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through a process involving the PPARy/NF-kB
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Abstract

Background: Docosahexaenoic acid (DHA) and DHA-derived lipid mediators have recently been shown to possess
anti-inflammatory and pro-resolving properties. In fact, DHA can down-regulate lipolysaccharide (LPS)-induced
activation of NF-kB via a PPARy-dependent pathway. We sought to investigate the effects of the novel DHA-derived
mediator resolvin D1 (RvD1) on LPS-induced acute lung injury and to determine whether these effects occur via a
PPARy-dependent pathway.

Methods: BALB/c mice aged 6-8 weeks were randomly divided into seven groups: two control groups receiving
saline or RvD1 (600 ng) without LPS; a control group receiving LPS only; an experimental group receiving RvD1
(300 ng) or RvD1 (600 ng), followed by LPS; a group receiving the PPARy antagonist GW9662; and a group
receiving GW9662, then RvD1 (600 ng) and finally LPS. LPS (50 uM) and saline were administered intratracheally.
RvD1 was injected intravenously 24 h and 30 min before LPS, while GW9662 was injected intravenously 30 min
before RvD1. Mice were killed at 6, 12, and 24 h. Samples of bronchoalveolar lavage fluid (BALF) were analyzed for
cell counts and cytokine analysis. Lung tissues were collected for histology, Western blotting and electrophoretic
mobility shift assays (EMSAS).

Results: At all three time points, groups receiving either dose of RvD1 followed by LPS had significantly lower total
leukocyte counts and levels of TNF-a and IL-6 levels in BALF than did the group given only LPS. RvD1 markedly
attenuated LPS-induced lung inflammation at 24 h, based on hematoxylin-eosin staining of histology sections. RvD1
activated PPARy and suppressed IkBa degradation and NF-kB p65 nuclear translocation, based on Western blots
and EMSAs. The PPARy inhibitor GW9662 partially reversed RvD1-induced suppression of IkBa degradation and p65
nuclear translocation.

Conclusions: These results suggest that RvD1 may attenuate lung inflammation of LPS-induced acute lung injury
by suppressing NF-kB activation through a mechanism partly dependent on PPARy activation.
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Background
Acute lung injury (ALI) and its severe form, acute respira-
tory distress syndrome (ARDS), are inflammatory disor-
ders of the lung caused by pneumonia, sepsis, trauma
and/or aspiration [1]. ALI is characterized by hypoxemia,
non-cardiogenic pulmonary edema, low lung compliance
and widespread capillary leakage. ALI and ARDS contrib-
ute to significant morbidity and mortality in intensive care
units. Although improvements in mechanical ventilation
and supportive care have increased the survival rates of
patients with ALI/ARDS, pharmacological treatments
have not improved these rates [2]; as a result, in-hospital
mortality rates remain high: 38.5% for ALI and 41.1% for
ARDS [3]. Thus, there is a need for innovative pharmaco-
logical therapies to improve clinical outcomes.

Inflammation plays an important role in the patho-
physiology of ALL While effective host defense depends
on a self-limiting inflammatory response, excessive or
uncontrolled inflammation can lead to tissue injury,
chronic inflammation, scarring, and fibrosis [4]. Inflam-
mation was previously thought to resolve through a passive
process, but recent findings demonstrate that resolution
is an active, regulated process of clearing inflamma-
tory exudates [5]. Using a lipidomics approach based
on liquid chromatography-tandem mass spectrometry,
researchers have identified new lipid mediators of spontan-
eous resolution [4]. These endogenous lipid mediators are
biosynthesized from omega-3 polyunsaturated fatty acids
(w-PUFA) and can accelerate the resolution of acute in-
flammation and restoration of tissue homeostasis. Resolvin
D1 (CyH3,0s5) is one of these lipid mediators and is
derived from the w-PUFA docosahexaenoic acid (DHA) [4].

