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Roles of planar cell polarity pathways in the
development of neutral tube defects
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Abstract

Neural tube defects (NTDs) are the second most common birth defect in humans. Despite many advances in the
understanding of NTDs and the identification of many genes related to NTDs, the fundamental etiology for the
majority of cases of NTDs remains unclear. Planar cell polarity (PCP) signaling pathway, which is important for
polarized cell movement (such as cell migration) and organ morphogenesis through the activation of cytoskeletal
pathways, has been shown to play multiple roles during neural tube closure. The disrupted function of PCP
pathway is connected with some NTDs. Here, we summarize our current understanding of how PCP factors affect
the pathogenesis of NTDs.
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Background
Neural tube defects (NTDs), arise when the neural tube,
the embryonic precursor of the brain and spinal cord,
fails to close during neurulation. Defects in neural tube
closure are the second most common human birth
defects, after congenital heart defects [1]. Recent birth
prevalence estimates show that NTDs account for 0.5
per 1000 in the United States during 2001-2004, 1 to
1.5 per 1000 in Western Australia during 2001-2006,
and 2.8 per 1000 in Iran during 1998-2005, while preva-
lence in Shanxi, a province in North China, reach to
19.9 per 1000 during 2002-2004 [2].
The cranial region (anencephaly) or the low spine

(open spina bifida and myelomeningocele) are most
commonly affected [3]. NTDs affecting the brain are
invariably lethal perinatally, whereas open spina bifida is
compatible with postnatal survival but frequently results
in serious handicap, because neurological impairment
below the lesion leads to lack of sensation, inability to
walk and incontinence [4].

Neural tube formation and NTDs classification
Neural tube closure is the result of neurulation, a pro-
cess in which the neural plate bends upwards and

eventually fuses to form the hollow tube that will
become the brain and the spinal cord. The driving force
of neural tube closure is provided and maintained by
cells undergoing convergence and extension (CE) [5].
Both fish (such as zebrafish) and amphibian (such as

Xenopus) embryos require this process [6,7]. Neurula-
tion is conserved between mammalian species [8] and
can be conventionally divided into primary and second-
ary phases [9].
In primary neurulation, the fusion occurs along the

spine and culminates in final closure at the posterior
neuropore. Closure is initiated at the hindbrain/cervical
boundary (Closure 1) and then spreads bi-directionally
into the hindbrain and along the spinal region. Separate
closure initiation sites occur at the midbrain-forebrain
boundary (Closure 2) and at the rostral extremity of the
forebrain (Closure 3). However, Closure 2 found in mice
may be absent from human neurulation [10].
The secondary phase occurs at lower sacral and caudal

levels, where the neural tube is formed in the tail bud
without neural folding [4,11].
Failure of Closure 1 leads to the most severe NTD,

craniorachischisis, which combines an open neural tube
encompassing the midbrain, hindbrain and entire spinal
region. If Closure 1 is completed but closure of the cra-
nial neural tube is incomplete, anencephaly develops,
with cases exhibiting either defects confining in the
midbrain (meroanencephaly) or lesions extending into
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the hindbrain (holoanencephaly) [12]. Failure of Closure
3 is uncommon but, when present, yields split face with
anencephaly. In the spinal region, failure of final closure
at the posterior neuropore yields open spina bifida (also
called myelocele or myelomeningocele), in which the
upper limit can be of varying axial level [9]. By contrast,
defective secondary neurulation leads to ‘closed’ forms
of spina bifida [9].

Human NTDs and possible causes
Epidemiological studies provide an opportunity to iden-
tify risk factors for NTDs, such as dietary or teratogenic
agents, to which susceptibility may be modified by
genetic predisposition [3,13,14]. Identification of causa-
tive factors is confounded by the fact that the majority
of these malformations appears to result from a combi-
nation of genetic and non-genetic factors (environmen-
tal contributions) [3].
Many non-genetic factors may be associated with

