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Local ASIC3 modulates pain and disease
progression in a rat model of osteoarthritis
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Abstract

Background: Recent data have suggested a relationship between acute arthritic pain and acid sensing ion channel
3 (ASIC3) on primary afferent fibers innervating joints. The purpose of this study was to clarify the role of ASIC3 in a
rat model of osteoarthritis (OA) which is considered a degenerative rather than an inflammatory disease.

Methods: We induced OA via intra-articular mono-iodoacetate (MIA) injection, and evaluated pain-related
behaviors including weight bearing measured with an incapacitance tester and paw withdrawal threshold in a von
Frey hair test, histology of affected knee joint, and immunohistochemistry of knee joint afferents. We also assessed
the effect of ASIC3 selective peptide blocker (APETx2) on pain behavior, disease progression, and ASIC3 expression
in knee joint afferents.

Results: OA rats showed not only weight-bearing pain but also mechanical hyperalgesia outside the knee joint
(secondary hyperalgesia). ASIC3 expression in knee joint afferents was significantly upregulated approximately
twofold at Day 14. Continuous intra-articular injections of APETx2 inhibited weight distribution asymmetry and
secondary hyperalgesia by attenuating ASIC3 upregulation in knee joint afferents. Histology of ipsilateral knee joint
showed APETx2 worked chondroprotectively if administered in the early, but not late phase.

Conclusions: Local ASIC3 immunoreactive nerve is strongly associated with weight-bearing pain and secondary
hyperalgesia in MIA-induced OA model. APETx2 inhibited ASIC3 upregulation in knee joint afferents regardless of
the time-point of administration. Furthermore, early administration of APETx2 prevented cartilage damage.
APETx2 is a novel, promising drug for OA by relieving pain and inhibiting disease progression.
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Background
Osteoarthritis (OA) is one of the most common joint
diseases characterized by degeneration of articular cartil-
age, osteophyte formation, subchondral bone sclerosis,
and secondary synovitis. Although a major symptom of
OA is chronic joint pain which has a significant effect
on patients’ quality of life, the pain mechanisms remain
largely unknown. One of the reasons is that the patho-
physiology of joint pain associated with degeneration is
more complicated than acute inflammatory joint pain.
Although anti-inflammatory drugs are still the class of
medication most commonly used in OA treatment, they
are insufficient to relieve pain.
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Acid sensing ion channels (ASICs) are sodium-selective
ion channels activated by low extracellular pH, and belong
to the degenerin/epithelial Na+ channel superfamily [1].
Among ASICs, ASIC3 is the most sensitive to such a pH
change [2,3], abundantly expressed in dorsal root ganglia
(DRG) [4], and strongly correlated with pain [5-12]. In re-
cent years, there has been considerable evidence suggesting
that ASIC3 plays a significant role in joint inflamma-
tory pain [13-15]. Our previous reports showed that
secondary hyperalgesia following carrageenan-induced
arthritis (response to von-Frey filaments applied to
the paw) does not develop in ASIC3 knockout mice while
primary mechanical hyperalgesia (response to tweezer ap-
plied to the inflamed knee joint) develops similarly be-
tween knockout and wildtype mice. We concluded ASIC3
is critical for the development of secondary hyperalgesia
[16]. In addition, ASIC3 immunoreactive peripheral
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nerves were upregulated in inflamed synovium of the
knee joint and dosal root ganglia (DRG) along with calci-
tonin gene-related peptide (CGRP) [16,17]. However,
carrageenan-induced arthritis is an experimental model of
acute joint inflammation. There has been no evidence yet
for the relationship between ASIC3 and OA, which is con-
sidered a degenerative rather than an inflammatory disease.
The purpose of this study was, therefore, to test the

role of ASIC3 in a rat knee OA model compared with
naïve rats. Specifically, we examined a pain-related ani-
mal behavior test, histological change of knee joint,
and expression of ASIC3 in knee joint afferents. We
also examined the effect of intra-articular injection of
ASIC3-selective peptide blocker, APETx2 [18].

