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Abstract

Background: Protective host responses to respiratory pathogens are typically characterized by inflammation.
However, lung inflammation is not always protective and it may even become deleterious to the host. We have
recently reported substantial protection against Streptococcus pneumoniae (pneumococcal) pneumonia by
induction of a robust inflammatory innate immune response to an inhaled bacterial lysate. Conversely, the allergic
inflammation associated with asthma has been proposed to promote susceptibility to pneumococcal disease. This
study sought to determine whether preexisting allergic lung inflammation influences the progression of
pneumococcal pneumonia or reduces the inducibilty of protective innate immunity against bacteria.

Methods: To compare the effect of different inflammatory and secretory stimuli on defense against pneumonia,
intraperitoneally ovalbumin-sensitized mice were challenged with inhaled pneumococci following exposure to
various inhaled combinations of ovalbumin, ATP, and/or a bacterial lysate. Thus, allergic inflammation, mucin
degranulation and/or stimulated innate resistance were induced prior to the infectious challenge. Pathogen killing
was evaluated by assessing bacterial CFUs of lung homogenates immediately after infection, the inflammatory
response to the different conditions was evaluated by measurement of cell counts of bronchoalveolar lavage fluid
I8 hours after challenge, and mouse survival was assessed after seven days.

Results: We found no differences in survival of mice with and without allergic inflammation, nor did the induction
of mucin degranulation alter survival. As we have found previously, mice treated with the bacterial lysate
demonstrated substantially increased survival at seven days, and this was not altered by the presence of allergic
inflammation or mucin degranulation. Allergic inflhammation was associated with predominantly eosinophilic
infiltration, whereas the lysate-induced response was primarily neutrophilic. The presence of allergic inflammation
did not significantly alter the neutrophilic response to the lysate, and did not affect the induced bacterial killing
within the lungs.

Conclusion: These results suggest that allergic airway inflammation neither promotes nor inhibits progression
of pneumococcal lung infection in mice, nor does it influence the successful induction of stimulated innate
resistance to bacteria.

Page 1 of 8

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19635139
http://respiratory-research.com/content/10/1/70
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Respiratory Research 2009, 10:70

Introduction

Infectious pneumonia is the leading cause of premature
death in the world [1-3], and Streptococcus pneumoniae is
the primary cause of bacterial pneumonia [4]. The role of
asthma in the development of pneumococcal pneumonia
remains controversial, with possible bidirectional interac-
tions between allergic airway inflammation and immune
responses that are protective against bacteria. On one
hand, there is an increasing literature showing that the
innate immune system influences allergic airway inflam-
mation [5], and bacterial colonization of neonates' air-
ways is a risk factor for subsequent asthma [6]. On the
other hand, asthma is a risk factor for invasive pneumo-
coccal disease [7,8], and allergic airway inflammation has
been found to diminish protective immunity to bacterial
pneumonia [9]. Asthma might also contribute to pneu-
mococcal susceptibility by other mechanisms. For exam-
ple, asthma-associated changes in airway mucus may
provide a sanctuary to pathogens [10], asthma treatments
(e.g., corticosteroids) may impair native host defenses
[11], or allergic inflammation may cause epithelial injury
resulting in decreased production of defensive factors
and/or impairment of barrier function [12].

We have recently reported that stimulation of lung innate
immunity with an aerosolized lysate of non-typeable Hae-
mophilus influenzae (NTHi) confers high-level protection
against challenge with otherwise lethal inocula of S. pneu-
moniae [13]. Lysate-induced protection, called stimulated
innate resistance (StIR), does not depend on recruited
neutrophils, resident mast cells or alveolar macrophages,
and is specific to the airway route of infection. The sur-
vival benefit correlates in magnitude and time with rapid
pneumococcal killing within the lungs, and is associated
with increased concentrations of numerous antimicrobial
polypeptides in lung lining fluid. However, we have not
previously tested whether StIR can be induced in the set-
ting of acute allergic inflammation.