Feeding patients with ARDS enterically with supple-
ments enriched with o-PUFA improves clinical out-
comes, including shortening the time on mechanical
ventilation and the stay in the intensive care unit [6]. The
therapeutic effects of w-PUFA in inflammatory disease
occur via activation of peroxisome proliferator-activated
receptor gamma (PPARy) and inhibition of NF-«B activa-
tion [7]. PPARYy is a ligand-activated nuclear transcription
factor that plays important roles in cellular differentiation,
cancer, inflammation, insulin sensitization, atherosclerosis,
and metabolic diseases [8]. When activated, PPARy binds
to the PPAR-response element and represses or induces
transcription of target genes [9]. Previous studies have
shown o-PUFA to be natural ligands of PPARy [10].
PPARy inhibits NF-kB and thereby suppresses several
inflammatory processes [11]. DHA acts through a PPARy-
dependent pathway to down-regulate lipopolysaccharide
(LPS)-induced activation of NF-kB in human kidney-2
cells [12].

Since RvD1 derives from DHA and shows anti-
inflammatory effects in models of allergic airway response
[13] and in patients with peritonitis and renal ischemia—
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perfusion injury [6], we hypothesized that RvD1 may also
promote the resolution of ALI Since w-PUFA are natural
ligands of PPARY, we further hypothesized that RvD1 may
act through a mechanism dependent on PPARy. To test
these ideas, we used a mouse model of LPS-induced ALI
to examine whether RvD1 accelerates the resolution of in-
flammation and, if so, whether it acts via a PPARy/NF-kB
pathway.

Material and methods

Animal groups and treatments

Male BALB/c mice aged 6-8 weeks were purchased from
the Experimental Animal Center of Sichuan University.
Animals were free of specific pathogens and were kept
on a 12 h light/12 h dark cycle at a room temperature of
22 + 2°C with free access to food and water. Experimental
procedures were conducted under aseptic conditions. The
study protocol was approved by the Animal Care and Use
Committee of West China Hospital.

Mice were randomly divided into seven groups (n=3
per group): two control groups receiving saline or
600 ng RvD1 without LPS; a control group receiving
LPS only; an experimental group receiving 300 ng or
600 ng RvD1, followed by LPS; a group receiving the
PPARy antagonist GW9662; and a group receiving
GW9662, then 600 ng RvD1 and finally LPS. The first
five groups served to determine the protective effects of
RvD1 in LPS-induced ALIL The last two groups, which
received the potent PPARy antagonist GW9662, served
to explore whether the effects of RvD1 occur via a
PPARYy pathway.

RvD1 (purity > 95%) was purchased from the Cayman
Chemical Company (Michigan, USA). Doses of 300 or
600 ng/mouse were chosen based on our own preliminary
data and on other studies [14,15]. These doses were admi-
nistered in 100 pl of sterile saline by tail vein injection
24 h and 30 min before LPS administration; other groups
were treated with 100 pl of sterile saline. LPS (E. coli
serotype O111:B4; Sigma-Aldrich, USA) was administered
intratracheally during inspiration, at a dose of 50 pg/mouse
in 100 ul of sterile saline. Non-LPS groups were treated
with 100 pl of sterile saline.

GW9662 (Sigma-Aldrich, USA) was dissolved in 10%
DMSO and administered at a dose of 1 mg/kg by tail vein
injection 30 min before RvD1 injection; other groups were
treated with a suitable volume of 10% DMSO. The dose
and timing of GW9662 administration were based on our
own preliminary data as well as previous work [16].

LPS-induced ALI and sample collection

Mice were anesthetized with intraperitoneal 1% sodium
pentobarbital (80 mg/kg) and the trachea was exposed
using a neck incision. LPS (50 uM) or saline (control)
was administered intratracheally. Mice recovered from
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anesthesia within 1 h. After recovery, mice were returned
to their cages and allowed food and water ad libitum. At
6, 12, and 24 h after LPS treatment, mice were sacrificed
to allow collection of bronchoalveolar lavage fluid (BALF)
and lung tissue. BALF samples were taken from the right
lung, after which it was snap-frozen in liquid nitrogen and
stored at -80°C for Western blot analysis. The left lung
was fixed and embedded in paraffin for morphological
and histochemical analyses.

BALF analysis and cell counts

Mice were exsanguinated via the abdominal aorta, the
trachea was cannulated, and the chest cavity was opened
via a midline incision. The left main-stem bronchus was
ligated, and the right lung was lavaged three times with
0.5 ml of ice-cold sterile saline. In all cases, more than
95% of the total lavage volume (1.5 ml) was recovered. A
0.5-ml aliquot of BALF was used to determine total cell
and differential cell counts. The remaining BALF was
centrifuged at 1000 ¢ for 5 min at 4°C, and the cell-free
supernatant was stored at -80°C for analysis of cytokines
using enzyme-linked immunosorbent assay (ELISA).