Methods
Induction of OA
Male Sprague–Dawley rats (8 weeks old, weight 230-270 g)
were used. All experiments were approved by the Animal
Care and Use Committee of Kochi University. After
acclimation to the facility, rats were anesthetized via
intraperitoneal injection of sodium pentobarbital. To
induce OA, 3 mg of mono-iodoacetate (MIA) dis-
solved in 50 μl saline were injected into the left knee using
a 27-gauge needle [19-23].
Intra-articular injection of MIA inhibits glyceraldehyde-

3-phosphate dehydrogenase activity in chondrocytes, result-
ing in disruption of glycolysis and eventual death of
chondrocytes [24-27]. This process usually accompanies
initial inflammatory response, histologically known as ex-
pansion of synovial membrane, infiltration of macro-
phages, neutrophils, and lymphocytes. In the later phase,
however, degenerative change predominantly exists with-
out histological inflammation. Therefore, pathophysiology
of joint pain in this model is considered completely differ-
ent from the acute inflammatory arthritis model.
Compared to other experimental models, the MIA-

induced OA model is highly reproducible and mimics
OA pain in humans [28]. Histological changes include
cartilage degradation [27,29], subchondral bone changes
[22,30], synovial inflammation [19], and osteophyte for-
mation [19,27,29]. Although prominent inflammation
generally resolves in the early phase [19], sustained eleva-
tion of proinflammatory cytokines is observed even after
the disappearance of inflammatory infiltrates [31,32]. Pain
behaviors include weight bearing pain, tactile allody-
nia, and mechanical hyperalgesia [33]. Therefore, many
authors currently use this model as an established OA
model [19-23,27-36]. In addition, clinical studies suggest
the existence of neuropathic component in OA pain
[37,38], and several papers showed MIA injection into rat
knee joint evoked not only inflammation and degenerative
change, but also possible localized neuropathic compo-
nent involving joint afferent [32,35,39]. Therefore, this OA
model is suitable for our aim to examine the role of ASIC3
on joint tissues and joint afferents.

Animal behavior assessment
For animal behavior test, 10 rats in each group were
employed. Pain-related behaviors were assessed using a
hind paw limb weight-bearing apparatus (Linton incapa-
citance tester, Norfolk, UK) and von Frey filaments at
pre- and post-MIA injection. Animals were acclimated for
30 min before each assessment. A comparison between
OA-model and naïve rats was continued for 28 days after
MIA injection. The incapacitance tester automatically
showed the difference in weight bearing between the ipsi-
lateral affected limb and the contralateral control limb.
Measurement was performed five times in each rat, and
the average of middle three values was calculated. Percent
weight distribution of left (ipsilateral) hind paw was calcu-
lated by the following formula [22]:

% weight distribution of left hind paw
¼ left weight= left weightþ right weightð Þ � 100

The frequency of paw withdrawal reflex to 10 g von
Frey filaments was counted from ten trials. The value
of % weight distribution or paw withdrawal reflex was
represented as the mean of all measurements.

Retrograde labeling of knee joint afferents
At Day 8 after MIA injection, animals were deeply
anesthetized with intraperitoneal sodium pentobarbital
injection. After shaving, a 5 mm long skin incision was
made at the left knee joint and 0.1 mg Fast Blue (FB)
(Polysciences, Inc. Warrington, PA) diluted in 10 μl of sa-
line was injected into the joint cavity for retrograde label-
ing. A careful check was made to ensure that no FB had
leaked into the surrounding tissues and the wound was
closed with 5–0 nylon. FB containing neurons were identi-
fied in vitro by blue fluorescence on brief exposure of the
cells to ultraviolet light [40].

Immunohistochemistry of DRGs
At Day14 after MIA injection (6 days after FB injection),
animals were euthanized with an overdose of sodium
pentobarbital (150 mg/kg, i.p.), and the ipsilateral lumbar
DRGs (L3-L5) were obtained. The DRGs were placed in 4%
paraformaldehyde and 30% sucrose overnight, embedded in
OCT compound (Sakura Finetek, Torrace, CA, USA) and
frozen in −80°C until sectioning. Ten-micrometer frozen
sections were then cut using a cryostat.
The sections were blocked in 3% normal goat serum

for 1 h, then incubated in primary antibody of ASIC3
(Neuromics; Edina, MN, GP 14015, 1:500) overnight in a
humid chamber. The next day, the sections were incu-
bated in the secondary antibody (Vector; Burlingame, CA,



