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Abstract

Air pollutant exposure has been linked to a rise in wheezing illnesses. Clinical data highlight that exposure to
mainstream tobacco smoke (MS) and environmental tobacco smoke (ETS) as well as exposure to diesel exhaust
particles (DEP) could promote allergic sensitization or aggravate symptoms of asthma, suggesting a role for these
inhaled pollutants in the pathogenesis of asthma. Mouse models are a valuable tool to study the potential effects
of these pollutants in the pathogenesis of asthma, with the opportunity to investigate their impact during pro-
cesses leading to sensitization, acute inflammation and chronic disease. Mice allow us to perform mechanistic stu-
dies and to evaluate the importance of specific cell types in asthma pathogenesis. In this review, the major clinical
effects of tobacco smoke and diesel exhaust exposure regarding to asthma development and progression are
described. Clinical data are compared with findings from murine models of asthma and inhalable pollutant expo-
sure. Moreover, the potential mechanisms by which both pollutants could aggravate asthma are discussed.

Introduction

Asthma is a chronic inflammatory disorder of the air-
ways. The clinical hallmark of asthma is bronchial
hyperresponsiveness with recurrent episodes of wheez-
ing, breathlessness, chest tightness and cough. These
episodes are associated with variable airflow obstruction
that is at least partially reversible [1].

Asthma is a considerable public health concern, with
an increasing prevalence and an estimate of 300 million
asthmatics worldwide. Although the cause of asthma is
unknown, there are several risk factors that influence
the development of asthma. These can be divided into
host factors and environmental risk factors [1]. The alle-
lic distribution of genes pre-disposing to atopy or airway
hyperresponsivess is a typical host factor which deter-
mines asthma development and phenotype. Typical
environmental factors are allergens (indoor or outdoor
allergens, such as these originating from domestic mites,
furred animals, cockroach, fungi, molds, yeasts and
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pollen), infections (mainly viruses), occupational sensiti-
zers, tobacco smoke (both active and passive smoking)
and indoor or outdoor pollution by gasses and particu-
late matter (PM) [1,2].

In their efforts to unravel the pathogenesis of asthma,
researchers have mainly focussed on the basic immuno-
logic mechanisms resulting in unwanted or exaggerated
inflammation. Many uncertainties remain concerning
why and how asthma develops during lifetime. The
emerging hypothesis is that a failure of endogenous
immune regulated tolerance mechanisms might be
involved [3]. Alternatively, exposure to a more or less
specific cocktail of allergens or pollutants might also
lead to the development of an asthmatic phenotype [2].
Regardless of the mechanism, exposure of the airways to
foreign agents (allergens or chemical agents) often
represents the very first cause for an immune derail-
ment. In later stages, sensitized individuals will be more
susceptible to develop airway inflammation and symp-
toms. These processes can be present for a limited time
or become chronic. In that view, the pathogenesis of
allergic asthma comprises 3 phases: sensitization, acute
inflammation and chronic disease.
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The association between exposure to inhalable pollu-
tants such as cigarette smoke and PM (e.g. diesel
exhaust) and respiratory morbidity has been recognized
for a long time. The epidemiological association of
increased exposure to air pollutants and the rise in fre-
quency of wheezing illnesses led to the assumption that
these pollutants are actively involved in the pathogenesis
of asthma. While there is no doubt that inhaled pollu-
tants can exacerbate the symptoms of asthma, it is also
considerable (though less well established) that they play
a role in inducing asthma or at least in driving incipient
asthma into clinically obvious manifestations of the
disease.

A widely used tool to evaluate the effects of inhaled
pollutants on the development and aggravation of
asthma consists in epidemiological studies. Controlled
exposure studies in humans are informative as well, but
are limited by practical and ethical issues. The use of
animal models leads to more insights regarding the role
of inhalable pollutants during sensitization and inflam-
mation in asthma, with a unique opportunity to unravel
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the effects on the different phases of the development of
the asthma pathology (Figure 1). The mouse has
emerged as the animal of choice for modeling this dis-
ease [4]. In this review, we give a summary of the stu-
dies investigating the impact of inhaled pollutants on
the onset, development or aggravation of asthma. We
particularly focussed on tobacco smoke and PM, more
specifically diesel exhaust particles (DEP).

Health effects of tobacco smoke and diesel
exhaust particles

The World Health Organization (WHO) reports 1.15
billion smokers, of whom 200 million live in Europe [5].
The yearly production of cigarettes still increases in
order to meet the people’s wishes. Tobacco smoke is a
complex mixture of more than 4000 components [6-8].
Researchers distinguish two different emissions from
cigarettes. Mainstream smoke (MS) is the smoke actu-
ally inhaled by the cigarette smoker (active smoking),
whereas side stream smoke is released from the burning
end of the cigarette. In many epidemiologic studies, the
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Figure 1 Schematic presentation of how the effects of environmental exposures, (aero)immunization and airway challenge on the 3
different phases of the asthma pathology (sensitization, acute inflammation and chronic disease) can be dissected in mice.
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term environmental tobacco smoke (ETS) is used, which
is a mixture of sidestream smoke and exhaled main-
stream smoke in the environment after dilution and
aging. This mixed smoke is inhaled during passive
smoking (also referred to as “second hand smoke”).
Active and passive smoking contribute to the develop-
ment of various respiratory health problems such as
asthma and reduced lung function. In susceptible indivi-
duals, active smoking is associated with structural
changes in the airways (remodelling, especially of the
small airways) and results in destruction of the lung par-
enchyma (emphysema) [9,10]. Chronic exposure to
cigarette smoke induces clinically significant chronic
obstructive pulmonary disease (COPD) in 20% of the
smokers. Besides COPD, tobacco smoking also causes
lung cancer and other adverse health effects [5].