The 0.5-ml aliquot of BALF was subjected to hypotonic
shock to lyse red blood cells, then total cell counts were
determined using a hemacytometer. Cells were adjusted to
a concentration of 5 x 10°/ml in supplemented phosphate-
buffered saline (PBS). After cytocentrifugation (Cytopro
7620; Wescor, Utah, USA) at 700 rpm for 10 min, cells
were stained with Wright's stain. Differential cell counts
were made on samples of 200 cells. An experienced inves-
tigator blinded to the experimental conditions performed
all counts based on standard morphological criteria.

ELISA for inflammatory cytokines

Concentrations of TNF-a and IL-6 in BALF were deter-
mined using commercially available ELISA Kkits for
mouse cytokines (Shanghai ExCell Biology, China) and a
Bio-Rad 680 microplate reader with accompanying soft-
ware (Bio-Rad, Hercules, CA), following the instructions
of the manufacturers.

Evaluation of ALI severity

The left lung was fixed in 4% formaldehyde (pH 7.4),
embedded in paraffin, cut into sections 4 mm thick and
stained with hematoxylin and eosin (H&E). An ALI
score (minimum: 0, maximum: 16) [17] was calculated
as an index of the degree of lung injury. The mean score
was calculated based on five randomly selected high-
power fields (HPF, 400X magnification), and mean
scores for different groups were compared.

Western Blot analysis
Lung tissue samples collected at 6 h after LPS treatment
were homogenized, and cytoplasmic and nuclear proteins
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were extracted separately using the Nuclear and Cyto-
plasmic Protein Extraction Kit (Viagene Biotech, Ningbo,
China) according to the manufacturer's instructions. Nu-
clear protein extracts were used to detect the NF-kB p65
subunit, PPARy and histone H3.1; cytoplasmic extracts
were used to detect IkBa and [B-actin. Mouse polyclonal
antibodies were used against IkBa, the NF-kB p65 subunit,
and PPARy (Cell Signaling Technology, USA); histone
H3.1 (Signalway Antibody, USA); and B-actin (Santa Cruz
Biotechnology, USA). Band intensities for NF-kB p65 sub-
unit and PPARy were normalized to that of histone H3.1,
while the band intensity for IkBa was normalized to that
of B-actin. All blotting experiments were performed three
times with different mice.

Electrophoretic mobility shift assay to detect NF-«kB
Nuclear protein extracts were analyzed for the presence
of NF-«B using a non-radioactive NF-«kB electrophoretic
mobility shift assay (EMSA) kit (Viagene Biotech Co.).
Equal amounts of nuclear protein (5 pg) from each sam-
ple were mixed with biotin-labeled oligonucleotide NF-kB
probe (5'-AGT TGA GGG GAC TTT CCC AGGC-3")
and analyzed by EMSA following the manufacturer's
instructions, as previously described [18]. Each assay was
performed three times using extracts from different mice.

Statistical analysis

All values were expressed as mean + SD. Differences among
multiple groups were analyzed by one-way ANOVA, fol-
lowed by the Student-Newman-Keuls test. Significance
was defined by a p value of 0.05 (two-tailed). All statistical
calculations were carried out in SPSS (version 13.0, SPSS
Inc., USA).

Results

RvD1 reduced the number of leukocytes in BALF

After LPS was administered, total cell counts in BALF
increased from 6 h to 24 h, and differential cell counts
revealed that the increase in leukocytes was due mainly
to neutrophils (Figure 1, Table 1). Numbers of macro-
phages and lymphocytes, in contrast, did not differ sig-
nificantly among the groups. At each time point, RvD1
significantly reduced the number of leukocytes, mainly
neutrophils, in BALF; this effect was dose-dependent.
Administering the PPARy antagonist GW9662 before
injecting 600 ng RvD1 partially reversed the RvD1-induced
reduction in leukocyte number.