Given prior reports of asthma as a risk factor for invasive
pneumococcal disease [7] and impaired host defenses of
mice with allergic lung inflammation [9], we tested in
mice whether preexisting allergic inflammation affected
survival of pneumococcal pneumonia or the induction of
StIR. We demonstrate here that induction of an asthmatic
phenotype by transient allergic airway inflammation nei-
ther promotes nor inhibits progression of pneumococcal
pneumonia in mice. Further, stimulation of mucin
degranulation in allergically inflamed lungs does not
affect progression of pneumococcal pneumonia, nor does
allergic inflammation affect protection induced by pre-
treatment with inhaled NTHi lysate.

http://respiratory-research.com/content/10/1/70

Methods

Animals

All experiments were performed using female, specific
pathogen free, 5-8 week old BALB/c mice purchased from
Harlan (Indianapolis, IN). Mice were handled in accord-
ance with the policies of the Institutional Animal Care
and Use Committee of the University of Texas-M. D.
Anderson Cancer Center.

Induction of allergic airway inflammation

Mice were sensitized to ovalbumin by four weekly intra-
peritoneal injections (20 pg ovalbumin Grade V, 2.25 mg
alum in saline, pH 7.4; Sigma, St. Louis, MO), as
described [14]. More than two weeks later, they were chal-
lenged for 30 min with an aerosol of 2.5% (wt/vol) oval-
bumin in 0.9% saline supplemented with 0.02% (vol/
vol) antifoam A silicon polymer (Sigma, St Louis, MO),
using an AeroMist CA-209 nebulizer (CIS-US, Bedford,
MA) driven by 10 I/min of 5% CO, in room air to pro-
mote deep ventilation. To stimulate mucin secretion,
ovalbumin sensitized mice were exposed to a 5 min ATP
aerosol (100 mM) 3 days after ovalbumin aerosol chal-
lenge, as we have previously described to achieve maximal
degranulation [14,15].

Aerosolized bacterial lysate treatment

Frozen stock of non-typeable Haemophilus influenzae
(NTHi) was grown on chocolate agar (Remel, Lenexa, KS),
expanded in brain-heart infusion broth (Acumedia, Balti-
more, MD) supplemented with 3.5 ug/ml NAD (Sigma),
and disrupted with an EmulsiFlex C5 (Avestin, Man-
nheim, Germany), as described [13,16]. The protein con-
centration was adjusted to 2.5 mg/ml in saline by
bicinchoninic assay (Pierce, Rockford, IL), and the lysate
was frozen in 10 ml aliquots at -80°C. For treatment, a
thawed aliquot was placed in an AeroMist CA-209 neb-
ulizer (CIS-US) driven by 10 1/min 5% CO, in air for 20
min. This resulted in aerosolization of 4 ml of lysate, with
the protein concentration in residual lysate confirmed at
2.5 mg/ml. The nebulizer was connected by polyethylene
tubing (30 cm x 22 mm) to a 10 liter polyethylene expo-
sure chamber (approximately 12 x 7 x 8 inches), with an
identical efflux tube with a low resistance microbial filter
(BB50T, Pall, East Hills, NY) at its end vented to a
biosafety hood.

Pneumococcal pneumonia

As previously described [13], S. pneumoniae serotype 4 iso-
lated from the blood of a patient with pneumonia was
stored as frozen stock (1 x 102 CFU) in 20% glycerol in
Todd-Hewett broth (Becton Dickinson, Franklin Lakes,
NJ). Thawed stock was grown to logarithmic phase in
Todd-Hewitt broth, then centrifuged at 4500 x g for 30
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min at 4°C, washed and resuspended in PBS. Bacterial
concentration was determined by plating serial dilutions
onto blood-agar (Remel). For aerosolization, 10 ml of the
bacterial suspension was nebulized in an identical expo-
sure apparatus to that used for NTHi lysate treatment, 3
days after ovalbumin challenge, and immediately after
ATP or NTHi lysate stimulation.

Lung bacteria quantification

Immediately upon completion of the nebulization of the
S. pneumoniae, infected mouse lungs were extracted fol-
lowing induction of deep anesthesia, homogenized in 1
ml of PBS using a 2 ml tissue grinder (Kontes, Vineland,
NJ), then serially diluted onto blood-agar plates with tryp-
tic soy agar (Remel), and incubated overnight at 37°C in
5% CO,.

