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An emerging role for the anti-inflammatory
cytokine interleukin-10 in dengue virus infection
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Abstract

Infection with dengue virus (DENV) causes both mild dengue fever and severe dengue diseases, such as dengue
hemorrhagic fever and dengue shock syndrome. The pathogenic mechanisms for DENV are complicated, involving
viral cytotoxicity, immunopathogenesis, autoimmunity, and underlying host diseases. Viral load correlates with
disease severity, while the antibody-dependent enhancement of infection largely determines the secondary effects
of DENV infection. Epidemiological and experimental studies have revealed an association between the plasma
levels of interleukin (IL)-10, which is the master anti-inflammatory cytokine, and disease severity in patients with
DENV infection. Based on current knowledge of IL-10-mediated immune regulation during infection, researchers
speculate an emerging role for IL-10 in clinical disease prognosis and dengue pathogenesis. However, the
regulation of dengue pathogenesis has not been fully elucidated. This review article discusses the regulation and
implications of IL-10 in DENV infection. For future strategies against DENV infection, manipulating IL-10 may be an
effective antiviral treatment in addition to the development of a safe dengue vaccine.
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Dengue virus infection
Infection with the four serotypes of dengue virus (DENV),
a mosquito-borne virus belonging to the family Flavivi-
ridae, causes a global burden of 50 million infections per
year occurring across approximately 100 countries [1].
DENV infection results in a wide range of disorders,
ranging from mild dengue fever (DF) to severe dengue
hemorrhagic fever (DHF) and dengue shock syndrome
(DSS), which can cause death in the absence of appropri-
ate medication [1]. Dengue patients frequently present
clinical symptoms ranging from a mild fever to an incap-
acitating high fever with severe headache, pain behind the
eyes, muscle and joint pain, and rash. However, in patients
with severe DHF/DSS, potentially lethal complications
include plasma leakage, severe hemorrhage, and organ
failure, and these complications can affect both children
and adults [1,2].
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The enveloped single-stranded RNA virus of dengue
virus (DENV) contains 3 structural proteins, including
the envelope (E) protein, the precursor membrane (prM)
protein, and the capsid protein, and 7 nonstructural
(NS) proteins, including NS1, NS2A, NS2B, NS3, NS4A,
NS4B, and NS5 in endoplasmic reticulum (ER)‑derived
membrane structures. The newly synthesized viral RNA
is incorporated into viral proteins and assembled into
immature virions within the ER lumen [3-5]. The life
cycle of DENV starts with the entry of infectious virions
into target cells through membrane fusion and the bind-
ing of surface receptors/co-receptors. Most DENV pro-
teins play a crucial role in the biological functions and
pathogenesis of DENV. The DENV E protein is a viral
receptor for cell binding and fusion in monocytes/mac-
rophages, dendritic cells, B cells, T cells, basophil/mast
cells, endothelial cells, epithelial cells, and hepatocytes
[6,7]. Several surface molecules, including heparan
sulfate [8], CD14 [9], dendritic cell-specific intracellular
adhesion molecule 3 grabbing nonintegrin [10], GRP78
[11], laminin receptor [12], heat shock proteins [13], man-
nose receptor [14], C-type lectin domain family 5 member
A [15], and integrins [16], are required for cell binding
and entry during DENV infection. After receptor binding,
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DENV infects target cells through receptor-mediated
endocytosis [7]. When the virions are internalized through
endocytosis, the surface E protein is rearranged under
environment acidification, leading to viral and vesicle
membrane fusion and the subsequent release of viral RNA
into the cytoplasm. Cytosolic NS1 and NS2A proteins
control viral RNA replication complexes while NS4B
modulates DENV replication via interactions with NS3
[17-20]. In addition, both soluble NS1 and membrane-
bound NS1 proteins may play a role in complement
activation following the binding of anti-NS antibodies
[21-23]. The serum levels of soluble NS1 predict DHF
progression [24]. The NS2B protein, which is a co-factor
of NS3, forms a complex with NS2A/NS3 to regulate viral
replication, post-translation modification, and virion
assembly through multifaceted enzyme activities, inclu-
ding RNA helicase, RNA 5′-triphosphatase (RTPase), and
RNA-stimulated nucleoside triphosphatase (NTPase) acti-
vity [25]. The NS5 protein, which is the largest and most
highly conserved DENV protein, acts as an RNA-
dependent RNA polymerase [26] and methyltransferase
[25], and it interacts with the helicase domain of NS3,
triggering its RTPase and NTPase activities [27,28] during
DENV replication.
Unfortunately, no safe dengue vaccine is available,

even though considerable effort has been directed
toward the development of several candidate vaccines
[29-31]. The biggest challenge is the lack of a clear anti-
viral strategy, reflecting the multifaceted pathogenesis,
including viral load; virulence; cytotoxicity; the nature of
the immune response; autoimmunity [32,33]; and the
potential effects of underlying host diseases, such as
allergies, diabetes, and hypertension [34,35].