NTDs formation. They include: parental socioeconomic
status [15,16], parental age [17], parental race [18],
hyperthermia during early pregnancy [19], maternal
health (such as diabetes [20], obesity [21]), dietary
agents or maternal nutrition (such as the uptake of
folate [22-24], inositol [25,26]), chemical teratogenic
agents (such as valproic acid [27], retinoic acid [28], tri-
chostatin A [29], exposure to pesticides [30] and selec-
tive serotonin-reuptake inhibitors [31] and so on).
As for genetic factors, the cumulative number of

reported mouse genetic mutants with NTDs continues
to rise steadily, from approximately 200 in 2007 [32]
to approximately 245 in 2010 [33]. The different
mouse gene mutations, naturally occurring or targeted
mutations, are associated with various NTD pheno-
types [3,9,32]. Many of the NTD-causing mouse muta-
tions implicate specific signaling pathways such as PCP
signaling, Sonic hedgehog (Shh) signaling, BMP signal-
ing, Notch signaling, retinoid signaling and inositol
metabolism [4]. Those signaling pathways are involved
in the maintenance of the cell cycle, the regulation of
the actin cytoskeleton, chromatin organization and epi-
genetic modifications including methylation and acety-
lation [3].
However, although there is evidence for a strong

genetic component in the individual liability to NTDs in
humans, little is known about the nature of these risk
genes about their interactions with each other. In gen-
eral, the risk genes are present in the affected indivi-
duals. However, it is unknown whether the same risk
genes are shared by all population [33].
Meanwhile, gene-dosage can also affect neural tube

closure. Chromosomal abnormalities, especially trisomy
13 and 18, are strongly associated with central nervous
system malformations [34,35], and a gene dosage

imbalance of 16q12.1-q22.1 is also associated with spina
bifida in the patient [36].
Recently, a major advance in understanding of the

genetic basis of neurulation is the finding that the initia-
tion of Closure 1 requires noncanonical Wnt signaling,
the so-called planar cell polarity (PCP) signaling path-
way [3].

PCP signaling pathway
PCP, which is within the plane of an epithelium, is not
restricted to epithelial tissues, but is also found in
mesenchymal cells during animal development [5].
There are two evolutionarily conserved sets of PCP

factors that act together to coordinate PCP establish-
ment: the Frizzled (Fz)/Flamingo (Fmi) core genes and
the Fat/Dachsous (Ds) PCP system [5].
In Fat/Ds system, Dachsous (Ds) and Fat (Ft), together

with a transmembrane Golgi complex protein, Four-
jointed (Fj), set up a global polarity signal, which is then
sensed and propagated by the asymmetric assembly of
cell-surface complexes, transmitting signal between cells
[37-40]. Members of the Fat/Ds group are expressed in
gradients and their graded expression is under the con-
trol of canonical Wg-signaling [41,42]. It has been sug-
gested that Fat/Ds acts upstream of Fz/PCP signaling,
largely based on data on the fly eye [39,41]. However,
recent genetic mosaic experiments in the Drosophila
abdomen argue that these two systems may function in
parallel rather than in series [43]. As there is no report
about the relationship between Fat/Ds system and NTDs,
in this review, we will not discuss the system in detail.
The Fz/Fmi system is the principal PCP signaling

pathway and appears to be the “noncanonical” Wnt sig-
naling pathway [44]. The components of the Fz/Fmi sys-
tem include transmembrane proteins, such as Frizzled
(Fz), Flamingo (Fmi, Celsr1 in in human and rodents),
Strabismus/Van Gogh (Stbm/Vang) and intracellular
proteins, such as Dishevelled (Dsh in Drosophila; Dvl in
vertebrates), Prickle (Pk), and Diego (Dgo; Diversin in
vertebrate and inversin in mouse). Scribble (Scrib)
[45,46] and Ptk [47,48] are sometimes regarded as PCP
proteins. All the components work together, through
either coordination or antagonism. For example, Vang/
Pk is thought to antagonize the Fz/Dvl signaling [49,50].
The PCP system, to which Wnt5a and Wnt11 have been

clearly linked in vertebrates, is related to the canonical
Wnt signaling pathway, which interprets the directional
signal to produce subcellular asymmetries [37,44,51-54]
Downstream of the PCP system are so-called ‘PCP effec-
tor’, which are the novel proteins, Inturned, Fuzzy and
Fritz [55,56]. They mediate the PCP signaling in different
tissues. This system can play an important role in polar-
ized cell movement (cell migration) and organ morpho-
genesis through the activation of cytoskeletal pathways,
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such as the small GTPases RhoA and cdc42, Rho kinase,
protein kinase C (PKC) and Jun N-terminal kinase (JNK) 1
[51,57]. Activation of the PCP signaling in a given cell
population is able to exert changes in neighboring cells
that do not express PCP elements [58].