Bronchoalveolar lavage fluid

Bronchoalveolar lavage (BAL) fluid was obtained by
instilling and collecting two aliquots of 1 ml each of PBS
through a luer stub adapter cannula (Becton Dickinson)
inserted through rings of the exposed trachea of eutha-
nized mice 18 h after challenge with ovalbumin, NTHi
lysate, ATP, and S. pneumoniae. Total leukocyte count was
determined with a hemacytometer (Hauser Scientific,
Horsham, PA), and differential count by cytocentrifuga-
tion of 300 ul of BAL fluid at 2,000 rpm for 5 min, fol-
lowed by Wright-Giemsa staining.

Statistical methods

Proportions of mice surviving S. pneumoniae challenge
were compared using Fisher's exact test at 7 days after
infection. Student's t test was used to examine the differ-
ences between the mean bacterial counts in lung tissue for
the various conditions, as well as for comparison of leuko-
cyte counts in BAL fluid analysis.

Results

Allergic lung inflammation neither promotes nor
suppresses mortality from pneumococcal pneumonia in
mice

Survival was assessed 7 days after aerosol challenge with
S. pneumoniae in the presence or absence of allergic
inflammation (Fig. 1). A high dose (3.1 x 1010 CFU/ml) of
S. pneumoniae was used to uncover a protective effect of
allergic inflammation, and a low dose (2.2 x 10° CFU/ml)
was used to uncover increased susceptibility. Ovalbumin
sensitization and challenge neither promoted nor sup-
pressed survival of mice challenged with either dose of S.
pneumoniae.

Allergic inflammation and induced mucin secretion affect
neither survival nor whole lung bacterial counts in
pneumococcal pneumonia

In the setting of allergic inflammation with airway epithe-
lial mucous metaplasia, ATP exposure induces mucin

http://respiratory-research.com/content/10/1/70
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Allergic lung inflammation neither promotes nor
suppresses S. pneumoniae pneumonia-associated
mortality. Survival of mice seven days after challenge with
high or low dose S. pneumoniae in the presence or absence of
allergic inflammation (6 mice/group).

degranulation ("mucus hypersecretion") [14]. Impacted
airway lumenal mucus can protect bacteria from host
defenses and induce biofilm formation, so we tested
whether mucus hypersection altered the progression of
pneumococcal pneumonia. ATP can also induce exocyto-
sis in airway secretory cells without mucous metaplasia
and in alveolar type II cells [17], as well as induce inflam-
mation directly or through breakdown products such as
adenosine [18,19] so, we tested whether ATP alone had
any effects. Neither allergic inflammation, ATP-induced
secretion, nor the combination had any effect on survival
of pneumococcal pneumonia (Fig. 2A). We also tested
whether 100 mM aerosolized ATP induced airway inflam-
mation, and found no increase in BAL leukocytes (data
not shown).

Survival of pneumococcal challenge is tightly correlated
with the lung pathogen burden [13]. Consistent with our
survival data, exposure of ovalbumin-sensitized mice to
inhaled ovalbumin, ATP or both resulted in no significant
changes in whole lung bacterial CFUs immediately after
infection with S. pneumoniae (Figure 2B).

NTHi lysate protects against pneumococcal pneumonia
and induces pathogen killing despite the presence of
allergic inflammation

In addition to constitutive innate immune defenses of the
lungs, innate defenses can be powerfully induced
[13,20,21]. We sought to determine whether bacteria-pro-

Page 3 of 8

(page number not for citation purposes)



Respiratory Research 2009, 10:70

100 10
80 8
= 60 e 6
= =
2 x
Z 40 2 4
S o
7]
20 2
0 0
OVA - + - + OVA - + - +
ATP - - + + ATP - - + +

Figure 2

Allergic inflammation and induced secretion affect
neither survival nor pathogen burden in S. pneumo-
niae pneumonia. (A) Survival of ovalbumin-sensitized mice
7 days after challenge with intermediate dose (1.6 x 10!0
CFU/ml) S. pneumoniae after induction of allergic inflamma-
tion by inhaled ovalbumin and/or secretion by inhaled ATP,
as indicated (16 mice/group). There was no statistically signif-
icant difference in survival in any group compared to naive
(OVA-, ATP-) mice. (B) Bacterial counts of lung homgenates
immediately after pneumococcal challenge (1.6 x 10'0 CFU/
ml) of ovalbumin-sensitized mice, with or without induction
of allergic inflammation and/or secretion (3 mice/group).

tective innate immunity could be induced in the setting of
preexisting allergic inflammation by testing whether
resistance to pneumococcus could be stimulated by aero-
solized NTHi lysate following ovalbumin sensitization
and challenge (Fig. 3A). Because stimulated resistance
could potentially be abrogated by exhaustive exocytosis
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and clearance of important defense mediators, or by
secreted mucins sequestering defense mediators or pro-
viding a sanctuary for pathogens, we also tested the effect
of ATP exposure (Fig. 3B). As we have previously shown
[13], a single NTHi lysate pretreatment conferred com-
plete protection against pneumococcal challenge. This
protection was not attenuated by the induction of allergic
inflammation, induction of acute secretion with ATP, or
both.