RvD1 reduced concentrations of TNF-a and IL-6 in BALF

The levels of both TNF-a and IL-6 in BALF decreased
from 6 h to 24 h (Figure 2). At 6 and 12 h, RvD1 down-
regulated TNF-a and IL-6 levels in a dose-dependent
manner. At 24 h, levels of TNF-a and IL-6 were lower
after treatment with 600 ng RvD1 than after treatment
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Figure 1 Effects of RvD1 on total cell counts in BALF from mice subjected to LPS-induced ALI. BALF samples were collected at 6 h, 12 h,
and 24 h after LPS administration. RvD1 reduced the numbers of leukocytes in BALF, and this effect was partially reversed by GW9662. Values are
expressed as mean + SD (n=3). * p < 0.05 in comparison with the LPS group at each time point. # p < 0.05 in comparison with the LPS +RvD1

12h

24h

with 300 ng, although this difference was not statisti-
cally significant. Administering GW9662 before inject-
ing 600 ng RvD1 partially reversed the RvD1-induced
down-regulation of TNF-a and IL-6.

RvD1 attenuated LPS-induced lung inflammation

Lung tissue samples were collected 24 h after LPS ad-
ministration, and sections were stained with H&E to
allow determination of an ALI score describing the de-
gree of lung injury. RvD1 attenuated LPS-induced lung
inflammation in a dose-dependent manner: mean ALI
scores were significantly lower in the group receiving
600 ng RvD1 than in the one receiving 300 ng RvD1
(Figure 3). Administering GW9662 before injecting
600 ng RvD1 prevented this anti-inflammatory effect of
RvD1: the ALI score was significantly higher in the
group receiving GW9662 followed by 600 ng RvD1 than
in the group receiving only 600 ng RvD1.

Effect of RvD1 on LPS-induced expression of IkBa, NF-kB
p-65 subunit and PPARYy in lung tissue
Lung tissue samples were collected 6 h after LPS admin-
istration. LPS induced IkBa degradation and increased
levels of NF-kB p65 subunit in the nucleus. RvD1 inhibited
both of these effects of LPS in a dose-dependent manner
(Figure 4, panels a and d). Administering GW9662 before
injecting 600 ng RvD1 partially reversed RvD1-induced
inhibition of NF-«B activation (Figure 4, panels a-c).

RvD1 also increased the levels of PPARy in the nu-
cleus, and this was partially reversed by pretreatment
with GW9662 (Figure 4, panels a and d). These results

suggest that inhibition of NF-kB activation by RvD1 is
partially dependent on activation of PPARY.

RvD1 decreased LPS-induced DNA-binding activity of
NF-kB in lung tissue

Lung tissue samples were collected at 6 h after LPS ad-
ministration, and nuclear extracts were prepared. DNA-
binding activity of NF-kB was relatively high in extracts
from LPS-treated mice, whereas no binding was detected
in extracts from saline-treated control mice (Figure 5).
Administering 300 ng RvD1 led to a slight, nonsignifi-
cant decrease in NF-kB DNA-binding activity, while the
higher dose of 600 ng led to significantly lower activity
than in either the mice treated with LPS alone, or the
mice treated with 300 ng RvD1 followed by LPS. Admi-
nistering GW9662 before injecting 600 ng RvD1 partially
reversed the RvD1-induced inhibition of NF-kB DNA-
binding activity.

Discussion

In our mouse model of LPS-induced ALI, pretreatment
with RvD1 reduced levels of TNF-a, IL-6 and neutrophils
in BALF, and it attenuated inflammation in lung tissues.
RvD1 inhibited degradation of IkBa and it decreased the
levels of NF-kB p65 subunit in the nucleus as well as the
DNA-binding activity of nuclear NF-kB. Administering the
PPARy antagonist GW9662 before injecting RvD1 partially
reversed these anti-inflammatory effects of RvD1. These
results suggest that RvD1 may attenuate lung inflammation
of LPS-induced ALI by suppressing NF-kB activation in a
process that depends partly on PPARYy activation.