The role of PCP signaling pathway in NTDs
The genetic and molecular dissection of PCP began 29
years ago with the realization by Gubb and Garcia-Bel-
lido that a small set of genes controls the polarity of
cuticular hairs and bristles in Drosophila [44,59].
At that time many vertebrate tissues and developmen-

tal processes have been shown to display typical PCP
features [51,60,61]. Time-lapse studies in Xenopus
revealed that PCP-dependent CE was required to narrow
the distance between the elevating neural folds, allowing
their apposition and fusion [62]. Other analyses in
Xenopus [63,64], zebrafish [65,66] and mouse [67] also
show that the PCP factors are key players in the process
of CE movement during gastrulation and neurulation.
For a more detailed understanding of the PCP path-

way in zebrafish gastrulation, Gong observed that PCP
pathway plays a conserved role in vertebrate axis elonga-
tion, orienting both cell intercalation and mitotic divi-
sion [68]. However, Ciruna et al have shown that PCP
pathway is required for the reintegration of newly post-
mitotic cells into the neuroepithelium [69]. They also
observed that loss of Vangl2 (trilobite) leads to an accu-
mulation of apical daughter cells from recent mitoses in
the center of the U-shaped, and incompletely closed,
neural fold [69]. A striking demonstration that the fail-
ure to reintegrate these cells underlies the neural tube
closure defect came from the observation that pharma-
cologically blocking cell division in the trilobite mutant
late in gastrulation restores neural tube closure, presum-
ably because without cell division there are no extruded
cells [69]. By contrast, mitotic inhibitors did not rescue
the CE phenotype caused by the trilobite mutation [44].
For the spatio-temporal expression, PCP is believed to

initiate Closure 1 in mice [3]. In another perspective,
the PCP pathway is believed to be responsible for caudal
NTDs, though Dvl2-/- mice also display some rostral
defects [5,70], while the Shh pathway accounts for most
of the rostral defects [5,55]. However, in Patched1 null
mice, both rostral and caudal defects are seen [71], sug-
gesting that both pathways act at different stages during
neurulation. When Shh pathway regulates neural plate
bending and specification of the ventral neural cell fates,
the PCP pathway drives neural tube closure [72].

PCP protein mutations and NTDs
When the correct expressivity of proteins in PCP signal-
ing is disturbed, caused either by environmental factors
or by genetic factors, some NTDs can occur.

Frizzled (Fz)
Fz, the first PCP gene to be defined molecularly, and
also a member of the Wnt receptor family, codes seven
transmembrane helices [73] and an amino-terminal
cysteine-rich domain (CRD) that is sufficient and neces-
sary for binding with the ligands of the Wnts [74-76]. It
can also bind Dsh and recruit Dsh and Dgo to the
membrane. In mammals, Fz genes have been implicated
in a variety of developmental processes, including the
nervous system formation. Fz3 is required for axonal
outgrowth and guidance in the CNS [77,78]. Fz3 can
also play a role during sympathetic neuron development
via the activation of b-catenin [79].
During the gastrulation in Xenopus, overexpression of

Fz7 (Xfz7) in the dorsal equatorial region affects the CE
movement and causes a delay of the mesodermal devel-
opment [80]. In the mouse, Fz3 and Fz6 play a role in
neural tube closure. Fz3-/-; Fz6-/- embryos exhibit cra-
niorachischisis with nearly 100% penetrance, and these
mice die within minutes after birth [81]. Fz1 and/or Fz2
mutations can cause defects in neural tube closure [82].
Flamingo (Fmi)/Starry night(Stan)/Celsr1
Three Fmi gene orthologs in human and rodents are
named celser1 - celser3 respectively. Fmi genes encode
proteins of the cadherin superfamily which are seven
transmembrane proteins with nine cadherin repeats in
the extracellular domain, and an uncharacterized intra-
cellular C terminus. The Drosophila Fmi gene regulates
epithelial planar cell polarity and dendritic field deploy-
ment [83,84]. Recent studies show that the primary
function of Fmi is to participate in the asymmetry of
PCP [85,86]. In mouse, the homozygous Celsr1 mutants
(Crsh and Scy) exhibit severe neural tube defects, such
as craniorachischisis, as a result of failure to initiate
neural tube closure, providing evidence for the function
of the Celsr family that are involved in a planar cell
polarity pathway in vertebrate neurulation [87].
Strabismus (Stbm)/Van Gogh (Vang)/vangl
Vangl1 and Vangl2 are mammalian homologs of Droso-
phila gene Van Gogh (Vang), also known as Strabismus
in which mutations disrupt the organization of various
epithelial structures, causing characteristic swirled pat-
terns of hairs on wing cells and misorientation of eye
ommatidia [88]. Exon-intron structure of mammalian
Vangl1 and Vangl2 orthologs was well conserved [89].
Vangl2 encodes a membrane protein comprising four
transmembrane domains and a large intracellular
domain with a PDZ-domain-binding motif at its carboxy
terminus [90].
Vangl2 can modulate actin cytoskeleton through the