We have previously found that StIR correlates closely with
rapid bacterial killing within the lungs, and that reduced
pathogen levels in the lungs immediately after infection
correlate with decreased pathogen levels in the lungs,
blood and spleen at later time points [13,20,21]. While
pretreatment with NTHi lysate was associated with signif-
icant reductions in the number of bacterial CFU cultured
from whole lung homogenates immediately after the
infectious challenge, we did not detect a statistically sig-
nificant effect of the allergic inflammation/secretion sta-
tus (OVA, ATP or both) on the inducibility of rapid
bacterial killing (Fig. 3C).

NTHi lysate treatment induces significant airway
neutrophilia in the presence or absence of allergic
inflammation

In order to better characterize the lungs' responses to var-
ious inflammatory stimuli, we characterized the cellular
influx of the airway lining fluid collected by BAL. As
shown in Figure 4, the allergic and bacteria-protective
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NTHi lysate protects against S. pneumoniae pneumonia in the presence of non-protective allergic inflamma-
tion. (A) Survival of ovalbumin-sensitized mice seven days after challenge with S. pneumoniae (6.8 x 10'0 CFU/ml) following
inhalation of ovalbumin and/or NTHi lysate prior to challenge (7 mice/group, *p = 0.01). (B) Survival of ovalbumin-sensitized
mice seven days after challenge with S. pneumoniae (2.0 x 10'0 CFU/ml) following inhalation of ovalbumin and/or NTHi lysate,
with or without inhaled ATP exposure prior to challenge (6 mice/group, *p < 0.05). (C) Bacterial counts of lung homogenates
immediately after pneumococcal challenge (1.2 % 10'9 CFU/ml) of ovalbumin-sensitized mice, with or without induction of
allergic inflammation and/or secretion and protective lysate exposure (3 mice/group, *p < 0.001 compared to mice not receiv-
ing NTHi treatment, mean + SEM). OVA: inhaled ovalbumin 3 d prior to infection; ATP: inhaled ATP 5 min prior to infection;
NTHi: inhaled NTHi lysate | d prior to infection. Figures shown are representative of at least three experiments.
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stimuli induced influx of distinctly different cell popula-
tions. Exposure of sensitized mice to inhaled ovalbumin
induced modest increases in macrophages and eosi-
nophils, whereas treatment with NTHi lysate primarily
induced infiltration with neutrophils. These patterns per-
sisted when both treatments were applied to the same ani-
mal. For example, eosinophils increased following OVA
challenge (0 detected eosinophils at baseline vs. 0.65 x
105 eosinophils after challenge, p = 0.047), whereas there
was no difference detected when OVA challenged mice
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Leukocyte infiltration following various inflammatory
stimuli. Differential cell counts were performed on bron-
choalveolar lavage fluid from mice following treatment with
different combinations of inflammatory stimuli without
(upper panel) or with (lower panel) infection with S. pneumo-
niae (3.2 x 10'0 CFU/ml) 18 h earlier. The experiments were
performed simultaneously with identical treatments, except
for the infectious challenge. (3 mice/group, mean + SEM).
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were compared to those challenged with OVA then treated
with NTHi lysate (0.77 x 105 eosinophils, p = 0.64). Sim-
ilarly, the brisk induction of neutrophils after NTHi lysate
treatment (0.15 x 105 PMNs at baseline vs. 9.52 x 105
PMN s after treatment, p < 0.0001) was not significantly
altered by the presence of allergic inflammation (8.20 x
105 PMNs, p = 0.29).

