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The pathogenesis of COPD and IPF: Distinct
horns of the same devil?
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Abstract

New paradigms have been recently proposed in the pathogenesis of both chronic obstructive pulmonary disease
(COPD) and idiopathic pulmonary fibrosis (IPF), evidencing surprising similarities between these deadly diseases,
despite their obvious clinical, radiological and pathologic differences. There is growing evidence supporting a
“double hit” pathogenic model where in both COPD and IPF the cumulative action of an accelerated senescence
of pulmonary parenchyma (determined by either telomere dysfunction and/or a variety of genetic predisposing
factors), and the noxious activity of cigarette smoke-induced oxidative damage are able to severely compromise
the regenerative potential of two pulmonary precursor cell compartments (alveolar epithelial precursors in IPF,
mesenchymal precursor cells in COPD/emphysema). The consequent divergent derangement of signalling
pathways involved in lung tissue renewal (mainly Wnt and Notch), can eventually lead to the distinct abnormal
tissue remodelling and functional impairment that characterise the alveolar parenchyma in these diseases
(irreversible fibrosis and bronchiolar honeycombing in IPF, emphysema and airway chronic inflammation in COPD).
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Introduction
Chronic obstructive pulmonary disease (COPD) and
idiopathic pulmonary fibrosis (IPF) are two severe multi-
factorial pulmonary disorders characterised by quite dis-
tinct clinical and pathological features. COPD is
characterised by a poorly reversible and progressive air-
flow limitation that is determined by the concurrence of
airways inflammation and emphysema (from now on
both included in the acronym COPD)[1,2], whereas in
IPF a restrictive pattern of lung volume abnormality is
associated with impaired diffusion capacity [3]. At ima-
ging and pathological examinations COPD and IPF exhi-
bit different appearances, as far as the involved
pulmonary regions (upper lobes versus lower lobes), and
the occurring parenchymal modifications are concerned
(alveolar emphysematous dilation and bronchiolar
inflammation in COPD, versus interstitial fibrosis and
honeycombing in IPF)[1-3]. Finally, the incidence and
prevalence of the two diseases are quite different, since
IPF is considered a rare condition (although incidence
and prevalence are both rising due to improved

diagnostic tools), whereas the COPD prevalence is very
high, although variable in different risk populations
[4,5].
Nevertheless, a number of similarities can be recog-

nised between the two disorders. Firstly, both COPD
and IPF are chronic and progressive diseases of elderly
people (with male predominance), that severely affect
the lung function, and both are related to long term
inhalation of external noxious agents (mainly tobacco
smoking)[3,4,6,7]. Secondly, in both diseases a progres-
sive loss of alveolar parenchyma takes place leading to
severe impairment of respiratory function. Variants of
pulmonary fibrosis associated with emphysema have
been described, and these cases have been grouped in a
newly defined syndrome of combined pulmonary fibrosis
and emphysema (CPFE)[8]. In CPFE, lung volumes are
commonly within normal limits due to the opposing
effects of hyperinflation and fibrosis. The CPFE syn-
drome is more frequent in male smokers, and pulmon-
ary hypertension can complicate all these disorders
[8,9]. Finally, both IPF and COPD are associated with an
increased risk of cancer development, and several lines
of evidence suggest that this increase is independent
from the effect of cigarette smoking [10,11].
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Despite the great deal of research, effective treatments
are lacking for both COPD and IPF. This can be a con-
sequence, at least in part, of the limited understanding
of their pathogenesis, despite the overwhelming plethora
of studies and theories proposed so far. Interestingly, for
both diseases a gradual shift from “inflammatory-based”
pathogenic theories to more complex approaches
occurred in recent years [12,13]. In this evolving sce-
nario, a variety of concurrent underlying pathogenic
mechanisms have been proposed for these diseases,
including oxidative stress, protease/anti-protease imbal-
ance, abnormal healing after damage, deranged remodel-
ling, enhanced apoptosis, and others [14-18].