Figure 1 The effect of OA induction on behavior tests. (a) Percentage of weight distribution of the ipsilateral hind paw using an incapacitance
tester, (b) Number of ipsilateral paw withdrawal reflex to 10 g von Frey filament. Pain-related behavior, i.e. asymmetric weight distribution and
mechanical hyperalgesia of the paw were observed from Day 3 to Day 28 in the OA-model group. * p<0.05 compared to Naïve-model rats.
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FI-7000, 1:500, FITC tagged) for 2 h. All antisera used
were diluted in PBS containing 1% normal goat serum
and 0.05% Triton X-100. Before, between, and after each
incubation step, the sections were washed 3 times for
5 min in PBS. Finally, all sections were mounted with
Vectashield (Vector, Burlingame, CA).
Figure 2 Fast Blue labeling and immunohistochemistry staining for A
administration to OA-model in early phase. Photos in each row are the s
immunoreactive (ASIC3-ir) DRG cells, while ASIC3-ir cells that were not labeled b
neurons were analyzed from 4 rats in each group. The percentage of ASIC3-ir kn
OA-models (p=0.003), and 20±5% in the early-phase APETx2 group (p=0.006)
Sections were viewed with a Nikon Eclipse 80i micro-
scope (Nikon, Tokyo, Japan). Representative photos of
DRGs were taken using DS-Ri1 CCD camera (Nikon,
Tokyo, Japan). FB-labeled neurons from every fifth section
were counted to eliminate the possibility of double count-
ing. More than 100 FB-labeled neurons were analyzed
SIC3 : (a-b) Naïve- model, (c-d) OA-model, (e-f) APETx2
ame DRG. In (b),(d),(f), large arrows indicate Fast Blue labeled, ASIC3
y Fast Blue are indicated by small arrowheads. More than 100 FB-labeled
ee joint afferents was 18±3% (mean±SD) in naïve models, 46±4% in
, respectively. Scale bar: 50 μm.



Figure 3 Histology of knee joints with Safranin O staining at Day14. Three different magnifications (×1.25, ×10, ×20) were shown in each
group. (a-c) Naïve model: Full thickness of cartilage. Rich chondrocytes with proteoglycan (red staining by safranin O) (d-f) OA model:
Severe damage of cartilage surface with loss of chondrocytes in superficial and middle layer (#), hypertrophied chondrocytes in deep zone
(white arrow) were observed in (f) . Increased thickening of subchondral bone subjacent to the area of severe cartilage lesion was also observed
in (d,e). (g-i) APETx2 administration in early phase: Chondrocytes were well observed in superficial and middle layer (black arrow). Although
proteoglycan loss, cartilage surface kept smooth and no apparent thinning (*) in (i). (j-l) APETx2 in late phase: same findings as OA. Apparent
chondroprotective effect was not seen (#) and hypertrophied chondrocytes in deep zone were also observed (white arrow) in (l). F: femur,
M: meniscus, T: tibia, Scale bar: ��� 1 mm,�100 μm, - - - - - - - - 50 μm.
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from 4 rats in each group. ASIC3 expression was counted
in FB-labeled neurons manually and quantified as the per-
cent of total FB-labeled neurons.

Histological evaluation of knee joint
The knees were placed in 10% formalin, decalcified
by formic acid for 3 days, and embedded in paraffin.
Five-micrometer sections were cut and stained with
0.1% safranin O. Histopathologic classification on the
severity of the OA lesion was graded on a scale of 0–13
(from 0 (worst) to 13 (best)), using the modified Mankin
scoring system [41].
Figure 4 The effect of intra-articular injection of APETx2 on behavior
as Figure 1). Weight distribution was changed significantly at Day3 in early
i.e. secondary hyperalgesia reduced with APETx2 injection. The inhibitory e
were observed at Day14. * p< 0.05 (Early vs OA), # p< 0.05 (Late vs OA).
Administration of selective ASIC3 blocker (APETx2)
APETx2 is a 42-amino acid peptide isolated from venom
of sea anemone, which is a highly selective blocker for
ASIC3 [18]. The concentration of APETx2 (Alomone labs,
RTA-100, Jerusalem, Israel) was determined as 2.5 μg/kg,
according to a previous report [42]. The procedures of
anesthetization and intra-articular injection were the same
as MIA administration. Preliminarily, rats were given a
single injection of APETx2 at Days 1, 7 and 14 after MIA
injection. The results showed that each injection had a
temporary effect on paw withdrawal reflex, but the differ-
ences were not statistically significant (data not shown).
tests. (a)weight distribution, (b) paw withdrawal reflex (same manner
APETx2 administration group. Frequency of paw withdrawal reflex
ffects on secondary hyperalgesia in both early- and late-phase groups



Figure 5 Histological evaluation of knee joint using Modified
Mankin Score. a scale of 0–13 (from 0 (worst) to 13 (best)).
Intra-articular injection of APETx2 in early phase prevented OA
progression, including breakdown of articular surface and
hypocellularity. * p< 0.05 compared to OA.
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Therefore, repeated daily injections were performed from
Days 1 to 7 (early-phase group) or from Days 7 to 13
(late-phase group). As a control, repeated daily injections
of saline were also performed (OA-saline group). Pain-
related behaviors were assessed by weight distribution and
von Frey test at Days 0, 1, 3, 7, 8, and 14 in each group.