The WHO reports that there is consistent evidence
that airborne particulate matter (PM) has a measurable
public health impact [11]. The range of health effects is
broad, but affects predominantly respiratory and cardio-
vascular systems. All population is affected, albeit sus-
ceptibility to the pollution may vary with age or health
status. The risk for various outcomes increases with
exposure and adverse effects of PM were demonstrated
after both short-term and long-term exposure [11]. Die-
sel exhaust particles (DEP) are an important component
in ambient air pollution and respirable particulate mat-
ter. They consist of a carbon core and adsorbed organic
substances such as polycyclic aromatic hydrocarbons,
and contain small amounts of sulphate, nitrate, metals
and other trace elements [12,13]. The majority of diesel
exhaust particles are ultrafine particles with a diameter
around 0.1 pm, that are highly respirable, reaching the
alveoli and the systemic circulation [14]. DEP exposure
can induce acute irritation to eyes and throat, light-
headedness and nausea, and has been associated with
increased respiratory symptoms (cough, phlegm, chronic
bronchitis, asthma), increased lung cancer risk and
increased risk for total mortality and cardiopulmonary
mortality [13-15].

Clinical data on the effect of inhaled pollutants
on allergic sensitization and asthma

It is generally accepted that sensitization to allergens is a
crucial risk factor for the development of asthma. Study-
ing the potential effects of environmental factors on
allergic sensitization is thus relevant. Although the nat-
ure of the inhaled particles from cigarette smoke and
DEP differs, they induce a similar inflammatory
response which is characterized by neutrophils, T-lym-
phocytes, increased levels of IL-8 and IL-6, along with a
decreased phagocytic capacity of alveolar macrophages
[12,14,16-19]. One can hypothesize that both cigarette
smoke and DEP deploy similar mechanisms, creating an
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environment which facilitates allergic sensitization and
asthma development.

Epidemiological studies cannot provide the proof
that cigarette smoke or DEP exposure are causative
factors in the development of asthma. However, asso-
ciations between the risk of developing asthma and
inhalable pollutant exposure provide strong indications
that there might be a causal relationship. Many data
support the hypothesis that ETS exposure (passive
smoking) contributes to the development of both
childhood asthma and adult onset asthma [20]. In
utero exposure to maternal smoking or any smoking at
home significantly increases the risk for developing
childhood asthma [21,22]. The prevalence of asthma,
wheezing, chronic cough and breathlessness in children
increases with the number of parents smoking, sug-
gesting a dose-response [23]. ETS exposure during
childhood [24] or in adults - mainly occupational
exposure - is also associated with the development of
adult asthma and other respiratory symptoms [25] in a
dose-dependent manner [26]. However, the relation-
ship between ETS exposure and allergic sensitization
(as evaluated by serum IgE and skin prick tests) is less
evident [27,28]. ETS can promote the induction of Th2
cytokines in nasal fluid of allergic patients, indicative
of allergic response exacerbation by ETS in human
beings [29]. Passive smoking is indeed dose-depen-
dently related to greater asthma severity, diminished
pulmonary function and poorer asthma control in
adults [30,31] as well as children [32,33]. The correla-
tion between ETS and asthma prevalence and severity
is extensively reviewed in [34].

Contrasting with ETS, the impact of active smoking
on the development of asthma is more controversial.
Some reports state that active smoking is not a risk fac-
tor for adult onset asthma [35], whereas other reports
demonstrate the opposite [36,37]. Active smoking dur-
ing adolescence increases the risk of new onset asthma
[38,39]. Asthma prevalence is also higher both in adoles-
cents [40] and among the elderly [41] who smoke. Cur-
rent wheezing, current asthma and lifetime asthma are
all related to active smoking [42]. As for passive smok-
ing, the relationship between active smoking and atopy
is again controversial [43,44]. Active smoking is asso-
ciated with asthma severity, with higher asthma severity
scores [35] and less controlled asthma [45]. Smoking
asthmatics have a reduced lung function [46], greater
decline in FEV1 with age [47] and the lung function is
inversely correlated with the amount of cigarettes
smoked per day [48]. Active smoking in asthmatics also
impairs the therapeutic response to corticosteroids [49].