Accelerated senescence in the pathogenesis of IPF and
COPD
The most striking new information linking the patho-
genesis of IPF and COPD relates to their proposed
inclusion within the category of diseases with alveolar
senescence and lung “premature aging” [19-33]. The
senescence hypothesis for both COPD and IPF patho-
genesis is supported by a variety of studies demonstrat-
ing telomere length abnormalities, as well as the in situ
expression of senescence-related cell-cycle regulators
(p21WAF1 and p16INK4a )[19,25,34,35]. The role of cell
senescence is particularly evident in familial IPF, where
nearly 10% of cases harbour mutations of one of the
two key components involved in telomere lengthening:
the reverse transcriptase component TERT and the
RNA template component TERC [29,30]. In addition,
about 20% of patients suffering for dyskeratosis conge-
nita, a well characterized genetic disease caused by telo-
merase mutations, develop pulmonary fibrosis [36].
Although abnormalities directly affecting telomerase

genes have not been demonstrated in COPD, telomere
decreased length has been demonstrated in either lung
cells or peripheral leukocytes in COPD patients, com-
pared with control subjects [21,24-27]. The excess of
telomere attrition further supports the concept of
COPD as a systemic disorder of premature aging, as
also suggested by the occurrence of relevant comorbid-
ities, such as weight loss, osteoporosis, cardiovascular
diseases, and depression, where premature senescence
and telomere length abnormalities have been also docu-
mented [37-39]. Further experimental evidence has been
recently provided that telomere length is a susceptibility
factor in emphysema [40].

Epithelial progenitor cell dysfunction in IPF
The pathogenic role of genetic abnormalities in IPF is
much more evident than in COPD, and familial IPF has
been recently included within the category of genetic
diseases with “telomere dysfunction” together with
acquired aplastic anaemia and dyskeratosis congenita

[41-44]. These diseases are characterised by clinical and
pathologic heterogeneity despite the similarity of under-
lying genetic defects affecting the telomere elongating
mechanisms (mainly TERT or TERC mutations). In
these diseases specific phenotypes are likely related to
the progenitor cell type(s) involved as “weak spots” in
disease development (e.g. haemopoietic precursors in
aplastic anaemia)[45]. A correct telomere maintaining
program in precursor cells is crucial to avoid degenera-
tive disorders and anticipated aging, and short telomeres
cause precursor cell failure in experimental systems
[46,47]. In addition, it has been clearly established that
the development of diseases with “telomere dysfunction”
needs the contribution of both a genetic predisposing
abnormality as well as an environmental factor in order
to develop the entire disease phenotype [45]. Thus, the
exposure to benzene or other toxic substances, is key
for the development of aplastic anaemia, as it can be
considered tobacco smoke (or exposure to other toxic
substances) in IPF. A significant role might be also
exerted by gender [48], as it could be also expected in
cases of pulmonary fibrosis complicating X-linked dys-
keratosis congenita [49]. Accordingly, most described
cases of pulmonary fibrosis complicating dyskeratosis
congenita are former-smoker and male [36,49,50].
Familial IPF cases have been linked not only to muta-

tions of telomerase genes, but also to mutations in sur-
factant proteins coding genes (surfactant protein-C and
A2)[51-54]. Chronic epithelial injury in these cases is
likely related to protein abnormalities that can either
impair the crucial functions of the surfactant, or induce
endoplasmic reticulum stress and apoptosis [55]. Type-
II pneumocytes, that are the main producers of surfac-
tant proteins and are the epithelial precursors of alveolar
parenchyma, are the specific target of cellular death pro-
duced by surfactant protein abnormalities.
Thus different mechanisms can be responsible of the

progressive loss of pneumocyte precursors in IPF,
including accelerated senescence, surfactant abnormal-
ities and endoplasmic reticulum stress, all potentially
causing precursor cell exhaustion and abnormal alveolar
re-epithelialisation [56-59]. The concurrent action of
environmental factors such as the exposure to toxic sub-
stances, and especially tobacco smoking and/or pollution
appear as necessary for developing the disease in both
familial and sporadic IPF, although IPF can occur also
in non smokers [6,60](Figure 1).

Mesenchymal precursor cell insufficiency in COPD/
emphysema
In COPD a large amount of data suggest that parenchy-
mal remodelling and progressive dilation of alveolar
spaces is related to decreased and/or deregulated pro-
duction of extracellular matrix proteins, in particular
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elastin, with the eventual impaired capability to sustain
connective and epithelial tissue repair. Connective tissue
insufficiency can be either caused by genetic defects as
observed in alpha-1 anti-trypsin deficiency (a well estab-
lished genetically determined form of COPD/emphy-
sema where elastin decrease can be directly related to
the observed alveolar dilation, loss of elastic recoil and
airflow obstruction), or it may be ascribed to ill defined
causes inducing mesenchymal precursor cell senescence
and progressive decrease of matrix protein production,
as suggested in this review. Accordingly, senescence
related markers in COPD are mainly demonstrable in
mesenchymal cells (fibroblasts and endothelial cells)
[61], and a variety of abnormalities have been described
affecting pulmonary mesenchymal cells, including fibro-
blasts and endothelial cells in both human and experi-
mental COPD [62-68](Figure 1).