Statistical analysis
Statistical analysis was carried out using JMP, Version 9
(SAS Ins. Cary, NC). Two-way analysis of variance
(ANOVA) followed by Tukey’s test was used to compare
animal behavior tests. A chi-square test was used for
evaluating the percentage of ASIC3 immunoreactive
neurons in DRGs. Kruskal-Wallis test with Steel-Dwass
test was used for comparing histological evaluations
of knee joints. A p-value of <0.05 was considered
statistically significant.

Results
OA vs Naïve
Figure 1 shows the effect of OA induction on behav-
ior tests. Pain-related behavior, i.e. asymmetric weight
distribution and mechanical hyperalgesia of the paw
was observed from Day 3 to Day 28 in the OA group
(a,b). Figure 2 shows representative photos of DRGs
with immunohistochemical staining. The percentage of
ASIC3 immunoreactive knee joint afferents was 18± 3%
(mean±SD) in naïve models, 46± 4% in OA-models
(p=0.003), respectively. In the OA model, histopatho-
logical findings showed loss of chondrocytes and cartilage
matrix in superficial and middle zone, and hypertrophic
change of chondrocytes in deep zone. In addition, OA
related changes such as cartilage thinning, surface irregu-
larity, and thickening of the subchondral bone were also
observed. (Figure 3 d-f).
Effects of APETx2
Weight distribution asymmetry was affected by continu-
ous daily APETx2 injections in the early-phase group,
significantly at Day3 (Figure 4a). APETx2 injections
resulted in a significant decrease in the frequency of paw
withdrawal reflex, i.e. reduced secondary hyperalgesia,
until Day 14. The inhibitory effects on secondary hyper-
algesia were similar in the early and late phase groups at
Day 14 (Figure 4b).
Histology of knee joints showed that early adminis-

tration of APETx2 resulted in reducing OA severity
(Figure 3g-i). However, late administration had no signifi-
cant effect on knee histology (Figure 3j-l). Modified
Mankin score (from 0 (worst) to 13 (best)) was 9 [7–9.3]
(median [range]) in the early-phase group, 10 [9–10.3] in
the late-phase group, and 11 [9.8-12] in the OA-saline
group (Figure 5). The modified Mankin score consists of 3
subgroups, structure (0–6), cellular abnormalities (0–3),
and matrix staining (0–4) [41]. Although matrix staining
with Safranin O showed limited improvement by APETx2
injection, however, breakdown of articular surface and
hypocellularity were apparently prevented, which resulted
in a significant difference of Mankin score between early-
and late- groups.
Immunohistochemical staining of DRG showed that

the percentage of ASIC3 immunoreactive neurons in
FB-labeled neurons was 46 ± 4% in OA, 20 ± 5% in the
early-phase group (p= 0.006), and 19 ± 3% in the late-
phase group (p= 0.003), respectively. ASIC3 expression
in knee joint afferents was upregulated more than two-
fold at Day 14 after inducing OA. Interestingly, continu-
ous administration of APETx2, not only the early- but
also the late-phase inhibited ASIC3 upregulation.

Discussion
The present study provides new insights into the pain
mechanisms and disease progression of OA associated
with ASIC3. Compared to naïve models, OA-model rats
exhibited not only weight-bearing pain but also secondary
hyperalgesia. Histology of knee joints showed OA changes
consistent with previous reports [19,27,29,30,33]. ASIC3
expression in knee joint afferents was significantly upregu-
lated by inducing OA. Intra-articular injection of APETx2,
a specific blocker of ASIC3, had an inhibitory effect on
weight distribution asymmetry and secondary hyperalgesia
by attenuating ASIC3 upregulation in knee joint afferents.
In addition, APETx2 showed chondroprotective effect on
OA rats in early- but not late-phase administration.
This is the first report to describe the relationship be-

tween OA and ASIC3. MIA-induced OA model has ini-
tial inflammation and subsequent degeneration phases.
Initial inflammation decreases local pH and upregulates
ASIC3 expression in knee joint afferents [17]. Although
the histology showed little inflammation at Day 14,
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ASIC3 expression was possibly maintained by sustained
elevation of proinflammatory cytokines [31,32]. Further-
more, recent publications have shown that nerve growth
factor (NGF) in local tissues increased in the degener-
ation phase of MIA-induced OA [31,32]. NGF has also
been found to upregulate ASIC3 expression in addition
to sensitize nociceptors [43,44].
ASIC3 in knee joint afferents was not upregulated by