Many epidemiological data suggest that traffic related
air pollution (rather than DEP as such) is a risk factor
for wheezing, asthma prevalence and allergic
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sensitization (reviewed in [50-52]), however the evidence
is not so strong. Nevertheless, several recent birth
cohorts demonstrated positive correlations between
exposure to traffic pollution and atopic diseases and
allergic sensitization in children [53,54]. In contrast to
the epidemiological knowledge, experimental approaches
have convincingly demonstrated that DEP can facilitate
the induction of allergic sensitization. Besides their abil-
ity to increase in vivo IgE and cytokine production at
the upper respiratory mucosa, DEP can facilitate sensiti-
zation to a neoallergen, with the production of allergen-
specific IgE and skewing of cytokine production to a T-
helper cell 2 pattern [15,55,56]. Ambient air pollution is
associated with asthma severity [34,57,58], but reported
effects of DEP on aggravation of asthma in controlled
exposure studies differ, possibly due to the variety of
exposure regimens used in experimental protocols
[17,59]. A recent crossover study in London in mild to
moderate asthmatics with real life exposure to diesel
traffic demonstrated an asymptomatic, though signifi-
cant reduction in lung function (FEV; and FVC), most
pronounced in the moderate asthmatics and accompa-
nied by increases in inflammatory markers [60].

Inhaled pollutants and murine allergic
sensitization

Mouse models of asthma allow analyses in precisely
defined environmental conditions. A commonly used
experimental allergen in mouse models is the inert
protein ovalbumin (OVA), but also house dust mite,
pollen and Aspergillus models exist. Sensitization
towards OVA, either naturally or upon inhalational
exposure, does generally not occur in mice. On the
contrary, mice develop inhalational tolerance and
become refractory to subsequent immunization
attempts by OVA intraperitoneally [61,62]. Some stu-
dies intend to break inhalational tolerance by com-
bined exposure regimens in the absence of any
intraperitoneal injection, whereas other studies exam-
ine the aggravating or modulating effects of inhaled
pollutants on the sensitization phase in previously sen-
sitized animals (Figure 1). The impact of tobacco
smoke or DEP on allergic sensitization or inflamma-
tion in different mouse asthma models will be dis-
cussed. In cigarette smoke exposure models, both
nose-only and whole body exposures are performed.
Side stream smoke is often used as a surrogate for
ETS and will be referred to as ETS hereafter. DE(P)
models use intranasal or intratracheal DEP-applications
or diesel exhaust (DE) inhalation. Additional files 1, 2
and 3 give a detailed overview of methodologies and
results from studies with ETS, MS and DEP
respectively.
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Cigarette smoking and sensitization in mice (Additional
files 1 and 2)

Rumold and colleagues proved that ETS (passive smok-
ing) can act as an adjuvant for allergic sensitization to
OVA [63] (Additional file 1). The co-exposure to ETS
and aerosolized OVA induced de novo sensitization, with
the development of a memory response [63]. ETS also
enhanced allergic sensitization towards intraperitoneal
OVA and the effects of ETS were more profound in
females, compared to male mice [64,65]. However, in
other reports the effects were less clear [66,67]. For
example, chronic postnatal exposure to combination of
OVA and ETS tended to reduce OVA-specific immuno-
globulin production compared to OVA-alone exposure
and showed no evident effects on pulmonary inflamma-
tion, although airway hyperresponsiveness was increased.
Accordingly, ETS-exposure prior to and concomitant
with OV A-aerosol exposure could not overcome airway
tolerance in three different mouse strains with a different
level of susceptibility to airway hyperresponsiveness (A/],
BALB/c and C57BL/6) [67]. Also in utero exposure to
ETS did not affect antibody production or airway inflam-
mation towards postnatal aerosolized OVA in unsensi-
tized animals, although it did increase airway
hyperresponsiveness [68]. ETS exposure prior to, during
and after several intranasal sensitizations towards another
allergen, Aspergillus fumigatus (Af), did not affect IgE-
production, but it did increase blood eosinophilia and
airway hyperresponsiveness [69]. Thus, despite the
absence of IgE markers of sensitization, ETS repeatedly
aggravated hyperresponsiveness in different models.

Not all reports are univocal, but some murine models
support the hypothesis that ETS can behave as an adju-
vant and facilitate allergic sensitization. Although not
yet proven, facilitation of allergic sensitization could
explain the reported associations between ETS and the
increased risk for developing asthma in humans.

In a model mimicking active smoking, in which mice
were first exposed for 2-3 months to mainstream cigar-
ette smoke (MS) and subsequently sensitized to OVA or
ragweed via the mucosa, smoke exposure increased
Th2-cytokine production by splenocytes (suggestive for
a heightened allergic sensitization), but attenuated pul-
monary inflammation and airway hyperresponsiveness
[70] (Additional file 2). In another model without intra-
peritoneal sensitization, MS could disrupt the normal
tolerogenic immune response towards OVA [71]. While
OVA aerosol could not induce per se any allergic
inflammation, simultaneous exposure to OVA and MS
induced OVA-specific IgE and IgG;, pulmonary inflam-
mation and goblet cell hyperplasia [71,72]. In a similar
experimental setting, concurrent exposure to MS and
OVA induced allergic sensitization with antigen-specific
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memory in a GM-CSF dependent fashion [73]. However,
prolonged cigarette smoke exposure suppressed eosino-
philic inflammation in this model, indicating that cigar-
ette smoke potentially bears both adjuvant and anti-
inflammatory properties.