We have previously shown that, while lysate-induced
resistance does not rely on neutrophils for protection,
NTHIi lysate treatment induces a much more robust lung
neutrophilia that does S. pneumoniae [13]. We again
found that infection with S. pneumoniae did not alter the
entry of neutrophils into airspaces of the lungs following
NTHi lysate treatment (9.52 x 105 PMNs after lysate alone
vs. 8.27 x 105 PMNswhen S. pneumoniae infection fol-
lowed lysate treatment, p = 0.51). Furthermore, NTHi
lysate induced neutrophilia in the setting of infection was
not significantly altered by allergic inflammation (8.07 x
105 PMNSs, p = 0.91). We did, however, identify a statisti-
cally significant further increase in eosinophils when OVA
challenged mice were infected with S. pneumoniae (0.65 x
10> eosinophils vs. 2.50 x 10% eosinophils, p = 0.04), per-
haps reflecting the antibacterial function of eosinophils.

Discussion

Asthma is a chronic disease of the lungs, associated with
recurrent allergic inflammation and at least partially
reversible airflow limitation [22]. According to the Cent-
ers for Disease Control and Prevention, the incidence of
asthma in the United States has steadily increased to
nearly 8% of the population in the past two decades http:/
/www.cdc.gov/nchs. The reason for this trend is an issue
of ongoing debate, but the finding of asthma as a risk fac-
tor for serious pneumococcal disease [7,8] brings great rel-
evance to the understanding of how allergic airways
inflammation affects the response to infection. Despite
previous reports of impaired host responses to bacteria in
the setting of allergic inflammation [9], we have shown
here that transient induction of allergic inflammation nei-
ther promotes lethality in an experimental model of
pneumococcal pneumonia, nor precludes the induction
of pneumococcus-protective StIR.

Inflammation generated in the lungs can be induced by
diverse stimuli, yet, as we have shown here, the nature of
the stimulus markedly affects the character of the inflam-
matory response and whether it is beneficial to survival of
microbial challenge. Our data indicate that only a subset
of inflammatory responses are protective against pneu-
mococcal pneumonia, and allergic inflammation is not
part of this subset. Whether allergic inflammation is pro-
tective in other settings (e.g., helminth infections)
remains to be seen [23,24]. The ovalbumin experimental
model recapitulates many features of clinical asthma,
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including inflammatory cell infiltration, mucin overpro-
duction, and airflow obstruction [25], yet we demonstrate
no effect on survival of pneumococcal pneumonia. These
data indicate that neither the polarization of the inflam-
matory response towards eosinophilic Type 2 immunity
nor the marked overproduction and acute secretion of
mucin is associated with worsened survival of pneumo-
coccal infection of the lungs.

Beisswenger and colleagues previously reported that
induction of Type 2 inflammation resulted in diminished
anti-pseudomonal defenses [9]. They found that applying
IL-4 and/or IL-13 to bronchial epithelial cells or inducing
allergic inflammation in BALB/c mice resulted in higher
post-challenge pathogen burdens. We found no such
effect on lung pneumococcal CFUs immediately after
infection in the presence of allergic inflammation, despite
findings comparable to theirs in terms of the ovalbumin-
and infection-induced lung eosinophilia. There are sev-
eral differences between their model and ours, including
the interval between sensitization and challenge, the
means of maintaining a control group (we sensitize all
mice and aerosolize ovalbumin or PBS, whereas they
inject ovalbumin or PBS prior to aerosolizing ovalbumin
to all mice), and the interval between challenge and path-
ogen burden assessment. The different pathogens used in
the two studies is notable insofar as they are recognized by
different complements of pattern recognition receptors,
and allergic inflammation may exert a more profound
effect on host responses to the Gram-negative pathogen
[26]. However, the relevant difference between our stud-
ies may relate to the size of the inoculum. Beisswenger
and colleagues report an increase in pathogen burden
from around 75 CFU/mg lung to around 125 CFU/mg
lung with induction of allergic inflammation. We found
no pneumococcal CFU difference in the presence or
absence of allergic inflammation, describing approxi-
mately 6 x 10° CFU/ml lung homogenate. It is possible
that they identified a statistically significant difference at
these very low pathogen concentrations that has limited
bearing on progression to severe lung disease or death. In
our experience, even the mice with 125 CFU/mg lung
would be expected to remain healthy and fully clear the
infection. Concordant with the reports of Beisswenger
and colleagues, we observed in our previous studies
[13,20,21] a critical role for the respiratory epithelium in
innate protection of the lungs, associated with elabora-
tion of numerous antimicrobial peptides. Yet, here we did
not observe any influence of allergic inflammation on the
ability of epithelial cells to protect against pneumococcal
pneumonia in vivo.