Dengue pathogenesis
The pathogenesis of DENV infection is classified into
several types, including viral factors, cytokine storms,
host genetic factors, autoimmunity, and antibody-
dependent enhancement (ADE) [33,36-39]. Many re-
ports have suggested that the viral genotypic nucleotide
variation is associated with disease severity [40,41]. In
addition, higher levels of plasma DENV RNA have been
observed in DHF patients compared with DF patients
[42,43]. More data are needed to conclusively correlate
viral load with disease severity. Interferons (IFNs)
are central players in the innate immune system for
defense against pathogen infection. However, DENV har-
bors a number of virulence proteins that interfere with
the IFN signaling pathway [4,44-48]. The NS2A, NS4A,
and NS4B proteins contribute to immune invasion by
disrupting type I IFN signaling [44,46,47]. Furthermore,
NS5 inhibits IFN-α signaling by inhibiting signal trans-
ducer and activator of transcription (STAT) 2 phosphor-
ylation [45].
In addition to viral factors, including viral load, serotype,
and virulence, a number of proinflammatory and anti-
inflammatory responses are generated in host cells that
have been infected with DENV. While aberrant
inflammatory responses have been identified in DENV-
infected patients, a number of cytokines, including tumor
necrosis factor (TNF) α, IFN-γ, granulocyte-macrophage
colony-stimulating factor, interleukin (IL)-10, and soluble
TNF-α receptors (sTNFR) I and sTNFRII, exhibit greater
expression in DHF/DSS patients compared with DF
patients [49-54]. The immunopathogenesis of DENV
infection involves host-specific immune responses, inclu-
ding immune cell activation, the release of cytokines
(IL-1β, IL-2, IL-6, IL-10, IL-13, IL-18, macrophage
migration inhibitory factor, tumor growth factor-β,
TNF, and IFNs) and chemokines (IL-8, monocyte
chemoattractant protein-1, and regulated and normal T
cell expressed and secreted), complement activation,
the production of inflammatory mediators, and auto-
immunity [6,30,32,33,38,55,56]. Recently, based on
genome-wide association studies has determined that
host genetic factors, including the human leukocyte
antigens, antibody receptors, immune/inflammatory
mediators, attachment molecules, cytokines, and other
immunoregulatory factors, are associated with the
pathogenesis of severe dengue [37].
During infection, antibodies against soluble NS1 may

lead to the complement-mediated lysis of DENV-
infected cells [23]. For DENV-induced autoimmunity,
anti-DENV NS1 antibodies bind to human platelets and
endothelial cells [57,58]. Numerous studies [6,59-62]
have reported mechanisms of molecular mimicry in which
antibodies directed against DENV NS1 cross-react with
human platelets and endothelial cells and cause damage
and dysfunction, which may also be associated with the
clinical features of dengue disease. The C-terminus of
NS1 may be responsible for cross-reactivity with endothe-
lial cells and platelets, as demonstrated through experi-
ments using a modified NS1 lacking cross-reactive
epitopes [63]. In addition, the deletion of the C-terminus
of DENV NS1 abolishes anti-NS1-mediated platelet
dysfunction and associated bleeding [63]. In addition, anti-
bodies against DENV E and prM proteins also have auto-
immune potential. Monoclonal anti-E antibodies bind to
coagulant factor, and anti-prM antibodies bind to host
cells [64,65]. Autoimmunity might therefore be involved
in DENV pathogenesis; however, the timing of autoanti-
body generation and generated titers associated with
clinical parameters need further clarification. Further-
more, the generation of autoantibodies may cause safety
concerns for vaccine development.
Humoral immunity is commonly involved in DHF/