All reports with MS suggest that active smoking can
facilitate sensitization in mice, however the data on the
subsequent development of allergic inflammation in
mice are contradictory. This underscores the need to
further elucidate the impact of experimental conditions,
which can favour inflammation or, on the contrary, sup-
press immunity, probably depending on the dose,
method and duration of cigarette smoke exposure. Con-
sidering that the impact of active smoking on the devel-
opment of asthma is controversial, these mouse models
are very challenging and merit further investigation.

Diesel exhaust particle exposure and sensitization in mice
(Additional file 3)

Muranaka and coworkers were the first to show that
DEP can increase specific IgE towards OVA or Japanese
Cedar Pollen (JCP) after intraperitoneal sensitization
[74,75] (Additional file 3). Since then, many authors
have described the adjuvant effects of DEP, using differ-
ent immunization routes. DEP or diesel exhaust can
increase OVA-specific IgE, and can increase IL-4 pro-
duction and cell proliferation in mediastinal and cervical
lymph nodes or spleen after intratracheal, intranasal and
inhalational sensitization, respectively [76-78]. DEP can
thus affect the antigen-specific IgE antibody responses
through local and systemic T-cell activation. Similar
observations were reported upon sensitization through
injection into the footpad [79]. Both the organic matter
adsorbed to DEP and the non-extractable carbon core
are thought to be responsible for the adjuvant effect
[79-81]. Several sensitization models using OVA or
house dust mite (Der f) in presence of DEP revealed
also increased antigen-specific IgG1 and IgG2 levels,
besides increased antigen-specific IgE [81-88]. Moreover,
DEP aggravates the observed pulmonary inflammation
and goblet cell proliferation in these models.

In line with the experimental data in humans, DE or
DEP (self-produced or commercially available reference
material) have consistently shown to facilitate allergic
sensitization. In contrast to the above mentioned effects
of tobacco smoke, biological effects of DEP in mice
seem to be less affected by experimental conditions.

Inhaled pollutants and allergen-induced murine
asthma models

Different approaches can be used to evaluate the effects
of inhaled pollutants on the pathogenesis of allergen-
induced airway inflammation.
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Firstly, experimental models can evaluate the effect on
asthma development. Animals are challenged with aller-
gen in the presence of inhalable pollutants and develop
a typical asthmatic phenotype (IgE, pulmonary inflam-
mation, T-cell responses, airway hyperresponsiveness,
goblet cell hyperplasia and remodelling) (Figure 1B).
The timepoint where the inhalable pollutant is intro-
duced can vary: (1) before the first allergen challenge:
assuming that an alteration of the pulmonary environ-
ment might induce a higher sensitivity to subsequent
allergen challenge; (2) simultaneous exposure: assuming
that the presence of the inhalable pollutant and the
allergen can affect the pulmonary response to both
agents, and in which a possible interaction between
both agents can become relevant.

Secondly, models can also evaluate the aggravating
effects of inhalable pollutants on mice with previously
established allergic airway inflammation, reflecting the
human situation of pollutant exposure in existing
asthma (Figure 1C).

Additional files 4, 5 and 6 give a detailed overview of
methodologies and reported observations in mouse
models in which the effects of ETS, MS or DEP expo-
sure on the development or aggravation of asthma were
examined.

Cigarette smoking and development or aggravation of
asthma in mouse models (Additional files 4 and 5)
Different in vivo studies have demonstrated that ETS
can aggravate the allergic response in mice which were
primed with OVA and had already mounted a Th2
response. Indeed, ETS exposure prior to and during
allergen challenge in sensitized mice induces an upregu-
lation of the allergic response, with increased systemic
and pulmonary inflammation, which is more pro-
nounced in females compared to males [64,65] (Figure
1B) (Additional file 4). In this experimental setup, the
mice, however, also exhibited heightened allergic sensiti-
zation (see section on ETS and sensitization), hampering
the distinction between effects on sensitization, on
asthma development or on both. Enhanced pulmonary
inflammation, remodelling and hyperresponsiveness
were also observed upon chronic co-exposure to ETS
and OVA in “asthmatic mice” (Figure 1C) [89]. In utero
exposure to ETS has long term effects on the develop-
ment of allergic inflammation and exacerbates subse-
quent adult responses to initial allergen exposure [68].
Maternal smoking during pregnancy also induces airway
remodelling in mice offspring [90].

