Chen et al. Journal of Biomedical Science 2013, 20:18
http://www.jbiomedsci.com/content/20/1/18 :

NSC '

The cost of publication in Journal of Biomedical Science
is borne by the National Science Council, Taiwan

RESEARCH

158 JOURNAL OF
=5 BIOMEDICAL SCIENCE

(,\‘)-

Open Access

Houttuynia cordata Thunb extract modulates
Go/G; arrest and Fas/CD95-mediated death
receptor apoptotic cell death in human lung
cancer A549 cells

Yuh-Fung Chen'", Jai-Sing Yang', Wen-Shin Chang', Shih-Chang Tsai?, Shu-Fen Peng” and Yuan-Ru Zhou'

Abstract

Background: Houttuynia cordata Thunb (HCT) is commonly used in Taiwan and other Asian countries as an anti-
inflammatory, antibacterial and antiviral herbal medicine. In this study, we investigated the anti-human lung cancer
activity and growth inhibition mechanisms of HCT in human lung cancer A549 cells.

Results: In order to investigate effects of HCT on A549 cells, MTT assay was used to evaluate cell viability. Flow
cytometry was employed for cell cycle analysis, DAPI staining, and the Comet assay was used for DNA
fragmentation and DNA condensation. Western blot analysis was used to analyze cell cycle and apoptotic related
protein levels. HCT induced morphological changes including cell shrinkage and rounding. HCT increased the Go/G;
and Sub-G; cell (apoptosis) populations and HCT increased DNA fragmentation and DNA condensation as revealed
by DAPI staining and the Comet assay. HCT induced activation of caspase-8 and caspase-3. Fas/CD95 protein levels
were increased in HCT-treated A549 cells. The Go/G; phase and apoptotic related protein levels of cyclin D1, cyclin

treatment.

cell death in A549 cells

A, CDK 4 and CDK 2 were decreased, and p27, caspase-8 and caspase-3 were increased in A549 cells after HCT

Conclusions: The results demonstrated that HCT-induced Go/G; phase arrest and Fas/CD95-dependent apoptotic
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Background

In Taiwan, 26 individuals per 100,000 died from lung
cancer each year, based on reports from the “People
Health Bureau of Taiwan”. Surgery, radiotherapy, and
chemo-therapy are used for treating lung cancer patients
[1-3]. However, those treatments are not satisfactory. In-
duction of cell cycle arrest and/or apoptosis in lung cancer
cells has been considered an influential treatment strategy
[4-6]. Many researchers have focused on selectively killing
cancer cells or reducing cell number through the induc-
tion of cell cycle arrest and apoptosis [6,7].
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Morphological changes in apoptotic cells include cell
membrane blebbing, DNA or chromatin condensation,
and caspase activation [8-10]. Previous studies have dem-
onstrated that the cell membrane death receptor played
an important role in apoptosis [11,12]. Death receptor
signaling is mediated through FasL and Fas/CD95 recep-
tor protein interaction followed by activation of caspase-8
[13-16]. The activation of caspase-3 by caspase-8 is re-
sponsible for the cleavage of cellular substrates [13-20].
Cleavage of cellular substrates degrades the chromosomes
into fragments during apoptosis [13-16,21].

Hottuynia cordata Thunb (HCT), also called E-Sung-Cho
is a Chinese herb used to treat several different diseases
(e.g., bovine mastitis, influenza etc.) [22-24]. In addition,
HCT has value in treating allergic inflammation [25,26],
viral infections and anaphylaxis [27-29]. Many studies

© 2013 Chen et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:yfchen@mail.cmu.edu.tw
http://creativecommons.org/licenses/by/2.0

Chen et al. Journal of Biomedical Science 2013, 20:18
http://www.jbiomedsci.com/content/20/1/18

>

[%)
=
1

30 pgml
=33 125 pg/ml
E==3 250 pg/ml
E=3 500 pg/ml

o
(=

Cell viability (%)
P (=) 0
=3 S S

[
=
T

=}

B

Control 125 250 500

HCT (pg/ml)