DSS pathogenesis, particularly in patients with a secon-
dary DENV infection. ADE, a phenomenon in which
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non-neutralizing antibodies cross-react with heteroge-
neous serotypes of DENV and facilitate their binding
with Fcγ receptor-bearing cells, facilitates severe DHF/
DSS during DENV infection [55,66-68]. The generation
of antibodies against the DENV E and prM proteins is
fundamental for host defense; however, such immune
responses may increase the risk of developing DHF/DSS
upon re-infection, primarily due to the effects of ADE.
In addition to the extrinsic ADE pathway, in which the
Fcγ receptor directly facilitates DENV binding onto the
cell surface for DENV infection/replication, an intrinsic
ADE pathway induces IL-10-mediated immunosuppres-
sion [55,69]. For the intrinsic pathway, the ADE of
DENV infection triggers IL-10 production through an
immune complex associated with the Fcγ receptor to
enhance the infection severity. In the presence of ADE,
the Fcγ receptor can facilitate viral entry and trigger
intracellular signaling. Moreover, IL-10 overproduction
can enhance downstream signaling protein suppressor of
cytokine signaling (SOCS) 3 expression, followed by type
I IFN signaling suppression in the human monocyte cell
line THP-1 [69,70]. However, the molecular mechanisms
of host and viral regulation of IL-10 expression and the
pathological role of IL-10 in DENV infection are mostly
unknown. Therefore, the generation of autoimmunity
and ADE may cause concerns for vaccine development
against DENV infection. Both viral particles acting
through the extrinsic pathway and Fcγ receptor signaling
through the intrinsic pathway are important for IL-10
induction. To clarify the potential effects of these regula-
tory routes, determining the detailed molecular mecha-
nisms underlying DENV-induced IL-10 production is an
important target for research.

IL-10 expression and activation
The balance between inflammation and anti-inflammation
is critical for infection control [71,72]. IL-10, which was
originally named cytokine synthesis inhibitory factor, is a
cytokine that is produced by type 2 T-helper cells [73]. IL-
10 exhibits anti-inflammatory properties, including the
inhibition of immune mediator secretion, antigen presen-
tation, and phagocytosis [74]. Currently, 6 IL-10-related
cytokines, including IL-10, IL-19, IL-20, IL-22, IL-24, and
IL-26, have been identified [75,76]. All IL-10 family
members utilize similar receptor complexes. Two trans-
membrane glycoproteins, IL-10 receptor (IL-10R) 1 and
IL-10R2, form the complete IL-10R. There are 2 steps
involved in the initiation of IL-10 signaling. IL-10 first
binds to IL-10R1, and the interaction between IL-10/IL-
10R1 changes the conformation of the IL-10/IL-10R1
complex to facilitate the interaction between IL-10/IL-
10R1 and IL-10R2 [77]. The cross-reaction of IL-10Rs
induces the Janus kinase (Jak) 1/Tyrosine kinase (Tyk) 2-
mediated phosphorylation of IL-10R1 at tyrosine residue
446/496. Subsequently, STAT3 binding induces auto-
phosphorylation [78,79], followed by downstream gene
transcription. A recent study showed that numerous
immune cells, including dendritic cells, monocytes/mac-
rophages, B cells, T cells, nature killer (NK) cells, mast
cells, neutrophils, and eosinophils, produce IL-10 in vivo
or in vitro [80].

Regulation of IL-10 production in DENV infection
In DENV-infected cells, a variety of immune mediators
alter anti-viral responses and inflammatory activation
[6,38]; however, the mechanisms for such responses are
in need of further investigation. Increased levels of
serum IL-10 may be a useful prognostic hallmark in
DHF/DSS patients, as discussed above. Aberrant IL-10
expression may also be involved in DENV pathogenesis,
particularly for DENV infection/replication under ADE
as demonstrated in vitro [55]. However, the significance
of this in vivo IL-10 expression is not known.
IL-10 is a cytokine with pleiotropic effects in immu-