In contrast to the reports on ETS, the effects of main-
stream cigarette smoke (MS) on the development and
exacerbation of allergic inflammation in mice are a mat-
ter of debate [91-93] (Additional file 5). Some authors
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reported that MS exposure inhibits OVA-induced airway
hyperresponsiveness and reduces inflammation in a
model of established asthma [70,92]. However, in a
BALB/c model examining the development of allergic
inflammation, Moerloose et al [93] demonstrated that
acute concurrent exposure to allergen (OVA) and MS
enhances the allergic pulmonary inflammation, and aug-
ments OVA-specific IgE production and airway hyperre-
sponsiveness [93]. These acute effects were confirmed in
C57/Bl6 mice [94]. Upon prolonged exposures, however,
the combination OVA/smoke could delay - though not
prevent - the development of tolerance, which is classi-
cally observed upon chronic OVA-aerosol exposures
[94]. In an “asthmatic mouse”, chronic co-exposure to
MS and OVA did neither aggravate airway inflamma-
tion, OVA-specific IgE production and remodelling, nor
accelerate emphysema development [95]. Interestingly,
smoke exposure did increase OVA-specific IgE levels in
sensitized mice, suggesting that atopic smokers may be
at risk for increased allergen-specific IgE, thus increasing
their risk for developing asthma [95]. Recently, the
importance of the smoke exposure regimens was high-
lighted, since high dose, but not low dose MS sup-
pressed allergic airway inflammation by inhibiting T-cell
function [96].

Complexity of cigarette smoke exposure models

Although is generally accepted that both active and pas-
sive smoking aggravate the severity of asthma in man,
murine models suggest the relationship is not that sim-
ple. In murine asthma models, there is a discrepancy in
the effects of ETS and MS. ETS consistently aggravated
all measured outcomes in murine models, similar to
observations in humans. MS however, aggravated the
development of allergic asthma on the one hand, but it
could also suppress established allergic inflammation on
the other hand. The origin of the discrepancy between
ETS and MS is difficult to define, but can relate to dif-
ferences in the dose, chemical composition or even par-
ticle size of ETS vs MS. Mimicking active smoking in
mice is a challenging task and is possibly more subject
to variation than ETS exposure. Since mice not “just
light a cigarette and smoke”, they receive MS by whole
body exposure or nose-only exposure. Besides the dose,
carbon monoxide levels and stress by the experimental
environment (exposure in group vs. individual restrai-
ners) could conceivably impact the immunological
response. High doses of cigarette smoke could suppress
T-cell or dendritic cell function or induce an increase of
blood carboxyhemoglobin levels, which may have immu-
nosuppressive effects on the ensuing allergic inflamma-
tion [96,97], whereas low doses of cigarette smoke
might promote allergic inflammation. The complexity of
effects induced by tobacco smoke exposure is due to its
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multipartite nature. Immunosuppressive and anti-
inflammatory effects of tobacco smoke are mediated by
its oxidants, by carbon monoxide, nicotine and some
aromatic compounds that modify transcriptional pro-
grammes [98]. Cigarette smoke can moreover chemically
modify signalling pathways and extracellular matrix
through acetylation, nitrosylation, carbonylation and oxi-
dation which affects cell survival, activation and differ-
entiation [98]. On one hand, smoke exposure can lead
to chronic inflammation and damaged respiratory
epithelium. On the other hand, tobacco smoking can
also acutely suppress epithelial function by increasing
permeability and impairing mucociliary clearance. Cigar-
ette smoke can induce infiltration of alveolae by acti-
vated macrophages, producing pro-inflammatory
mediators, reactive oxygen species and proteolytic
enzymes, resulting in inflammation and tissue damage.
But, it can also compromise macrophage phagocytic
capacity or skew their inflammatory mediator profile
[98]. This dual nature of smoke acting on biological pro-
cesses as both stimulus and suppressor is probably dif-
ferently reflected in each experimental system, adding to
the discrepancies in the reported observations.

In addition, in chronic models with MS or ETS expo-
sure, there is a possibility to obtain phenotypes which
overlap with COPD [99-101]. The development of
emphysema and airway remodeling for example, which
have been reported upon chronic MS exposure
[99,100,102] could affect the pulmonary function mea-
surements in an allergic setting. Also lymphoid follicle
formation which has been reported in COPD mouse
models [103] could contribute to allergic sensitization.
This COPD aspect adds to the complexity in interpret-
ing the data, but it can also lead to the development of
clinically relevant models of an asthma/COPD overlap
syndrome. In any case, further analysis of the animal
models and elucidation of the involved mechanisms
could provide us with valuable tools to further unravel
how tobacco smoke aggravates allergic asthma in
humans.

DEP and development or aggravation of asthma in
mouse models (Additional file 6)

Besides their effects on allergic sensitization, diesel
exhaust particles can enhance the allergen-induced air-
way inflammation. In most studies, animals are exposed
to DEP or diesel exhaust throughout both periods of
sensitization and allergen challenge, which renders it
difficult to dissect effects on either sensitization or
developing airway inflammation. Most reports, however,
show that both intratracheal instillation of DEP and
inhalation of diesel exhaust increase the allergic
response towards OVA or house dust mite in a dose-
dependent way with enhanced pulmonary infiltration
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and local cytokine production, increased goblet cell
hyperplasia, increased airway hyperresponsiveness and,
in some strains, increased levels of allergen-specific
immunoglobulins [104-112] (Additional file 6).

The aggravating effect of DEP on pre-existent asthma
has been examined by exposing previously sensitized
and allergen-challenged “asthmatic” mice to DE(P) with-
out further exposure to allergen. In two different mod-
els, DE and DEP-exposure clearly increased airway
hyperresponsiveness [113,114], but the effects rapidly
subsided with continued DE-exposure [113]. The impact
on pulmonary inflammation was, however, less pro-
nounced, with no effects of DE(P) on BAL cell numbers
and limited effects in the lung.