Figure 1 Effects of HCT on cell viability and morphological
changes in human lung cancer A549 cells. (A) The A549 cells
were treated with HCT (0, 125, 250 and 500 pg/ml) for 24 and 48 h,
the viable cells were determined by MTT assay as described in
Materials and Methods. The experiments were performed in
triplicate (n=3). **p <0.001 was considered significantly different in
comparison with the control. (B) The cells' morphological changes
were examined and photographed by phase-contrast microscopy.

reported HCT extract has anti-leukemia [30,31] and anti-
colon cancer activity [32,33]. HCT inhibits the growth of
HER2/neu-overexpressing breast cancer cells [34]. In this
study, we determined if HCT would have anti-human
lung cancer activity and if such effects would be associ-
ated with inhibition of cell growth in the human lung
cancer line A549.

Methods

Preparation of HCT

Ethanol extract of Houttuynia cordata Thunb (yield:
6.73% of dry wt.) was obtained by 48 h incubation at room
temperature. The ethanol extract was filtered through a
0.45 pm filter (Osmonics, Minnetonka, MN, USA), lyophi-
lized and kept at 4°C. The dried extract was re-solubilized
in PBS before use as previously described [32,33].

Chemicals and reagents

RPMI-1640 cell culture medium (Gibco BRL, Life Tech-
nologies, MD, USA), DAPI (4,6-diamidino-2-phenylindole
dihydrochloride), low-melting agarose, MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide),
and DMSO (dimethyl sulfoxide) were purchased from
Sigma (St. Louis, MO, USA). FBS (Fetal bovine serum),
penicillin/streptomycin, PI (propidium iodide) and trypsin-
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EDTA were obtained from Life Technologies (Carlsbad, CA,
USA). Proteinase K was purchased from Roche Diagnos-
tics Gmbh (Mannheim, Germany). Ac-DEVE-pNA and
Ac-IETD-pNA were purchased from R&D Systems Inc.,
(MN, USA). All other chemicals used were of analytical
grade.

Cell culture

Human lung cancer A549 cells were obtained from the
Bioresource Collection and Research Center (BCRC,
Hsinchu, Taiwan), originally from the American Type
Culture Collection (ATCC, USA). Cells were maintained
in RPMI-1640 containing 100 mL/L FBS with 100,000
U/L penicillin and 100 mg/L streptomycin.

Cell viability

A549 cells were plated onto 96-well plates and incubated
with HCT (0, 125, 250 and 500 pg/ml) for 24 and 48 h.
MTT was added to each well then incubated for an add-
itional 4 h at 37°C. The blue formazan product was
dissolved in 100 puL of DMSO. The plates were read at O.
D.570 nm using a spectrophotometric plate reader (Bio-
Rad, Tokyo, Japan). The experiments were performed in
triplicate (n=3). Cell viability was calculated as O.D. of
drug-treated sample/O.D. of none treated sample x 100%
as previously described [32,35].

Cell cycle transition and apoptosis determination

For cell cycle and apoptosis determination, A549 cells
were plated onto 24-well plates and incubated with HCT
(0, 125, 250 and 500 pg/ml) for 24 h. Cells were fixed
gently in 70% ethanol at 4°C and then re-suspended in
phosphate-buffered saline (PBS) containing 40 pg/ml PI,
0.1 mg/ml RNase and 0.1% Triton X-100 for 30 min at
37°C. Cell cycle transition and apoptosis were then ana-
lyzed by flow cytometry (FACS Calibur™; Becton Dickinson,
NJ, USA) as previously described [35].

DAPI staining

A549 cells were plated onto 24-well plates and treated
with HCT (0 and 500 pg/ml) for 24 h. After HCT treat-
ment, cells were fixed in 4% paraformaldehyde and then
incubated with 1 pg/ml of DAPI staining solution in
darkness. The apoptotic cells were observed by fluores-
cence microscopy (Zeiss, Oberkochen, Germany) as pre-
viously described [32,35].