Table 1 Differential cell counts (expressed as cells x 10%) in BALF from mice subjected to LPS-induced ALI following different treatments

Treatment group

Time after LPS induction of ALI

6 h 12 h 24 h
Macrophages  Neutrophils Lymphocytes = Macrophages  Neutrophils Lymphocytes = Macrophages  Neutrophils Lymphocytes
Saline 1543 +6.80 0.03 £0.04 0.55+042 2210+7.10 0.07 £0.07 0.50 £ 0.66 2525+7.99 0.22 £0.05 0.53£0.03
RvD1 (600 ng) 21.25+889 042+0.72 1.00+031 2234+3.70 0331042 133+061 2844 +429 0.18+0.19 1.71+1.10
LPS 15.07 £3.35 128.89 +£ 645 237 £069 1583 £4.71 162.73 £4.00 311£1.75 20.74 £3.71 193.61 £7.65 265+ 1.64
RvD1 (300 ng) +LPS 11.71+362 9942 + 8.10%# 1.87+£2.15 1741 +252 121.07 + 8.46™# 2.19+0.60 2024 +278 155.77 + 5.70%# 2.99 +0.46
RvD1 (600 ng) + LPS 1070+ 123 63.33 +2.09* 2974227 1039+ 141 81.38+8,00* 3234138 1450+ 1.77 12059 +9.59* 3914159
GW9662 1790 +4.40 0.21£0.36 0.57+0.34 2648 £ 1081 048 £0.66 1.71£0.98 2619+ 1249 030+0.32 1.51+£1.22
GW9662 + RvD1 (600 ng) + LPS 13.02 £ 261 99.59 + 7.15%# 272+143 1552+ 071 11352 £16.19% 3.29+0.58 1415+ 146 152.59 £ 2.91%# 360+ 1.26

Data are mean + SD, n = 3. BALF, bronchoalveolar lavage fluid. RvD1, resolvin D1. * p < 0.05 in comparison with the LPS group at each time point. # p < 0.05 in comparison with the RvD1 (600 ng) + LPS group at each

time point.
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Figure 2 Effects of RvD1 on the concentrations of (a) TNF-a and (b) IL-6 in BALF of mice subjected to LPS-induced ALL. BALF samples
were collected at 6 h, 12 h, and 24 h after LPS administration. RvD1 reduced the concentrations of TNF-a and IL-6 in BALF, and these effects
were partially reversed by GW9662. Values are expressed as mean £ SD (n = 3). * p < 0.05 in comparison with the LPS group at each time point.

Proinflammatory cytokines play a critical role in ALI
and ARDS: persistently elevated levels of proinflamma-
tory cytokines such as TNF-a and IL-6 are associated
with worse outcome in patients with ALI or sepsis [19].
Since TNF-a and IL-6 are considered markers of inflam-
mation, the fact that their levels increased after LPS ad-
ministration in our mouse model of ALI suggests that
the model is valid.

Using this model, we found that RvD1 down-regulated
levels of TNF-a and IL-6 in BALF of mice with LPS-
induced ALI, and that it did so in a dose-dependent
manner. These results are consistent with previous
work in patients and animal models of disease. Feed-
ing patients with rheumatoid arthritis or multiple
sclerosis fish oils rich in w-PUFA, from which RvD1

is derived, can reduce TNF-a and IL-6 levels [20]. RvD1
has been shown to reduce levels of TNF-a and IL-6 in
mouse models of colitis, D-galactosamine-sensitized endo-
toxin shock and ALI [21-23]. In addition, the aspirin-
triggered epimer of RvD1 (AT-RvD1; 7S,8R,17R-trihy-
droxy- 4Z,9E,11E,13Z,15E,19Z-docosahexzenoic acid) has
been shown to decrease levels of TNF-a and IL-6 in a
mouse model of hydrochloric acid-induced ALI [24].

Our findings, together with those of previous studies,
suggest that RvD1 can down-regulate proinflammatory
cytokines during the early stages of several inflammatory
diseases, including ALL

In many inflammatory diseases, neutrophils are rapidly
recruited to sites of inflammation; there they kill inva-
ding bacteria through phagocytosis involving the release
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Figure 3 Effects of RvD1 on histological changes in lung tissues of mice subjected to LPS-induced ALI. Lung tissue samples were collected
at 24 h after LPS administration, and sections were stained with hematoxylin and eosin (H&E). Mice had been treated with the following: (a) saline, (b)
600 ng RvD1, (c) LPS only, (d) LPS +RvD1 (300 ng), () LPS + RvD1 (600 ng), (f) GW9662, (g) LPS + RvD1 (600 ng) + GW9662. (h) The degree of lung
injury in tissue sections was assessed based on an ALl score. Values are expressed as mean £ SD (n=3) * p < 0.05 in comparison with the LPS group.