The above mentioned reports demonstrate that DEP
facilitate allergic inflammation and aggravate airway
hyperresponsiveness in murine models and correspond
with epidemiological data associating particulate air pol-
lution with asthma severity.

Effects of inhaled pollutants in other animal
asthma models

In guinea pigs, research focussed mainly on the effects
of smoke on airway hyperresponsiveness. Allergen-sensi-
tized animals show an augmented bronchomotor
response towards acute MS inhalation compared to
non-sensitized animals, which is mediated by endoge-
neous tachykinins [115]. These neuropeptides affect air-
way smooth muscle tone, vascular permeability, mucus
secretion and the release of inflammatory mediators,
leading to neurogenic inflammation. Chronic MS expo-
sure significantly increased airway hyperresponsiveness
upon allergen challenge in sensitized animals, and upon
capsaicin challenge independent of sensitization, indicat-
ing that MS can act as an adjuvant for both antigenic
and neurogenic airway responsiveness [116].

The effects of DEP on sensitization and the develop-
ment of allergic airway inflammation were evaluated in
Brown Norway rats, using timothy grass pollen, house
dust mite or OVA as allergen. As for mice, DEP expo-
sure generally increased the levels of allergen-specific
IgE and IgG [117-121]. Also increased eosinophilic air-
way inflammation [118,119,122] and hyperresponsive-
ness [118] could be demonstrated, albeit not in all
models [117,120,121].

Mechanistic view on the clinical impact of inhaled
pollutants on asthma

The proposed mechanisms by which DEP and cigarette
smoke favour the allergic sensitization, development and
aggravation of asthma have been reviewed previously
and are based on reports in mice and man [12,123,124].
Table 1 gives an overview of similarities and differences
in mechanistic observations for DEP and cigarette
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smoke in both species. The effects of both inhalable pol-
lutants show striking analogies (Figure 2). Inducing
damage of the airway epithelium is probably the primary
event for both DEP and cigarette smoke. This occurs
through direct toxicity or oxidative stress, hereby indu-
cing inflammatory cell recruitment and inflammatory
mediator release. Reactive oxygen species (ROS),
released directly or indirectly by mononuclear phago-
cytes, can contribute to airway inflammation through
the induction of cytokines, chemokines and adhesion
molecules via the NF-xB pathway and mitogen-activated
protein kinase cascades in macrophages and epithelial
cells. This inflamed pulmonary environment has the
ability to attract dendritic cells and enhance their activa-
tion, thereby increasing allergen capture and transport
to the lymph nodes [72,125]. Moreover, tobacco smoke
and DEP induce epithelial release of the growth factors
GM-CSF and thymic stromal lymphopoietin (TSLP),
which can stimulate dendritic cell activation [126-129].
Oxidative stress can by itself also affect epithelial cell
surface integrity. Co-administration of allergen and
inhalable pollutant could thus facilitate penetration of
allergen into the epithelial layer, resulting in a more effi-
cient uptake and subsequent antigen presentation by
dendritic cells. DEP can adsorb allergens onto their sur-
face and act as carriers to increase allergen deposition
into the respiratory tract [130]. This, as well as the
decreased phagocytic capacity of alveolar macrophages,
could prolong allergen exposure and increase immune
reactivity.

Besides the effects on the innate immune response,
DEP or cigarette smoke can affect the adaptive responses
towards allergens by enhancing costimulatory molecule
expression and T-cell proliferation in the draining lymph
nodes [71,72,125,131]. This results in an increased
expression of Th2 cytokines, such as IL-4, IL-5 and IL-
13. Besides IL-5, also GM-CSF, and eotaxin are increased
upon exposure to both inhalable pollutants and allergen.
These mediators affect the eosinophil, one of the most
prominent cells in the inflammation of allergic asthma,
and are responsible for its maturation, survival and
attraction to sites of inflammation. IL-4, IL-5 and IL-13
contribute to goblet cell hyperplasia, airway wall remo-
delling and airway hyperresponsiveness [129]. IgE and
IgG production by B-cells is elevated by DEP and cigar-
ette smoke through the action of IL-4. Binding of IgE,
crosslinked with allergen, induces eosinophil and mast
cell degranulation. The subsequent release of major basic
protein and oxygen radicals induces bronchial inflamma-
tion, whereas histamine and leukotrienes induce airway
hyperresponsiveness, thus further enhancing the effects
of both inhaled pollutants on the asthmatic response.