IPF and COPD: two distinct horns of the same devil?
All this taken into account, it is possible to hypothesise
that in the pathogenesis of both COPD and IPF the
main driving abnormality is the precocious senescence
of pulmonary parenchyma.
But how can be reconciled this proposed similarity

between the basic pathogenic mechanisms underlying
COPD and IPF with the obvious diversity of their clini-
cal and pathological presentations? A possible explana-
tion can be searched in the diversity of the genetic
alterations, including genetic/epigenetic inheritance or
predisposing gene polymorphisms, compromising the

renewal capacity of different target cells [69-71]. As pro-
posed above, if in IPF the major target is likely the
alveolar epithelial precursor cell (type II pneumocyte), in
COPD the Achille’s heel may be represented by
mesenchymal precursor cells within the alveolar
parenchyma.
Human and experimental studies provide strong evi-

dence that molecular networks regulating parenchymal
lung tissue renewal are perturbed in both COPD and
IPF, although in different ways. Among these networks,
particular relevance has been focused on the interplay
between Notch and Wnt, two signalling pathways play-
ing critical roles in epithelial and mesenchymal precur-
sor cell maintenance and differentiation [72-78].

Wnt and Notch pathway perturbation in IPF
In IPF the senescent phenotype seems to mainly affect
the epithelial precursors of alveolar tissue (type-II pneu-
mocytes), thus preventing a correct epithelial renewal at
anatomical sites where mechanical stress and alveolar
damage are expected to be maximal (lower/peripheral
lung zones) [56,79]. Pneumocyte loss is followed, in this
pathogenic scheme of IPF, by attempted tissue regenera-
tion and exaggerated release of molecular signals (Wnt
and Notch) triggering fibroblast proliferation and migra-
tion. Several human and experimental studies have con-
firmed that the Wnt-pathway is abnormally activated in
IPF, and this notion is included in recent pathogenic
models for IPF [17,56,80-82]. The relevance of abnormal
Wnt-signalling activation in IPF is confirmed by the up-
modulation of various Wnt-pathway molecular targets
observed in IPF (MMP7, cyclin-D1 and others) [80], as
well as by the demonstration that experimental fibrosis
can be attenuated by the Wnt/b-catenin pathway block-
ade [83]. Accordingly, perturbation of the Wnt-pathway
is directly related to abnormal myofibroblast activation
and epithelial-mesenchymal transition [84], and
mesenchymal precursor cells can further amplify the
fibrotic process by triggering the Wnt-pathway [85].
Myofibroblasts are key elements in IPF and their differ-
entiation can be also triggered by loss of telomerase
activity [86]. Concurrently, Notch-signalling is crucial
for myofibroblast differentiation and alveologenesis, and
can also contribute to the differentiation of airway basal
precursor cells [87].
But how can senescent pneumocytes abnormally trig-

ger these pathways in IPF? Signals provided by the
milieu of damaged alveolar cells can trigger a variety of
reparative mechanisms, including the recruitment and
stimulation of endogenous and exogenous progenitors
[88], and it is possible to expect a severe derangement
of this process in senescent alveoli. In several systems it
has been demonstrated that cell senescence can trigger
a “senescence-associated secretory phenotype”, that is