small GTPases RhoA and Rac and the downstream Rho
kinase. Thus it is partially responsible for a variety of
changes in cell adhesion, polarity, and short-range tissue
movements [91].
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Studies of Stbm genes and the proteins that they
encode in mice, flies, frogs and fish have shown that
they have a crucial role in regulating planar cell polarity
and convergent extension movements [88]. In fly
mutated embryos, the polarity of the ommatidia of the
compound eye and the hairs of the wing and thorax are
disrupted, such that rather than pointing in the same
direction, they point in multiple directions [92]. In zeb-
rafish, trilobite mutant embryos (loss of Stbm) have
defects in gastrulation movements and posterior migra-
tion of hindbrain neurons [65], resulting in ectopic
neural progenitor accumulations and NTDs [69]. In
Xenopus, the homolog of Stbm is called xstbm. The
xstbm can regulate convergent extension in both dorsal
mesoderm and neural tissue by either increasing or
decreasing the Vangl2 function due to its optimal retard
of convergent extension movements [93]. Reduction of
xstbm function using a morpholino antisense oligo also
causes the trunk shortening [94].
Loop-tail (LtapLp, also called as Lp, Ltap, Lpp1) gene

is a semidominant mutation that affects neurulation in
mice, which are characterized by a looped-tail appear-
ance (pig tail) and wobbly head movements while homo-
zygous embryos exhibit a neural tube closure defect that
extends from the caudal midbrain to the tip of the tail
[95]. A potential role of PCP in NTDs came to light fol-
lowing positional cloning of Vangl2 in the loop-tail
mouse mutants that exhibit a severe NTD, craniora-
chischisis [90,96]. Subsequently, several studies have
shown that Vangl2 can also interact with different genes
and cause several forms of NTDs. For example, Dvl3+/-;
LtapLp/+ can cause craniorachischisis or exencephaly.
Dvl3-/-; LtapLp/+ mutants cause craniorachischisis [97].
Genetic interaction between Wnt5a and Ltap/Vangl2
could enhance the penetrance of neural tube closure
and all Wnt5a-/-; LtapLp/+ mice exhibited craniora-
chischisis [98]. Sequence analysis has not been success
thus far in identifying the mutations in human Vangl2
gene in patients with craniorachischisis [99], although
the Vangl2 mutation was identified in stillborn or mis-
carried fetuses with neural-tube defects [100].
However, the mutation in Vangl1 was found in

patients with familial and sporadic NTDs, who exhibited
a caudal neural tube, including craniorachischisis.
Furthermore, the result showed that the Vangl1 muta-
tions disrupted the physical interaction with Dvl [101].
These data indicate that Vangl1 is a risk factor in
human neural-tube defects. Later, mutations in Vangl1
were detected in spinal dysraphisms, providing further
evidences to support the role of Vangl1 as a risk factor
in the development of spinal NTDs [102].
Disheveled (Dsh/Dvl)
Disheveled proteins are important signaling components
in both the canonical b-catenin/Wnt pathway [103], and

the PCP pathway [97]. It is a cytoplasmic protein con-
taining DIX, PDZ, DEP domains and is recruited to
membrane by Fz, undergoing extensive phosphorylation.
Homologues of Disheveled are Xdsh in Xenopus, and
Dvl1, Dvl2 and Dvl3 in vertebrate. Disheveled is highly
conserved and play an important role in CE movement.
In PCP pathway, Disheveled acts in the downstream of
Wnt11 and Wnt5a and the upstream of Ca2+/CamKII,
JNK, and the Rho GTPase family members RhoA, Rac1,
and Cdc42 [104].
In vertebrate, Dvl1, Dvl2 and Dvl3 participate in the