Comet assay

A549 cells were plated onto 24-well plates and incubated
with HCT (0 and 500 pg/ml) for 24 h, 1 x 10* cells were
mixed with 150 pL 0.75% low-melting agarose held at
37°C and layered onto a pre-treated slide with 1.5% regu-
lar agarose. After agarose were solidified on a chilled plate,
the slides were transferred to the same lysis buffer, held at
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Figure 2 Effects of HCT on cell-cycle transition in human lung cancer A549 cells. (A) The A549 cells were treated with HCT (0, 125, 250 and
500 pg/ml) for 24 h, and then were harvested for determination the distribution of cell cycle by flow cytometry and (B) quantitative results were
expressed as described in Materials and Methods. The experiments were performed in triplicate (n = 3). Data represents mean + S.D. of three
experiments. ***p < 0.001 was considered significantly different in comparison with the control.
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room temperature for 4 h and stained with propidium
iodide as previously described [36].

Western blotting

A549 cells were plated onto T-75 flasks and treated with
HCT (0, 125, 250 and 500 pg/ml) for 24 h. Total cell ly-
sates were prepared as previously described. Thirty pg of
total protein applied to SDS-PAGE and transferred onto
a polyvinylidene fluoride membrane (PVDF; Millipore).
After blocking, the blots were incubated with the appro-
priate dilution of specific monoclonal antibodies for cyc-
lin D1, cyclin A, CDK 4, CDK 2, p27, caspase-8 and
caspase-3 (Santa Cruz Biotechnology, USA). Blots were
washed and then incubated with horseradish peroxidase-
conjugated secondary antibody (Santa Cruz Biotechnology,
USA). Protein expressions were detected using enhanced
chemiluminescence kits (Amersham, ECL Kits) as previ-
ously described [37].

Caspase-8 and caspase-3 activities assays

A549 cells were plated onto T-75 flasks and incubated
with HCT (0, 125, 250 and 500 pg/ml) for 24 h. A549 cells
were collected in a protein lysis buffer (50 mM Tris—HCI,
1 mM EDTA, 10 mM EGTA, 10 mM digitonin and 2 mM

DTT). Cell lysates were centrifuged at 15,000 x g at 4°C
and then incubated with caspase-3 and caspase-8 specific
substrates (Ac-DEVE-pNA and Ac-IETD-pNA) with reac-
tion buffer in a 96-well plate at 37°C for 1 h. Caspase
activity was determined by measuring O.D. 405 nm of
the released pN using a spectrophotometric plate reader
(Bio-Rad, Tokyo, Japan) as previously described. The ex-
periments were performed in triplicate [37].

Immunostaining assay for Fas/CD95 protein levels
Fas/CD95 cell surface antigen expression was measured
by flow cytometry. A549 cells were plated onto 24 well
and treated with HCT (0, 125, 250 and 500 pg/ml) for
12 h. Cells were collected and rinsed in PBS. Fas/CD95
was analyzed by direct immune-fluorescence staining.
FITC-conjugated anti-Fas/CD95 and its FITC- conju-
gated isotype mAb (BD Biosciences Pharmingen, San
Diego, CA, USA) were analyzed using a flow cytometer
as previously described [38].