noregulation and inflammation. IL-10 may play a role in
DENV pathogenesis, reflecting an immunosuppressive
function that causes IFN resistance, followed by
impaired immune clearance and a persistent infectious
effect for acute viral infection. Duell and colleagues [81]
summarized IL-10 induction in distinct pathogens.
Microbes, including protozoa, nematodes, fungi, viruses,
and bacteria, regulate host cell IL-10 expression to allow
persistent infection [82-84]. In Table 1, we summarize a
panel of epidemiological studies from the past decade
that report a positive correlation between IL-10 levels
and dengue disease severity [50,85-92]. Overall, higher
levels of IL-10 are detected in DHF/DSS patients com-
pared with DF patients, and this trend is observed for
infants, children, and adults. The time-kinetic analysis
shows increased levels of IL-10 from the onset of fever
to defervescence, and viremia primarily occurs during
fever in dengue patients [50,85,93]. The relationship
between IL-10 and viral replication is therefore specu-
lated, and the possible pathogen effects may result from
the IL-10-mediated inhibition of the antiviral IFN res-
ponse [55]. Another study showed a late peak of IL-10
production after viremia at defervescence [90]. Maximal
plasma IL-10 levels measured from the acute phase of
infection correlated with the degree of plasma leakage,
as determined by the pleural effusion index [50,90].
Thus, IL-10 may cause lymphocyte dysfunction through
the suppression of the T cell proliferative response to
mitogens, which occurs in dengue patients during the
early stages of infection [85,94]. Furthermore, having a
decreased number of platelets, called thrombocytopenia,
has been associated with the presence of IL-10
[85,90,94]. Interestingly, serum IL-10 levels have been
strongly associated with the serum levels of hepatic



Table 1 The serum/plasma levels of IL-10 in dengue patients

Patients (Sample size) Population/Age Year Reference

DHF (n = 20) > DF (n = 22) > OFIa (n = 19) Children 1999 [50]

Patient (n = 45) > Healthy (n = 15) 10-82 years old 2001 [85]

DHFb (n = 7) > DHFc (n = 13) > DF (n = 12) 7-79 years old 2002 [86]

DHF (n = 33) > DF (n = 66) Adults 2002-2003 [87]

Patientd (n = 28) > Healthy (n = 23) Children 2013 [88]

DHF (n = 17) > DF (n = 21) Children/Adults 2005-2006 [89]

DHF (n = 29) > DF (n = 12) Children 1994-1997 [90]

DHF/DSS (n = 86) > Healthy (n = 6) Infants 1998-2002 [91]

DHF (n = 6) > DF (n = 28) 16-59 years old 2004 [92]
a OFI Other febrile illnesses; b Non-survivors; c Survivors; d Severe cases.
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transaminases AST and ALT [91]. Moreover, the level of
IL-10 is higher in secondary DENV-infected patients
than in primary DENV-infected patients [95,96]. IL-10
induction is associated with severe DENV infection and
is a potential biomarker for acute DENV infection
[93,94]. Specifically, IL-10 expression acts as predictive
marker of death for DHF patients [86].
Several possibilities have been proposed to explain

DENV-induced regulation of IL-10. IL-10 is primarily
produced by monocytes/macrophages, type 2 T-helper
cells, and CD4+CD25+Foxp3+ regulatory T cells, which
constitute a suppressive T cell population. An early
report showed that increased frequencies of CD4+CD25high

regulatory T cells are present in dengue patients with acute
infection [97]. Based on these findings, the ratios of regula-
tory/effector T cells are also increased. Furthermore, the
activation of this cell population and the generation of IL-
10 are normal during infection. Activated regulatory T cells
may be one of the IL-10-producing cell populations in
circulation. Current studies have shown that cell type
specificity and host genetic polymorphisms affect IL-10
production during ADE of DENV infection [98]. Specific-
ally, in monocytes, as previously demonstrated [69,70], IL-
10 is induced only in ADE infection, but not in DENV
infection alone. However, other Fcγ receptor-bearing cells,
including dendritic cells, B cells, mast cells, and NK cells,
may also produce IL-10 in an ADE-regulated manner. An
analysis of the single nucleotide polymorphisms in the IL-
10 promoter region revealed that the homozygous GCC
haplotype is associated with an increased level of IL-10
[98]. However, another group showed that the IL-10
(−1082/-819/-592) ACC/ATA haplotype is associated with
DHF even though this haplotype results in downregulated
IL-10 [92]. Although host cell responses and genetic poly-
morphisms complicate IL-10 regulation, these studies do
not support a strong role for IL-10 in ADE-facilitated
DHF/DSS progression.
Aberrant production of IL-10 could be the result of