CE movement. Dvl1-/- [105], Dvl3-/- and Dvl1-/-; Dvl3-/-

double mutants [7] do not display neural tube defects.
Mice with targeted inactivation of the Dvl1 gene were
found to exhibit alterations in sensorimotor gating and
social interaction [105] and Dvl2 does not seem to play
a similar role in the same way [70]. Dvl2-/- embryos dis-
played thoracic spina bifida, while virtually all Dvl1/2
double mutant embryos displayed a craniorachishisis, a
completely open neural tube from the midbrain to the
tail [7,70]. For Dvl3, which is also required for signals in
the PCP pathway to regulate the CE movement during
the development of the neural tube, neurulation
appeared normal both Dvl3-/- and LtapLp/+(Vangl2/Ltap)
mutants, while defects were seen in both Dvl3+/-;LtapLp/
+ (7/22, 32%, 5 with craniorachischisis and 2 with exen-
cephaly) and Dvl3-/-;LtapLp/+ mutants (in a total of 16
mutants, 6 with craniorachischisis) [97]. These findings
indicate that Dvl2 is the most important mammalian
Dvl gene for neural tube closure and is sufficient by
itself for normal neural tube closure. By contrast, Dvl1
and Dvl3 are not sufficient by themselves for a normal
neural tube closure, but contribute significantly when
Dvl2 is completely missing [7].
Diego (Dgo)/Diversin
Diego, comprises six ankyrin repeats and is co-localized
with Flamingo at proximal/distal boundaries [106]. The
homologue of Diego is Diversin in vertebrate and Inver-
sin in mouse [44]. Diversin is also an essential compo-
nent of the Wnt signaling pathway [107] and its
centrosomal localization is crucial for its function in the
Wnt signaling [108]. Diversin controls the balance
between canonical and noncanonical Wnt signaling,
with a higher diversin activity favoring PCP signaling
and a lower diversin activity favoring canonical signaling
[44].
In PCP pathway, Diversin act downstream of Wnt11

and Wnt5a and upstream of the small GTPases Rac and
Rho [109]. In zebrafish [104] and Xenopus [62], knock-
down of Diversin disrupts convegent extension. Div-
ANK mRNA injection also disturbed CE in zebrafish
embryos, which can be rescued by co-injection of
mouse Inversin mRNA [104]. Moreover, combinations
of low concentrations of Wnt11/5a Morpholino
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oligonucleotide (MO) and Div-ΔANK, which alone were
virtually ineffective, acted synergistically in inducing
strong CE phenotypes [104]. However, Diversin mRNA
was unable to rescue the defects caused by Dishevelled
lacking the DEP domain. and it’s the same in reverse,
although the two protein can interact [104].
Prickle (Pk)
Pk gene encodes a protein with a triple LIM domain
and a novel domain that is present in human and mur-
ine. Caenorhabditis elegans has a homolog that is desig-
nated as PET. Three transcripts have been identified,
Pk, PkM, and sple. In PCP signal pathway, Stbm/Vang
and Pk antagonize Fz-Dsh activity [49,50,85]. Lack of
both Pk and sple transcripts gives a phenotype that
affects the whole body surface that is similar to those
caused by deficiency of disheveled and Fz [110].
In zebrafish, both of homologs of Pk show a discrete

and dynamic expression pattern during gastrulation.
Both gain and loss of Pk1 function cause defects in con-
vergent extension movement. In overexpression assays,
Pk1 can inhibit the activation of Wnt/b-catenin signal-
ing [111].
In Xenopus, orthologues of Pk is XPk, which

expressed in tissues at the dorsal midline during gastru-
lation and early neurulation [112]. Both gain-of-function
and loss-of-function of XPk severely perturbed gastrula-
tion and caused a spina bifida in embryos, but no influ-
ence in mesodermal differentiation [113].