Statistical analysis

The experiments were performed in triplicate (n = 3) and
all data were expressed as the mean + standard error. Stu-
dent’s t-test was used for single variable comparison. For
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Figure 3 Effects of HCT on DNA condensation, damage and apoptosis in human lung cancer A549 cells. (A) A549 cells stained with DAPI
to observe DNA condensation after 24 h of treatment with 500 pg/ml of HCT. (B) A549 cells were examined DNA damage by Comet assay after
24 h of treatment with 500 pg/ml of HCT. Cells were photographed under fluoresce microscopy (x200) as described in Materials and Methods.
(C) A549 cells were treated with HCT (0, 125, 250 and 500 ug/ml) for 24 h, and then were harvested for determination the sub-G1 (apoptosis)

cell population by flow cytometry as described in Materials and Methods. (D) The bar diagram of the length of Comet tail. The experiments
were performed in triplicate (n = 3). *p < 0.05, **p < 0.001 was considered significantly different in comparison with the control.
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Figure 4 Effects of HCT on Gy/G; relative protein levels in A549
cells. A549 cells were treated with HCT (0, 125, 250 and 500 pg/ml)
for 24 h and then performed western blotting analysis for Cyclin D1,
Cyclin A, CDK4, CDK2, and p27 in HCT treated cells as described in
Materials and Methods. The experiments were performed in
triplicate (n=3).

multiple variable comparisons, data were analyzed by one-
way ANOVA followed by Dunnett’s test. P<0.05 was
considered significant.

Results

Effect of HCT on viability of A549 cells

Cell viability of HCT (0, 125, 250 and 500 pg/ml) treated
A549 cells was determined by MTT assay for 24 and 48 h.
As shown in Figure 1A, HCT reduced cell viability in a
concentration- and time-dependent manner (***p < 0.001,
compared to HCT 0 pg/ml group). The inhibition of HCT
in A549 viability was 15.73%, 27.13%, and 58.57% for 125,
250, and 500 pg/ml at 24 h; 29.32%, 50.81%, and 69.60%
for 125, 250, and 500 pg/ml at 48 h, respectively. HCT also
induced morphological changes seen as cell shrinkage and
rounding (Figure 1B).

Effect of HCT on cell-cycle distribution and apoptosis in
A549 cells

To evaluate the effects of HCT on cell-cycle distribution
and apoptosis, A549 cells were treated with HCT (0, 125,
250 and 500 pg/ml). Figure 2A and B showed that HCT
caused an arrest of cell-cycle transition in the Go/G;
phase, and the proportion of cells in the Gy/G; phase in-
creased markedly in a concentration-dependent manner.
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Figure 5 Effects of HCT on caspases-8 and caspase-3 activities in human lung cancer A549 cells. The A549 cells were treated with HCT (0,
125, 250 and 500 ug/ml) for 24 h, and then total cell extracts were incubated with (A) caspases-8 specific substrate (Ac-IETD-pNA) and
(B) caspase-3 specific substrate (Ac-DEVE-pNA) respectively. The release of pNA was measured at 405 nm by a spectrophotometer as described in
Materials and Methods. The experiments were done in triplicate (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001 was considered significantly different in
comparison with the control.
-

As shown in Figure 2B, the cell cycle distribution of
Go/G; by HCT (0, 125, 250 and 500 pg/ml) treatment
was 43.48%, 45.06%, 58.59%, and 63.25%, respectively. In
addition, A549 cells treated with HCT (0, 125, 250 and
500 pg/ml) showed a significant increase in the sub-G1
apoptotic cell population, and the apoptotic cell popula-
tion was 4.53%, 13.07%, 18.77% and 31.89%, respectively
(Figure 3C). These results indicated HCT inhibited cell
growth.

Effects of HCT on Go/G, phase-associated protein levels

We investigated the protein levels of the Go/G; phase.
Figure 4 showed that HCT caused an increase in the
protein level of p27 and decreased protein levels of
CDK4, CDK2, Cyclin D1 and Cyclin A in A549 cells.
HCT (0, 125, 250 and 500 pg/ml) treatment increased
p27 expression ratio by 1, 1.8, 1.6, and 1.4, respectively.

Among the protein levels of Go/G; phase, decrease of
CDK4 was the most significant one. HCT decreased pro-
tein levels of CDK4 by 0%, 20%, 70%, and 90%, respectively.