Figure 1 Pathogenic scheme of IPF and COPD. Summation of
genetic and environmental factors underlay the abnormal renewal
of either epithelial (left) or mesenchymal (right) alveolar
components leading to parenchymal fibrotic obliteration and
remodeling in IPF, or emphysematous changes and airway
inflammation in COPD. The genetic background can be either
hereditary (fully consistent with a “telomere dysfunction” as
observed in familial IPF), or can variably provide a genetic
susceptibility.
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able to stimulate the production of proliferative and
profibrotic mediators, including growth factors, cyto-
kines, chemokines, and metalloproteinases [89], acting
on neighbouring epithelial and mesenchymal cells thus
perturbing their physiological crosstalk as previously
proposed [16,17]. In line with this assumption, both
Wnt- and Notch pathways have been shown to be acti-
vated by cell senescence, and epithelial mesenchymal
transition and mobilization of beta-catenin are among
the features characterising the senescence-related hyper-
secretive phenotype [88-95]. In senescent alveoli
mesenchymal and epithelial precursors could be the tar-
get of this deranged cascade of stimulatory signals, with
eventual myofibroblast activation and bronchiolar remo-
delling. Senescent myofibroblasts in turn could be also
stimulated to acquire a secretive phenotype, and this
effect is likely to occur at short distance from damaged
areas, thus contributing to produce the patchy distortion
of pulmonary tissue characterising the “usual interstitial
pneumonia” (UIP) pattern. Recently, we demonstrated
that fibroblast foci are mainly located within micro-hon-
eycombing lesions in IPF, at sites where basal cell airway
precursors abnormally show over-expression of mole-
cules involved in cell-motility (laminin-5 g-2-chain and
heath shock protein 27), and molecules that can be
directly related to cellular senescence including p21waf1

and p53 [96,97]. Small airways and alveolar epithelia are
characterised by quite different renewal strategies at the
molecular level, and telomere dysfunction and cellular
senescence could be expected to act differently in these
two compartments. Bronchiolar progenitors, located in
the basal layer [98], express high levels of ΔN-p63+, a
potent anti-apoptotic mediator that can interfere with
the p53/p21 pathway and may potentially contrast cell
senescence in basal cells [96,99]. Bronchiolar abnormal
proliferation and honeycomb changes are common in
IPF and can be considered as consequence of divergent
behaviours in proximal and distal lung compartments
[15,56,99]. In our view, exaggerated autocrine and para-
crine activation of the Wnt- and Notch-pathways can in
part explain honeycomb cyst formation, since prolifera-
tion and differentiation of basal cell precursors in small
airways depend on the correct expression of these sig-
nalling pathways [98]. Further contribute to the aberrant
bronchiolar proliferation and honeycomb cyst formation
in IPF is likely provided by abnormalities affecting the
production of airway mucins, as recently demonstrated
[70,100]. Interestingly, disordered mucin production
with increased MUC5B forms is also observed in the
airway of COPD patients [101].

Wnt and Notch signalling perturbation in COPD
Interestingly, the same signalling pathways involved in
IPF (Wnt- and Notch), seem to have a relevant role also

in COPD, but in the opposite way. In fact, both Wnt-
and Notch- appear as significantly inhibited in COPD,
rather than activated as observed in IPF [80-82,102,103],
and this observation can explain why in emphysema
enlarged alveoli are mainly covered by type-I differen-
tiated pneumocytes and type II pneumocyte prolifera-
tion is minimal. In different systems in fact, the classical
role of the Notch- and Wnt-signalling, acting in concert,
is the maintenance of self-renewal potential of epithelial
precursor cells and the regulation of cell differentiation
[72-78], and the abnormal decrease of these pathways,
as observed in emphysema, can be detrimental for the
correct renewal of pulmonary parenchyma [102,103].
Accordingly, activation of the Wnt/beta-catenin pathway
can attenuate experimental emphysema [104], and accel-
erated precursor cell senescence and dysfunction are
related to aberrant Notch and Wnt-signalling, particu-
larly affecting the correct differentiation of mesenchymal
precursors [90-92].
The observed inhibition of Wnt-signalling in COPD

may be ascribed to a variety of concurrent causes,
including the smoking-related up-regulation of extracel-
lular Wnt antagonists (e.g. secreted frizzled-related pro-
teins) [103]. Interestingly, the Wnt-pathway is sensitive
to mechanical stimuli in different systems, and it is con-
sidered to represent a key factor in mechano-transcrip-
tion processes [105-108]. It is then possible to
hypothesise that the decrease of elastic recoil occurring
in emphysematous parenchyma may significantly contri-
bute, in a vicious circle, to perpetuate the Wnt-signal-
ling down-modulation. In IPF, on the other hand, Wnt
activation could be amplified at sites where mechanical
stress is higher (e.g. in the subpleural lower lung por-
tions, typically affected in IPF), thus contributing to
ongoing alveolar loss and fibrosis, as recently hypothe-
sised [79].
All these data taken together, it is possible to hypothe-

sise that in COPD the abnormal senescence of mesench-
ymal precursors can cause both an impaired production
of extracellular matrix proteins (e.g. elastin), as well as a
derangement of the interplay between signalling path-
ways that regulate alveologenesis (in particular Wnt and
Notch). These abnormalities are likely sufficient to
cause the progressive weakening of the scaffold intersti-
tial structures sustaining the pulmonary parenchyma,
with eventual alveolar dilatation and emphysema.