intrinsic regulation by ADE in DENV infection [70]. IL-
10 activation followed by SOCS3 expression has been
demonstrated during ADE in DENV infection and is also
observed in patients with DHF/DSS [69]. Following
DENV infection of monocytes, IL-10 expression is
induced in a time-dependent manner; notably, ADE
significantly facilitates this response. This study was the
first report to show that DENV and ADE directly co-
regulate IL-10, which is increased in severe DHF/DSS
patients. To explain the effects of ADE on IL-10
upregulation, intrinsic signaling through Fcγ receptor-
mediated sequential activation of splenic tyrosine kinases
mitogen-activated protein kinase (MAPK) and extracel-
lular signal-regulated kinase (ERK) has been suggested
[55]. This potential molecular mechanism needs further
exploration in the near future, particularly at the level of
the transcriptional and translational regulation of IL-10.
Various transcription factors are involved in the pro-

duction of IL-10 by monocytes/macrophages, including
activating transcription factor 1, CCAAT/enhancer bind-
ing protein-β, cAMP-responsive element-binding protein
(CREB), nuclear factor-κB (NF-κB), pre-B-cell leukemia
transcription factor 1, PBX-regulating protein 1, specific
protein 1, and MAF [99,100]. Notably, these transcrip-
tion factors are commonly regulated by MAPKs, inclu-
ding p38 MAPK and ERK. Recent studies [101,102]
reported that inhibiting glycogen synthase kinase (GSK)-3,
a multi-functional serine/threonine kinase that controls
protein synthesis, cell proliferation, division, differenti-
ation, motility, inflammation, and apoptosis, downregu-
lates Toll-like receptor (TLR)-mediated inflammatory
responses but increases IL-10 production. We recently
showed that GSK-3 regulates inflammatory activation in
lipopolysaccharide (LPS)-activated macrophages, partly
through inhibiting IL-10 [103]. Mechanistically, GSK-3
negatively regulates CREB, a transcription factor that
promotes IL-10 [101,102,104]. We recently showed the
mechanisms through which IFN-γ upregulates LPS-
induced nitric oxide (NO) biosynthesis in macrophages
through GSK-3-mediated IL-10 inhibition [105]. In the



Figure 1 Theoretical model for IL-10 production and its
pathogenic role during DENV infection. IL-10 is produced in T
cells (TH2 and Treg) through an unknown mechanism and in Fcγ
receptor-bearing cells directly through viral receptors and indirectly
through an ADE-facilitated manner. The extrinsic ADE pathway
occurs through Fcγ receptor-facilitated virus contact and entry
following viral receptor-mediated endocytosis. An alternative
intrinsic ADE pathway may trigger Fcγ receptor-mediated signaling
to activate Syk/PKC/ERK-regulated IL-10 expression. However, the
molecular mechanisms for IL-10 production remain unclear. Crosstalk
between PKC/PKA/PKB-regulated GSK-3 for the transcriptional
regulation of IL-10 and the involvement of genetic factors are also
summarized. IL-10-regulated SOCS3 expression may benefit DENV
replication by facilitating IFN resistance.
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presence of TLR signaling, inhibiting GSK-3 can increase
the phosphorylation of the transcription factor CREB.
CREB activation is positively mediated by protein kinase
A (PKA)-, phosphatidylinositol 3-kinase/PKB-, and PKC-
mediated phosphorylation [106]. In addition to PKA, PKB,
and PKC, CREB is also regulated by GSK-3β, which
decreases CREB stability by phosphorylating CREB at
Ser129 [107,108]. Both of these kinases act upstream of
GSK-3 and inactivate GSK-3 through phosphorylation at
serine residues [107,109,110]. Another study showed that
the overexpression of IL-10 is mediated by GSK-3
inhibition-induced PKC and ERK activation [84]. In Leish-
mania infection, GSK-3 negatively regulates myeloid cell
IL-10 production in a PI3K/PKB/CREB-dependent man-
ner [111]. During ADE of DENV infection, Fcγ receptor
may also trigger both ERK and PKC signaling [55]. There-
fore, GSK-3 may be inactivated during DENV infection,
which might be important for DENV-induced IL-10
production.