Effect of HCT on DNA condensation and damage in A549
cells

Effects of HCT on nuclear morphological change were
examined by DAPI staining and DNA damage by
the Comet assay. As shown in Figure 3A and B, cells
exhibited nuclear shrinkage and DNA condensation after
a 24 h-incubation with HCT (500 pg/ml) (Figure 3A).
Cells exposed to HCT had an increase in DNA damage as
seen in the Comet assay (Figure 3B), and the length of
Comet tail was 2.39 fold increase (Figure 3D). The results
suggest that HCT induces morphological changes and
DNA damage in A549 cells.
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Figure 6 Effects of HCT on A549 cells in the Fas/CD95-dependent apoptotic pathway. The A549 cells were treated with HCT (0, 125, 250
and 500 pg/ml) for 12 h, and (A) Fas/CD95 protein expression levels was detected by immune staining and analyzed by flow cytometry as
described in Materials and Methods. The experiments were performed in triplicate (n=3). **p < 0.01, ***p < 0.001 was considered significantly
different in comparison with the control. (B) Caspase-8 and caspase-3 protein expression levels in HCT-examined cells were analyzed by Western

blotting as described in Materials and Methods.
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Figure 7 Effects of caspases-3 and caspase-8 specific inhibitor on cell viability in HCT- treated human lung cancer A549 cells. Cells were
pretreated with (A) the caspase-3 inhibitor (z-DEVE-fmk) and (B) the caspase-8 inhibitor (z-IETD-fmk) for 1 h after exposure to HCT (0, 125, 250 and
500 pg/ml) for 24 h exposure, viable cells were determined by MTT assay as described in Materials and Methods. The experiments were
performed in triplicate (n = 3). The experiments were performed in triplicate. **p < 0.01, ***p < 0.001 was considered significantly different in
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Effects of HCT on caspase-8 and caspase-3 activities

We determined if HCT would stimulate the caspase-9,
caspase-8 and caspase-3 activity in A549 cells. Figure 5,
panel A and panel B, show that HCT increased caspase-8
and caspase-3 activities in a concentration-dependent man-
ner but caspase-9 activity was unaffected (data not shown).
HCT (125, 250 and 500 pg/ml) treatment increased
caspase-8 activity by 51.96%, 124.51%, and 208.82%, re-
spectively; increased caspase-3 activity by 85.29%, 150%,
and 256.86%, respectively. Our results showed that HCT-
induced apoptosis was mediated through the activation of
caspase-8 and caspase-3. Thus, we determined whether the
Fas/CD95 (death receptor protein) contributes to HCT-
induced apoptosis. Figure 6, panel A showed that Fas/CD95
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Figure 8 A proposed model of HCT modulates Go/G, arrest and
Fas/CD95- mediated death receptor apoptotic cell death on
human lung cancer A549 cells.

protein level was increased in a concentration-dependent
manner in A549 cells. Figure 6, panel B also showed that
caspase-8 and caspase-3 protein levels increased in a
concentration-dependent manner when A549 cells were
treated with HCT. HCT (125, 250 and 500 pg/ml) treat-
ment increased caspase-8 protein expression by 1.1, 1.6,
and 2.1 fold, respectively; increased caspase-3 expression ra-
tio by 2.2, 1.6, and 1.9 fold, respectively. To further verify
the involvement of caspase-8 and caspase-3 in HCT-
induced apoptosis, cells were pretreated with the caspase-8
inhibitor (z-IETD-fmk) and the caspase-3 inhibitor
(z-DEVE-fmk). It can be seen in Figure 7, panels A and B
showed that the caspase-3 and caspase-8 inhibitors
inhibited the apoptotic effects of HCT.