Precursor cell senescence and inflammation in COPD-
emphysema
Interestingly, the here proposed pathogenic scheme,
centred on alveolar senescence and mesenchymal pre-
cursor cell insufficiency, can in part reconcile some con-
troversial issues regarding the significance and role of
inflammation and autoimmunity in the development of
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airway disease occurring in COPD [2,20,109-115]. Evi-
dence has been in fact provided of a robust regulatory
function of mesenchymal stem cells (MSC) on cells of
both the innate and adaptive immune systems, and bone
marrow derived MSC are able to inhibit the release of
pro-inflammatory cytokines and also stimulate the func-
tional activity of regulatory T-lymphocytes [116-119].
The regulatory functions of MSC is similar in different
tissues [120,121], including the lung [Ricciardi M, et al:
unpublished data]. It is then possible to hypothesise that
in COPD the regulatory functions of senescent MSC
can be variably impaired, with eventual triggering of
“autoimmune-like” chronic inflammation in small air-
ways, similar to that observed in the variety of lung dis-
eases presenting as constrictive bronchiolitis in different
settings (lung allografts, exposure to toxic substances,
autoimmunity, post-viral, etc.) [122-126]. According to
this hypothesis is the recent demonstration of a direct
role of mesenchymal cell senescence and telomere dys-
function in causing airway inflammation in COPD [127].
In this scheme, the airway remodelling characterising
COPD could be tentatively explained by the concur-
rence action of the inflammatory stimuli derived by the
above described inhibition of MSC immune-modulatory
role, and the proliferative response of airway epithelium
to the chronic damaging effect of exogenous toxic sub-
stances (e.g. cigarette smoke).

Conclusions
In summary, in both COPD and IPF a common patho-
genic scheme can be traced where an accelerated cellu-
lar senescence determined by the “two hits” paradigm
(genetic predisposition to cell senescence with the con-
currence of tobacco smoke), determines an impaired
regeneration of the lung parenchyma after damage. The
divergence in two horns in this model is provided by
the affected precursor cells (mesenchymal in COPD and
emphysema, epithelial in IPF), the relevance of genetic
background, as well as by the basic signalling pathways
involved in the development of either emphysema or
fibrosis (Wnt-, Notch-, etc.)(Figure 2). Both mechanisms
could be involved in the cases with combined pulmon-
ary fibrosis and emphysema [8,9].
The complexity of this network is difficult to be com-

pletely deciphered in both IPF and COPD, since beyond
precursor cell senescence, as here described, other
genetic predisposing factors and molecular mechanisms
are likely involved in both diseases, including micro-
RNA regulation [128-133]. Interestingly, perturbation of
micro-RNAs can also affect TGF-beta, a potent profi-
brotic effector, that plays a relevant role in early lung
development, has significant interconnections with the
Wnt-pathway, and is involved in the pathogenesis of
both IPF and COPD [129,133-136]. Another player in
this complex scenario is likely represented by caveolin-1,

Figure 2 Pathogenic scheme of IPF and COPD. The complex effects of either epithelial (left), or mesenchymal (right) insufficiency on
derangements of various signaling pathways in IPF and COPD as hypothesized in this review is summarized.
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the member of a protein family involved in the forma-
tion of cellular caveolae, that plays divergent roles in the
development of IPF and emphysema, respectively
[137-141].
These evolving concepts open new options to better

understand the pathogenesis of both IPF and COPD, as
far as the involvement of both parenchymal and small
airway components are concerned [142,143], and also
new perspectives for alternative treatment options,
including drugs specifically addressing some of the
mechanisms described in this review. The high relevance
of the type of cell precursor involved in the two diseases
is emphasised, since future efforts should be focused on
their pharmacological protection or specific replacement
[144-149].
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