#p <005 in comparison with the LPS + RvD1 (600 ng) group. Scale bar =100 um.
.

of preformed granular enzymes and proteins, as well as
the production of a range of oxygen species. However,
the highly destructive activity of neutrophils can also
pose a risk to healthy tissues. This helps to explain why
one of the first steps in the resolution of inflammation,
which occurs when the initial injury or microbial inva-
sion has been limited and injurious stimuli or microbes
have been neutralized [25], is the loss of neutrophils
from the inflamed area. In fact, research over the last
decade has shown that resolution of inflammation is a
programmed process that is actively regulated by various
pro-resolving lipid mediators derived from w-PUFA, in-
cluding LXA4, RvE], and PD1 [26]. In our mouse model
of LPS-induced ALIL RvD1 at a dose of 600 ng/mouse

significantly and rapidly reduced the numbers of neutro-
phils in BALF and attenuated inflammation and ALI
scores in lung tissues.

RvD1 may decrease the numbers of neutrophils at in-
flammatory sites through the same mechanisms as other
pro-resolving lipid mediators derived from w-PUFA such
as LXA4, RvEl, and PDI1. Mechanisms proposed for
these other mediators include: (i) limiting polymorpho-
nuclear leukocyte (PMN) infiltration to inflamed sites,
(ii) up-regulating CCR5 expression on apoptotic neutro-
phils, and (iii) enhancing apoptotic PMN engulfment
by macrophages [26]. We speculate that RvD1 down-
regulates neutrophils at inflammation sites through
multiple mechanisms. One is that RvD1 exerts anti-
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Figure 4 Effect of RvD1 on LPS-induced changes in expression of IkBa, NF-kB p-65 subunit and PPARYy in lung tissues. (a) Expression
levels of IkBa, NF-kB p-65 and PPARy. Histograms show mean + S.D. (n = 3) of the relative intensity of (b) [kBa protein bands normalized to the
B-actin band, (c) NF-kB p-65 protein bands normalized to the histone H3.1 band, and (d) PPARy protein bands normalized to the histone H3.1
band. * p < 0.05 in comparison with the LPS group. # p < 0.05 in comparison with the LPS +RvD1 (600 ng) group. black triangle p < 0.05 in
comparison with the saline group. Representative results of three independent experiments with different mice are shown.

inflammatory effects by down-regulating levels of TNF-a  neutrophil numbers at inflammatory sites and to attenuate
and IL-6, and perhaps also levels of neutrophil chemoat- inflammation in lung tissue in our mouse model of ALI
tractants such as IL-8 and LTB4 [19]. In this way, RvD1 involves a combination of anti-inflammatory and pro-
would reduce the number of neutrophils entering the resolving mechanisms.

BALF. At the same time, RvD1 exerts pro-resolving As a first step towards elucidating these mechanisms,
effects, as do other lipid mediators, by accelerating the exit ~we examined whether RvD1 down-regulates inflamma-
of neutrophils from sites of inflammation. It may do this tory mediators and neutrophils in our mouse model
by up-regulating CCR5 expression on apoptotic neutro-  through a PPARy/NF-kB pathway. PPARy is a ligand-
phils, stimulating their uptake by macrophages and the activated nuclear transcription factor involved in cellular
subsequent exit of phagocytes from the exudate via the differentiation, cancer, inflammation, insulin sensitization,
lymphatic system [26]. This is of particular relevance to  atherosclerosis, and metabolic diseases, and it has been
ALl since ALI/ARDS involves extensive inflammation shown to inhibit NF-kB and to play important roles in
with PMN activation in lungs, accompanied by interstitial ~ several inflammatory processes [9]. Various PUFA, espe-
edema and an intense inflammatory response. Neutrophil  cially w-PUFA, are natural ligands of PPARy [29]. PPARy
apoptosis and clearance are delayed in sepsis and ARDS, is found in both the cytoplasm and nucleus under normal
which exacerbates inflammatory injury to the parenchyma  conditions; when activated, cytosolic PPARy translocates
[27]; as a result, enhancing neutrophil apoptosis in ALI ~ to the nucleus, where it induces gene transcription
can decrease mortality and ameliorate lung damage [28].  [30,31]. In our study, RvD1 increased the level of PPARY
In sum, we suggest that the ability of RvD1 to reduce in the nucleus in a dose-dependent manner. Pretreatment
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Figure 5 Effect of RvD1 on the LPS-activated DNA-binding ability of NF-kB in lung tissue. Lung tissue samples were collected at 6 h