Global polarization
The appropriate function of the PCP pathway in neuru-
lation can ensure a normal global polarization, which
not only means that the cells in the plane coordinate
with each other, but also demands that the tissues
develop harmoniously within the whole body. One
attractive model in PCP pathway is Fat/Ds system. How-
ever this system is not involved in the development of
NTDs. Recent studies show that this system, the Fz/Fmi
system, and also the principal PCP signaling pathway,
function in parallel [43].
Asymmetric arrangement
The specific, highly controlled, asymmetric arrangement
of these PCP core components, appearing to be highly
sensitive to the orientation of the cell’s sides with
respect to the global axis of the epithelium, allows the
polarity of the cell to be established within the plane of
the epithelium and promotes the rearrangement of the
cytoskeletal components of the cell [97]. Although the
asymmetric localization of some of the PCP factors has
been documented in some vertebrate tissues, for exam-
ple, during zebrafish gastrulation and neurulation, a
complete data set and thus an equivalent model to Dro-
sophila do not yet exist [5]. The asymmetric distribution
of core PCP components such as Pk1 in the neural plate

has recently been shown to be essential for neural tube
closure [114]. Another example is that the asymmetric
localization of Pk and Dsh during zebrafish convergent
extension processes [115]. The fluorescent fusion pro-
teins during dorsal mesoderm CE movement have
shown that Pk localizes at the anterior cell edge,
whereas Dsh is enriched posteriorly. The asymmetrical
localization of Pk and Dsh observed in zebrafish gastrula
is similar to their localization in fly, suggesting that non-
canonical Wnt signaling defines distinct anterior and
posterior cell properties to bias cell intercalations [115].
Wnt signaling pathway
Wnt signaling plays a critical role in a vast array of bio-
logical process, including cell proliferation, migration,
polarity establishment and stem cell self-renewal [103].
Wnt5a and Wnt11 are the core members in Wnt path-
way and also are clearly linked to the PCP signaling
pathway. It has been reported that Wnt5a/pipetail and
Wnt11/silberblick control CE movement in zebrafish
embryogenesis via the PCP pathway [116-119].
Wnt11 is thought to be involved in the CE movement

taking place during gastrulation and perhaps more
broadly during organogenesis [120]. Zebrafish Wnt11
mutants silberblick (Slb) have typical convergent exten-
sion phenotypes [117]. Wnt5a can genetically interact
with Ltap/Vangl2 to regulate neural tube closure. All
Wnt5a-/-;LtapLp/+ mutants exhibited craniorachischisis,
indicating a drastic increase in penetrance as compared
to the craniorachischisis phenotype displayed by
Wnt5a-/- (1 in 34) or LtapLp/+ animals (0 in more than
100) [98].
Disheveled is a core component in both the PCP path-

way and the Wnt pathway [103]. In zebrafish, slb pheno-
type, abnormal CE movement during gastrulation can be
rescued by a truncated form of Disheveled [117]. In
overexpression assays, Pk1 can inhibit activation of Wnt
signaling during zebrafish CE movements of gastrulation
[111].
Diversin, a homologue of Diego in vertebrate, is an

essential component of the Wnt signaling pathway [107]
and its centrosomal localization is crucial for its func-
tion in the Wnt signaling pathway [108]. Inversin, a
homologue of Diego in mouse, can control the balance
between canonical and noncanonical Wnt signaling
[121]. A higher Inversin activity favors the noncanonical
signaling (i.e. the PCP pathway) and a lower Inversin
activity favors the canonical signaling [44].
Diversin, comprised six ankyrin repeats, can rescue CE

phenotypes induced by Wnt11/5a MO. Also combina-
tions of low concentrations of Wnt11/5a MO and Div-
ΔANK, which alone were virtually ineffective, acted
synergistically in inducing strong CE phenotypes, sug-
gesting that Wnt5a and Wnt11 can control CE move-
ment in zebrafish embryogenesis through Diversin [122].
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Cilia
In vertebrates, many, if not all, epithelial cells have a
single nonmotile cilium (the primary cilium), which is
typically located in the center of the apical face of the
cell [44]. Cilia are microtubule-based protrusions and
are an important nexus for cellular signaling. They are
apparently a critical junction between the signals that
influence cell fate and the signals that influence cell
movement [55].
Connections has recently been found between PCP

and non-motile cilia based on the observation that sev-
eral genes that affect vertebrate PCP also affect ciliary
structure and/or function [123,124].
Bardet-Biedl syndrome (BBS) is a pleiotropic disorder