In addition to the above mentioned and established
mechanisms, there are newly emerging hypotheses by
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Table 1 Mechanistic effects of tobacco smoke and diesel exhaust in human and mouse

TOBACCO SMOKE

DIESEL EXHAUST PARTICLES

Human Mouse BASAL EFFECTS Human Mouse
1[100,144,145] 10100,146] Oxidative Stress/Cell 1% [15,147,148] 1015,86,149-151]
damage
118,152] 1[100,134,146,153,154], 1155]  TNFa ~[156,157] 1106,158-161], |[107]
118,152] 11100,162,163], f [162] IL-1B 1* [148], ~[156] 11135,150,161], |[159]
118,152] 1[95,163], ~[153] IL-6 1157,164], ~[165] 1158,160], fl161]
118,152] 1095,100,153,154,163] IL-8/KC 117,156,166], 1* 10125,135,160]
[148,167-170], ~[165]
118,152] 195,100,134,153,154] MCP-1 1* [170] 1125,150,160], ~[111]
1~0171] 1 [95], 171] GM-CSF 1 [148,167-169], ~ 101721, 1172], [[106], ~[104]
[156,165], f* [128]
~[173] ~[89] Eotaxin 1t [174], ~[175] T112], ~[111]
1176] 10126] TSLP ™ 1271, * [127] .
T [177-179] 1[134,154,180], |[181] Dendritic cell number . 1125]
. 172, ~[181] DC transport of antigen . 1125]
10177,182] 1[72,134,180], |[181] Costimulatory molecule 1% [127,128] 184,125
expression
~or 1[183,184] = Eosinophil number or 1* [185], ~[175,186), 1109], ~[106,107,110]
degranulation
1016,18,101,187]  1[134,153,154,180] Neutrophil number 1015,17,157,175,186,188] 1[86,104,106,107,110,112,125,158,159]
116,101] 1[134,153,154,180] T or B-cell number t1517,157,175,188], ~[186]  1[159], ~[104,110]
1[2844], ~ 1[95], ~[93] IgE 115,123,189] ~[86,104,106,107,109,110]
[25,27]
11901 ~[153] le[€] ~[123,189] ~[86,104,106,107,109,110]
Human Mouse EFFECTS IN ALLERGIC Human Mouse
DISEASE
. f 73], 1[63,73], ~[71] GM-CSF 1 [168,169], ~[165] 11851, |[107]
73] 1[70,89,93] Eotaxin . 1185,88,111,112]
1146] 1163,72,90], |[70,73] Neutrophil number 1166], ~[17] 1[104-106,108,110,112]
1191] 1164,72,73,93,94,192), 1[7092] T or B-lymphocyte 10193], ~[17] 1[84,85,104,105,108-111]
number
1[173,194] 1[63-65,68,69,71-73,89,94], Eosinophil number ~[17] 1183,85,87,88,104-106,109-111]
1[70,96], ~[92]
. 1[96] T- or B-cell proliferation 193] 1[76,77,79,84,131]
10191] 1[71-73,93,94], |[70] Dendritic cell number . .
. 1[72] Costimulatory molecule 1195] 1[84,131]
expression
1194] 1[90] Mast cell number T 66] 10108]
1129] 164,701, |[96] IL-4 155 93] 1[76-78,84,131], | [107]
129], 1[173] 1[63,65,68,70,71,73,89], [96] IL-5 185 ] 1[85,88,104-107,109-112,131]
1129] 1(65,70,72] IL-13 ¢[123] 1112,131]
1[29,44] 1[63-65,71,73,93], ~ IgE 115,55,56,123] 1[74-84,86,87,104,105,107,108], ~[106,110]
[67-70,90,92,94]
. 1[63-65,71,73], 1[96] [e]€] 1156,123], ~[55] 1[81,82,84-86,88,104,105,107-109,111,112],
~[106,110]
1129] . Histamine 1015,196] .
130,32] 1[66,68,68,69,89-91,93], ~ Airway 115,17,59] 1 [105-108]
[67,71], 1[70,92] hyperresponsiveness
1194] 189,901, ~[95] Airway wall remodeling . 1110]
1194] 1072,73,89,90], |[70] Goblet cell hyperplasia . 1183,85,87,106-108,110,111]

=: not described; 1: increased; ~: no effect; |: decreased; *: in vitro data; f: functional involvement
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which inhalable pollutant exposure could affect asthma
pathogenesis which merit further investigation [124].
The release of Damage Associated Molecular Patterns
(DAMPs) upon inhalable pollutant exposure could play
an important role in the asthma pathogenesis. DAMPs
are danger signals that can be actively or passively
released upon tissue damage or cellular stress. Several of
these molecules can stimulate DC maturation and thus
act as endogenous adjuvants, such as high mobility
group box 1 (HMGBI1) protein, heat shock proteins
(HSP), adenosine-triphosphate (ATP) and uric acid
[124]. The induction of somatic mutations by oxidative
DNA damage in lung epithelial barrier cells is also a
danger signal that could lead to DC polarization [132].
The activation of the inflammasomes, major intracellular
immune response systems that sense danger, is an

interesting pathway for future research [133]. Toll-like
receptor signalling, which is activated upon recognition
of Pathogen Associated Molecular Patterns (PAMPs)
such as LPS, microbial sugars or DNA or RNA is
another possible mechanism. For TLR4 it has been
demonstrated that it is involved in pulmonary inflamma-
tion induced by tobacco smoke and DEP as such
[134,135]. In a model of allergic sensitization induced by
tobacco smoke exposure, however, both TLR4 and
MyD88 appeared not to be required [72]. Recently, a
role for TLR9 in an ETS/OVA model was reported
[136]. It is of great interest to elucidate the putative
pathways further and to determine if and at what level
tobacco smoke and DEP show discrepant effects in their
ability to induce and aggravate allergic inflammation.
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Relevance of data from murine research: pro/con
of mouse models

In general, the observed effects of ETS, MS and DEP on
the development and aggravation of allergic inflammation
in mice correspond well with the observations in asthma
patients. The clinical findings for DEP are strongly sup-
ported by data obtained in mouse experimental models. In
the case of ETS and MS, both clinical findings and mouse
data indicate that the relationship between smoke expo-
sure and allergic sensitization and development of clinical
asthma is less convincing than for DEP.