Implications of IL-10 in dengue pathogenesis
Consistent with many human viruses, such as human
immunodeficiency virus, hepatitis C virus, and Epstein-
Barr virus, DENV infection also induces IL-10 produc-
tion [69,112-114]. In ADE infections, very early IL-10
overproduction is correlated with the suppression of
anti-viral responses, indicating that the timing of IL-10
expression is important for immunosurveillance. Extrin-
sic ADE infection contributes to a high rate of viral
infection in Fcγ receptor-bearing cells, whereas the
intrinsic ADE effect via IL-10 suppresses the activation
of the IFN-mediated antiviral response. For modulating
the immune response, SOCS3 plays a key role down-
stream of IL-10 signaling [115]. Interactions between IL-
10 and IL-10 receptors activate the Jak/STAT pathway,
leading to downstream gene transcription that promotes
the anti-inflammatory response [80,116-119]. Several
reports have shown that IL-10 might suppress the
immune response through negatively regulating MyD88
expression in mononuclear cells [116,120]. ADE of DENV
infection may be the principal cause of IL-10-mediated
immunopathogenesis. Strategies to manipulate IL-10
regulation may facilitate the development of a safe DENV
vaccine, perhaps by providing a way to protect against the
effects of ADE caused by current candidate vaccines.
IL-10 can block NF-κB activity, and NF-κB is critical for

TLR-mediated antiviral IFN responses; pro-inflammatory
activation; production of IL-2, IL-12, TNF-α, and IFN-γ;
and expression of MHC class II antigens and co-
stimulatory molecules [71,121]. In severe DHF/DSS
patients, the levels of IL-2, IL-12, and IFN-γ are decreased
[122]; however, the mechanisms underlying this decrease
are still unknown. IL-10 is released to inhibit the action of
antiviral NK cells during the immune response to viral
infection [123,124]. This release may prolong viral infec-
tion, and inhibiting IL-10 might facilitate the antiviral
response. High titers of viremia, caused by the ADE of
DENV infection, determine the frequency of DHF/DSS
progression [39,94,125]. In addition to the involvement of
extrinsic ADE-mediated viral infection, delayed viral clear-
ance mediated through IL-10 immunosuppression may be
involved in DENV pathogenesis.
The type II T-helper cell-derived cytokine IL-10 typically

attenuates the type I T-helper cell-derived IFN-γ-activated
Jak/STAT signaling pathway [80,115,117-119]. IL-10-in-
duced SOCS3 can block the interaction of STAT1 and the
IFN-γ receptor to inhibit the activation of IFN-γ. IFN-γ
activity is important for preventing DENV-induced morta-
lity, as demonstrated in an experimental murine model
[126]. An antiviral axis of IFN-γ/inducible NO synthase/
NO-mediated control of viral replication is exhibited in
host cells that have been infected with DENV. Consistent
with the findings that Bordetella parapertusis-induced IL-
10 limits host cytoprotective IFN-γ responses [127],
aberrant IL-10 production may also be required for IFN-γ
resistance during ADE of DENV infection. Notably, the
ADE of DENV infection causes aberrant production of
IL-10, followed by aberrant SOCS3 expression and IFN
resistance [69,70]. An intrinsic pathway involving the Fcγ
receptor may facilitate DENV infection/replication follow-
ing IL-10-mediated blockade of antiviral IFN responses.
During microbial infection, the generation of such
infectious immune complexes may also cause similar
IL-10-mediated immunopathogenesis [55].
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Molecular mimicry between DENV proteins and host
proteins may cause autoimmunopathogenesis in DENV
infection [33]. However, the mechanisms through which B
cells are activated and immunotolerance is compromised
remain unclear. IL-10 can enhance B cell survival, prolife-
ration, maturation, and antibody production [128,129],
implying a possible role of IL-10 for autoimmunity during
ADE of DENV infection. However, it is still controversial
whether IL-10 attenuates autoimmunity by blocking
IFN-mediated autoimmune-associated inflammation in
lupus [130]. The implication of IL-10 in DENV-induced
autoimmunity needs further study.

Conclusions
IL-10 has immunomodulatory effects and is generally
considered anti-inflammatory. Excessive or poorly timed
IL-10 production may allow viruses to escape from
immune surveillance during DENV pathogenesis. DENV-
induced IL-10 production, which may be exacerbated by
ADE through Fcγ receptor-mediated extrinsic and intrin-
sic pathways, leads to IL-10/SOCS3-mediated immuno-
suppression and enhanced viral replication (Figure 1). The
molecular basis for IL-10 induction should be investigated
in cells during DENV infection and during the ADE of
DENV infection. After DENV infection, the major IL-10
-producing cells in the host should be identified, and the
pathogenic roles of IL-10 must be clarified. In addition,
the involvement of viral receptor- and Fcγ receptor-
mediated signaling is key for exploring the regulation of
IL-10. Targeting IL-10 regulation and signaling pharmaco-
logically using neutralizing antibodies, antagonists, and
inhibitors may represent a viable therapeutic strategy for
combating the progression of severe dengue diseases.
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