after LPS administration. (a) EMSAs were performed to detect the DNA-binding activity of NF-kB in nuclear extracts. (b) Histograms show the
mean + S.D. (n = 3) of the densitometric quantitation of DNA-binding activity by nuclear NF-kB relative to the control (saline). * p < 0.05 in comparison
with the LPS group. # p < 0.05 in comparison with the LPS + RvD1 (600 ng) group. Representative results of three independent experiments with

LPS GWo662  LPS
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(300 ng) (800 ng) +GWI662
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with GW9662 partially reversed the RvD1-induced increase
in nuclear PPARy. A simple explanation of our results is
that RvD1 activates cytosolic PPARY, causing it to translo-
cate into the nucleus, and that this activation occurs via a
PPARy-dependent pathway.

Using our animal model, we also found that RvD1
decreased the level of nuclear NF-kB p65 subunit and
the DNA-binding activity of nuclear NF-«B. Pretreat-
ment with GW9662 partially reversed the RvD1-induced
inhibition of NF-«B activation. These results suggest that
RvD1 inhibits NF-kB activation through a pathway at
least partially dependent on PPARYy activation. These

findings are consistent with several studies in animals
and tissue culture. Oxidized eicosapentaenoic acid (EPA)
and DHA, from which RvD1 is derived, have been
shown to act as potent endogenous PPARy ligands and to
inhibit NF-kB DNA-binding activity in vitro and in vivo
[32]. In fact, both EPA and DHA down-regulated LPS-
induced activation of NF-kB via a PPARy-dependent path-
way in human kidney-2 cells [12]. Therefore, RvD1 may
exert both its anti-inflammatory and pro-resolving effects
through a PPARy/NF-xB pathway. This is particularly
relevant to ARDS, because inhibition of NF-«B activation
in patients with the disease reduced not only the levels of
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proinflammatory mediators but also the numbers of acti-
vated resident neutrophils, thereby accelerating the reso-
lution of lung injury [33].

Taken together, our results strongly suggest that RvD1
interacts with a PPARY/NF-kB pathway, but whether
that interaction occurs by direct binding of RvDI1 to
PPARy remains unclear. Krishnamoorthy and coworkers
[34] transiently transfected HEK-293 cells with expres-
sion vectors encoding PPARY receptors coupled to Gal4
and found that RvD1 did not activate PPARy directly.
They also showed that RvD1 specifically interacted
in vitro with both lipoxin A4 receptor ALX and orphan
receptor GPR32. These results do not necessarily have
to apply in vivo, so future studies should examine this
question in animals.

Indeed future studies should clarify several limitations
of the present work. First, our results do not identify the
mechanism(s) by which RvD1 can reduce neutrophils in
BALF. Second, inhibition of PPARY only partially reversed
the effects of RvD1, suggesting that other signaling path-
ways may help mediate the effects of the drug. For
example, RvD1 has been found to protect mice from LPS-
induced ALI by interacting with MAP kinases as well as
with the NF-kB pathway [23]. Another study found that
o-PUFA  exerted broad anti-inflammatory effects in
monocytic RAW 264.7 cells and in primary intraperito-
neal macrophages through stimulation of G protein-
coupled receptor 120 (GPR 120) [35]. Future studies
should consider these and other pathways when examin-
ing downstream effectors of RvD1 anti-inflammatory and
pro-resolving activity.

Conclusion

We demonstrate that RvD1 can inhibit NF-kB activation
and attenuate lung inflammation in LPS induced-ALIL
Inhibition of NF-kB activation by RvD1 was partially
reversed by the PPARy antagonist GW9662, which also
reduced levels of PPARy in the nucleus. These results
suggest that RvD1 may attenuate lung inflammation in
LPS-induced ALI by suppressing NF-«B activation via a
pathway partially dependent on PPARy activation. The
powerful anti-inflammatory and pro-resolving effects of
RvD1 observed here suggest that it has potential for cli-
nical use.
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