Discussion

The death receptor apoptotic pathway has previously
been proposed as an anti-cancer drug target in human
lung cancer [39,40]. Traditional Chinese medicine (TCM)
that could stimulate the death receptor apoptotic pathway
should have therapeutic potential in human lung cancer
treatment [41-43]. HCT has been used as TCM in Taiwan
for many vyears [44]. The pharmacological activities
of HCT include immuno-regulatory, anti-inflammatory,
anti-micro bacterial, anti-viral, and anti-cancer effects
[24,25,27-32]. HCT was reported to be active against
leukemia, colorectal cancer and HER2/neu-overexpressing
breast cancer cells [30-34]. However, the anti-lung cancer
effects have not been well-studied. We previously reported
that 450 pg/ml of HCT had anti-cancer activity in human
primary colorectal cancer cells from patients [33] and
HT29 human colon adenocarcinoma cells [32]. In the
present study, HCT had anti-lung cancer activity (Figure 1),
and this activity was concentration-, and time-dependent.
HCT contains quercetin and quercetin 3-p-D-glucoside
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(isoquercitrin) which have anti-viral activity [28,45]. Chou
SC, et. al indicated that quercitrin and isoquercitrin
isolated from methanolic extracts of Houttuynia cordata
showed excellent DPPH radical scavenging activities with
IC50 values of 31 pM and 63 pm, respectively [46].
Also, HCT contains chlorogenic acid [47] which has
anti-leukemia effects. In this study, we suggested that
ethanolic extract of HCT have anti-lung cancer activity.

Previous studies have shown that HCT induces human
lymphoblastic leukemic Molt-4 cell death through an endo-
plasmic reticulum stress pathway [31]. Banjerdpongchai R,
et. al. suggested that ethanolic extract of HCT induces
human leukemic HL-60 and Molt-4 cell apoptosis through
a mitochondrial apoptotic pathway [30].

Evidences showing the link between apoptosis and the
cell cycle are compelling. Regulation of cell cycle traverse
involves activations of cyclin-dependent kinases (CDKs).
CDKs (e.g. CDK1, CDK2, CDK4/6) is paired with the
cyclins (e.g. cyclins A, B, E, Dy _3) [48]. Activation of CDKs
by cyclins leads to phosphorylation of the retinoblastoma
protein (pRb) [49] and leads to diminished binding of pRb
to the E2F transcription factor, which various genes neces-
sary for cell cycle progression. The activities of CDKs are
antagonized by CDK inhibitors. CDK inhibitors directly
interact with CDKs and negatively regulate the activity of
CDKs. p27"%"!, belongs to the Cip/Kip (kinase inhibitor
protein) family, inhibits most CDKs [50]. Dysregulation of
cell cycle is one of the most potent stimuli for apoptosis
induction [51]. p27"P! [52], cyclin D1 [53], has been
shown to influence the apoptotic process. Direct inhib-
ition of CDKs, induction of endogenous CDK inhibitors
(e.g. p27°"Y) or down-regulation of cyclins required for
CDK activation (e.g. cyclin D;) are mechanisms of inhib-
ition of cell cycle progression [48]. Our results showed
that HCT increased p27 expression, decreased cyclin D1,
cyclin A, CDK 4, and CDK 2 which leaded to cycle Go/G;
arrest. HCT induced apoptosis through caspase8/caspase-
3 activation (Figure 5A,B) and up-regulated the protein
levels of Fas/CD95 (Figure 6A), caspase-8 and caspase-3
(Figure 6B), while HCT did not affect the caspase-9 activ-
ity (data not shown) in A549 cells. In addition, HCT in-
duced growth inhibition was significantly attenuated by
the specific caspase-3 and caspase-8 inhibitors (Figure 7A,
B). One interpretation of our findings is that HCT induces
A549 cell apoptosis and activates caspase-8, and -3
through the Fas/CD95-mediated death receptor apoptotic
pathway.

Conclusions

In conclusion, this study demonstrated that HCT has anti-
lung cancer activity by modulating GO/G1 arrest and stimu-
lating the Fas/CD95 protein level, which leads to caspase-8
and caspase-3 activation resulting in the induction of apop-
tosis in human lung cancer A549 cells (Figure 8).
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