More recently, Kang and colleagues reported that OVA
sensitized and challenged BALB/c mice were less likely to
develop pneumococcal pneumonia (as defined by biolu-
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minescent assay) than were mice without allergic inflam-
mation [27]. Interestingly, while they did not find
intergroup differences in T;;2 cytokines 7 days after OVA
challenge, elevated IL-4 levels were associated with
increased risk of pneumonia, independent of sensitiza-
tion status. Our results are difficult to directly compare to
those of Kang due to differences in the allergic model, the
route and size of pneumococcal inoculum, and the means
and timing of the outcome assessment. However, it is con-
ceivable that differences in pulmonary deposition of bio-
luminescent pathogens relate more to upper airway
inflammation prior to intranasal infection than to
changes in the lower respiratory tract. That said, Yousefi
and colleagues have recently characterized antibacterial
eosinophil responses [28], so Kang may have detected a
modestly protective eosinophilic effect that is dissociated
from T2 cytokine elaboration.

We have previously shown that exposure of mice to
inhaled NTHi lysate stimulates innate resistance to bacte-
rial pneumonia, a phenomenon associated with striking
inflammation [13,16,20,21]. In this work, we demon-
strate that the concurrent presence of allergic inflamma-
tion does not significantly influence the neutrophilic
influx induced by inhalational exposure to NTHi lysate.
More importantly, the preexistence of allergic inflamma-
tion did not abrogate the improved host survival associ-
ated with NTHi lysate. We also found that while NTHi
lysate exposure promoted a rapid reduction in lung CFUs
immediately after infection, treatment with inhaled oval-
bumin and/or ATP had no such effect. Furthermore, con-
comitant allergic inflammation did not preclude the
inducibility of rapid bacterial killing by lysate treatment.
By limiting the initial bacterial burden in the lung, StIR
appears to prevent the septicemia and death associated
with uncontrolled lung infections. Though we have
observed pathogen killing by multiple lung epithelial cell
types, it is not clear whether treatment-related alterations
in pathogen deposition within the lungs contributes to
the protective effect. We have previously shown that
innate resistance can be induced in the absence of the leu-
kocytes commonly associated with bacterial protection
[13]. Here we show that it can also be induced in the pres-
ence of preexisting inflammation that is not protective
against bacteria. Together, these findings suggest the
inducibility of innate defenses in a broad range of clinical
scenarios.

Our experimental observations do not provide an expla-
nation of the findings of Talbot and colleagues that a diag-
nosis of asthma is an independent risk factor for serious
pneumococcal disease [7,8]. Potential reasons for this
include the possibility that the animal model does not
adequately approximate clinical asthma, that the primary
endpoints were different (bloodstream infection in
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patients versus death in mice), or that the particular fea-
tures of asthma we tested are not the cause of the risk iden-
tified by Talbot and colleagues. We focused on deviation
of immune responses, stimulated innate resistance, and
acute mucus hypersecretion. Other possibilities include
disrupted epithelial barrier function in chronic clinical
asthma, suppression of immune responsiveness by treat-
ment of asthma with corticosteroids or other drugs, crea-
tion of a sanctuary for bacterial growth in airways with
chronically impacted mucus, or the existence of a com-
mon cause for both asthma and pneumococcal suscepti-
bility. Regarding the last possibility, while all patients in
the study of Talbot and colleagues were of a socioeco-
nomic status that qualified for government-supported
health care coverage, the pneumococcal cases had many
differences from the control subjects besides the asthma
rate, including ethnicity and medical co-morbidities. In
statistically correcting for those differences, it is possible
that an additional association was masked. Alternatively,
a common genetic cause of both asthma and pneumococ-
cal susceptibility could be present in patients but not
tested in our model.

Conclusion

We have tested in mice several possible mechanistic
causes of the epidemiologic finding that asthma is a risk
factor for invasive pneumococcal disease. We find that the
immune deviation of allergic lung inflammation does not
suppress baseline or induced antibacterial innate
defenses, nor does acute mucin hypersecretion. Further,
the finding that allergic inflammation does not preclude
the induction of protective innate resistance expands the
clinical scenarios in which exploitation of this phenome-
non might be therapeutically beneficial.
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