Mouse models have several limitations which should
be considered when the effects of inhaled pollutant
exposure on allergic inflammation are investigated
[4,137,138]: i) Mice do not spontaneously develop
asthma. ii) The frequently used model-allergen OVA has
little biological relevance. However, aggravating effects
of pollutant exposure can also be demonstrated in
house dust mite models or models without intraperito-
neal injections. iii) There are considerable differences in
human and mouse immunology [4,137,138]. Species dif-
ferences in number and size of the alveolar macro-
phages, for example, can affect the efficiency of alveolar
clearance. iiii) Differences in respiratory physiology and
pharmacology can have implications in view of the
effects of exposure to inhalational pollutants. Mice are
obligate nose breathers, incapable of mouth breathing.
The oral breathing in humans bypasses the effective air
cleaning capacity of the nose. Mice have lower number
of cilia, fewer Clara cells and restriction of submucosal
glands to the trachea resulting in a different filtering of
inhaled particles compared to man [101]. This can have
an impact on the distribution of inhaled particles
throughout the respiratory tract [139,140]. Mice further-
more do not have a cough reflex and many mediators
such as histamine and tachykinins have different phar-
macological effects in humans, which complicates
mechanistic analysis of the effects of inhaled pollutants
also anatomical and developmental differences can be
important. Differences in pulmonary lobulation and
bronchial branching (six airway generations in mice ver-
sus 23 airway generations in humans), which are already
present during the embryonic stage of lung develop-
ment, can affect particle distribution [139]. In this view,
the anatomical location of specific pathological mechan-
isms induced by particles, such as remodeling, might be
different in mice compared to man. In contrast to
humans, rodents also do not have respiratory bronch-
ioles. This results in a faster alveolar clearance in
rodents, since bronchioles impede rapid clearance of
particles from the alveoli.
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Species differences may become particularly important
in studies on the effects of inhaled pollutant exposure
on asthma development early in life. Lung development
encompasses different phases of cellular differentiation,
branching morphogenesis and overall lung growth,
which each can be differently affected depending on the
timing of inhaled pollutant exposure [141]. Although
the rodent and human respiratory system go across
identical phases of development, the timing of each
phase is markedly different. In humans, lung growth is
essentially complete by the end of adolescence, whereas
mouse lungs are more fully developed at birth, implicat-
ing that effects of postnatal pollutant exposure in both
species cannot be directly compared [142].

However, despite these concerns, rodent models are a
valuable tool to test hypotheses which are generated by
epidemiological research [4,138] and give more insights
in how inhaled pollutant exposure can induce asthma
development. i) Mouse models mimic important fea-
tures of asthma, such as the pulmonary inflammation,
remodelling and airway hyperresponsiveness, so the
impact of inhaled pollutants on these features can be
easily evaluated (Table 1). ii) Important analogies con-
cerning the effects of in utero exposures are reported.
For example, maternal smoking induces airway remodel-
ling in mice offspring [90], which mimics increased lung
remodelling due to in utero smoke exposure in children
who died from sudden infant death syndrome [143].
Also effects of perinatal ETS exposure on the develop-
ment of pulmonary function decrements in children can
be well modelled in rats [141]. iii) Some important, but
more general, advantages of using mouse asthma models
are the relatively low cost, the availability of different
inbred strains with different immunologic and physiolo-
gic properties, the numerous tools for experimental stu-
dies, the availability of the complete DNA sequence, and
the existence of genetically modified strains [138]. Mice
can thus be used for mechanistic studies that are not
possible in humans due to ethical reasons. Such
mechanistic studies, e.g. using genetically modified mice,
are essential for elucidating the contribution of specific
mediators or cell types (e.g. dendritic cells).

Mouse models can provide us with a biological basis
for the observed associations between air pollution and
allergic asthma in humans. They should of course
mimic the clinical observations as closely as possible.
Distinguishing between sensitization, development and
aggravation and carefully selecting the appropriate mod-
els to answer specific research questions are therefore
essential in studying the impact of inhalable pollutants
on the pathogenesis of asthma.
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Conclusions

Exposure to inhalable pollutants is an important factor
which affects sensitization, development and aggravation
of asthma. Although clinical and epidemiological studies
provide direct indications about the importance of inhaled
pollutants in the pathogenesis of asthma, data from mice
hold promise to provide mechanistic clues. We here
reviewed the excess of mouse models that are available,
focusing on unmet needs that would allow determining
the critical mediators involved in the effects of the afore-
mentioned pollutants on the different stages of the disease.
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