APETx2 regardless of the time-point of administration.
There are two possible mechanisms. Firstly, neurogenic
inflammation via the activation of peptidergic neurons
was possibly inhibited. When neuropeptides such as cal-
citonin gene–related peptide (CGRP) and substance P
are released from primary afferent fibers peripherally,
they act on target cells such as mast cells, immune cells,
and vascular smooth muscle producing local inflammation
[45]. Then, the target cells release proinflammatory med-
iators including NGF, serotonin and bradykinin, which are
major inducers of ASIC3 upregulation [43]. Previous stud-
ies showed that ASIC3 and CGRP were co-expressed on
joint and muscle afferents [17,46]. Therefore, APETx2
possibly inhibit neuropeptides release from nerve term-
inals. Secondly, APETx2 could attenuate the activity-
dependent gene regulation in nociceptors by inhibiting
ASIC3 and Nav1.8 [47]. The activity of nociceptor endings
depends on the gating properties of ion channels in
the membrane. During the process of sensitization,
the expression of ion channels is regulated such that
more molecules are available for stimulation [48,49].
APETx2 could attenuate a depolarizing sensor potential,
which possibly inhibited nociceptor activation and subse-
quent upregulation of ASIC3.
In terms of pain-related behavior tests, APETx2 sig-

nificantly inhibited secondary hyperalgesia assessed by
von Frey filaments, which was consistent with our previ-
ous study of acute arthritic models [16]. However, a sig-
nificant difference in weight distribution was observed
only at Day 3 in the early-phase injection. Compared
with von Frey test, evaluation of weight distribution is a
less sensitive technique, and the apparatus may be un-
able to detect minor differences. Meanwhile, considering
the therapeutic potential in OA, it is rather beneficial
that APETx2 did not inhibit weight distribution asym-
metry completely, because it might be necessary to pre-
vent further joint damage in OA.
Surprisingly, APETx2 injection into the knee joint pre-

vented cartilage damage, only in the early phase. Previous
studies showed the relationship between joint acidosis and
cartilage damage. In vitro, extracellular low pH not only
inhibited matrix synthesis by chondrocytes [50,51], but
also induced chondrocyte apoptosis [52]. In terms of
ASICs, Kolker et al [53]. reported that ASIC3 exists in
synoviocytes and chondrocytes, and acts as a pH sensor
and modulator of hyaluronan expression in response to
acidosis induced by acute inflammation. Yuan et al [54].
also reported that administration of amiloride, a non-
specific blocker of ASICs, inhibited histological cartilage
damage in rat arthritis model. In their latest report
in vitro, ASICs blocker inhibited acid-induced apoptosis
of chondrocytes by increasing anti-apoptotic ability
and downregulation of pro-apoptotic factors via a
mitochondrial-mediated pathway [52]. In summary, current
evidence suggests that protons induced by joint inflamma-
tion cause cartilage damage through ASICs in chondro-
cytes, and this theory supports our interesting results of
chondroprotection by ASIC3 selective blocker. In this
study, APETx2 was effective only in the early phase
because it worked against initial inflammation before
the severe cartilage damage.
The present study has some limitations. Firstly, knee

histology and DRG immunohistochemical staining were
only evaluated at 14 days after MIA injection. That is
because MIA induced OA is established at Day14 [28].
Time-dependent changes or long term results cannot be
discussed. Secondly, MIA-induced OA is a chemically-
induced model. Other mechanically-induced OA models
may exhibit different pain related characteristics. Thirdly,
only one protocol, the same frequency and the same inter-
val of APETx2 administration, was used. The results, espe-
cially in weight distribution and knee histology, may
change depending on the dose or manner of administra-
tion. Lastly, although chondroprotection by APETx2 in
OA is an interesting preliminary result, the underlying
mechanism is largely unknown. Future research to clarify
the molecular mechanism is required.

Conclusion
In conclusion, local ASIC3 is a pain modulator expressed
in joint afferents, which is strongly correlated with weight-
bearing pain and secondary hyperalgesia in MIA-induced
OA model. APETx2, a selective ASIC3 blocker, inhibited
ASIC3 upregulation in knee joint afferents regardless of
the time-point of administration. In addition, early admin-
istration of APETx2 prevented cartilage damage. APETx2
is a novel, promising drug for OA by relieving pain and
inhibiting disease progression.
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