8-trimethyl-9-methylene-,
[1S-(10,3aB,40,8aP)]- C15H24

Naphthalene, 2, 3,
6-trimethyl- Cy3Hq4

Chlorobenzene HgHsCl

Pentadecane, 3-methyl- CigHs4

-0.63

-0.58

—-0.53

-049

-037

-037

Compounds with significant r values (p < 0.05) shown in bold.



Basanta et al. Respiratory Research 2012, 13:72
http://respiratory-research.com/content/13/1/72

small, user-friendly point-of-care sensors specifically for
this purpose. We have previously shown that breath VOC
profiles can also predict sputum eosinophilia in asthma
[11]. Unsurprisingly, given the differences in demographics
and disease processes between the studies, the specific
VOC:s used in the models were not the same. The identifica-
tion of VOCs patterns specific to sputum inflammatory pro-
file, and phenotypes such as “frequent exacerbators” may
not only provide biomarkers for clinical use, but also could
potentially provide new insights in disease pathophysiology.

Whilst absolute control of environmental VOCs is
practically impossible, it is desirable to reduce back-
ground levels as much as is practicable. We use a VOC-
filter in our circuit, an equilibration time of at least five
minutes, and collect samples in the same room for this
purpose. Even so, exogenous VOCs may be differentially
handled by the airways in health and disease, and alte-
ration in exhaled concentrations may therefore be rele-
vant. Examples include: low-molecular weight molecules
being absorbed by excessive airway secretions more read-
ily than heavier molecules; the systemic circulation, act-
ing as a reservoir, re-releasing environmental VOCs into
the air at rates determined by cardiac output and lung
circulation [23]; airway and alveolar inflammatory pro-
cesses metabolising inhaled VOCs for example by oxida-
tion; and the air trapping seen in obstructive lung disease
altering the washout time for gas-phase molecules
compared to healthy lungs. One approach to correct-
ing for “exogenous” VOCs is to subtract the content of
a contemporaneous environmental sample from the
expired sample [24], but this oversimplifies the meta-
bolic and physiological impact of the airways and
circulation.

Our findings require validation in an independent group
of subjects then definitive compound identification and
calibration curves determined by injection of known stan-
dards. The origins of these compounds are as yet un-
known, but hypotheses can be generated. For example six
of the 11 compounds discriminating COPD from health
were aldehydes, and all had strong loading onto the first
principal component, an interesting finding in line with
the findings of Van Berkel et al [7]. It may be that the
metabolic upregulation in the mucosa of COPD patients
removes aldehydes from the air; it is known for example
that the aldehyde scavengers N-acetylcysteine and glutathi-
one monoethyl ester completely remove unsaturated (but
not saturated) aldehydes from a cigarette smoke extract
[25]. There may also be an effect of ICS on suppressing
exhaled aldehyde levels, supported by the contribution
of undecanal to both models. Further, it may be instructive
in future studies to compare these putative exhaled
markers of inflammation to existing disease-relevant
breath biomarkers such as leukotriene B, and other
eicosanoids [26].
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Conclusion

We have demonstrated the potential of breath gas ana-
lysis for the identification of metabolomic patterns that
not only can be used to discriminate health from disease
(especially amongst current smokers) but also to identify
clinically relevant disease phenotypes. It is now essential
that these findings be validated prospectively in an inde-
pendent group of patients in order to confirm that these
patterns have potential for clinical use as biomarkers.
Furthermore, confirmation of the identity of specific dis-
criminatory compounds may lead to the elucidation of
metabolic pathways with potential benefits for novel
therapeutic targets.
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