characterized by age-related retinal dystrophy, obesity,
polydactyly, renal dysplasia, reproductive tract abnormal-
ities and cognitive impairment. It is genetically heteroge-
neous, with mutations identified in several BBS genes. A
connection has been found between BBS genes and PCP
[38,125]. 14% of Bbs4-/-mice display an open cephalic
neural tube (exencephaly) [125]. MO knockdown of
BBS4 in zebrafish leads to PCP phenotypes, including a
failure of embryonic CE movement [44]. Other evidence
suggesting a molecular connection between PCP and cilia
comes from studies on the ciliary protein Inversin. This
protein has been studied for some time in the context of
cilia function, and it is also the core protein in PCP [55].
This connection between PCP signaling and a known

ciliary protein became even more evident with the find-
ing that the PCP proteins Vangl2 and DVL are localized
at or near the base of cilia in vertebrate cells [125,126].
The most recent link between PCP and cilia comes

from experiments with Xenopus embryos in which dis-
ruption of Inturned or Fuzzy elicited prominent rostral
neural tube closure defects in addition to more caudal
neural tube defects. These defects were shown to arise
from failure of both PCP and Shh signaling [126]. It is
clear is that several signal transduction proteins must
localize to cilia for Shh signal transduction to proceed
normally [127]. This suggests that Inturned and Fuzzy
play a role in ciliary structure or function.

The differences among species
Studies in Drosophila, zebrafish, Xenopus, mice, and
human beings have revealed that similarities, as well as
differences, exist in the PCP pathway and in the devel-
opment of NTDs. The most important is that the prin-
cipal PCP signaling pathway is highly conserved across
species and tissues [5].
The numerous differences among species in anatomy,

tissue types and morphogenetic processes, together with
the existence of a number of distinct PCP components
make it interesting to think about the difference in the
development of TNDs among different species.

For example, Scrib and Ptk7, for which there is no evi-
dence in Drosophila regarding a role in PCP, were asso-
ciated with the PCP phenotypes in vertebrates when
they were mutated, either alone and or in combination
with other PCP gene mutations [128,129]. Other exam-
ples are genes such as Inturned and Fuzzy. They are
considered to be the PCP effector genes in Drosophila
and have been found to be associated with a convergent
extension phenotype in frog or fish embryos [126]. The
full length transcript of mouse Scrib is about 5,547 bp
and encodes a putative protein containing 1,665 amino
acids, which exhibits 88% homologue with human
SCRB1, 44% homologue with Drosophila Scribble and
36% homologue with C. elegans protein LET-413 [129].
Most PCP genes have only one isoform in zebrafish,

Xenopus, whereas in other species such as rodents,
there are often numerous isoforms (for example, 3 Dvls,
2 Vangls, 2 Prickles, 3 Celsrs, etc). Furthermore, the
expression of some isoforms is not overlapped. As such,
the studies on PCP generation in mice have been ham-
pered because of the redundancy of the PCP genes.
These studies require a more detailed analysis using as
many tissues as possible. Double and triple knockout
mouse lines are often required and the necessary invol-
vement of these models makes investigations lengthy
and tedious [44].
From mouse to man
At the embryonic level, the events of neurulation appear
extremely similar between mice and humans. As a
result, mouse models are commonly used in the
research of NTDs. There are over 200 different mouse
genes that result in NTD phenotypes either through
naturally occurring mutations or through the targeted
mutations [9,32]. Several mouse mutants involved in
PCP signaling pathway for NTDs research, such as loop-
tail [81,130-132], circletail [129,133,134], crash [87,134],
dishevelled knockout mouse [7,70,97], BBS-null mouse
[125], frizzled 3 and frizzled 6 double mutants [81],
Sfrp1, Sfrp2, and Sfrp5 compound mutant mice [135]
and so on.
The human homologues of some of these mouse NTD

genes have been examined in case-control association
studies or directly sequenced in mutation screens,
although with very few significant findings to date
[3,99-102].
So we have the reason to ask whether it is appropriate

to use mouse models for the studies of human NTDs
[3].
First, in the process of neural tube closure, Closure 2

in mice is thought to be absent in human neurulation
[10], suggesting that neural tube closure may follow a
somewhat different process in humans [3].
Secondly, many gene-specific homozygous null mouse

embryos exhibit additional phenotypes besides NTDs,
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such as prenatally lethal heart defect. Such syndrome-
like examples do not appear particularly close to the
models of human NTDs [3]. Also, some mutations may
be lethal to human fetus such as Vangl2 [100]. As a
result, those embryonic lethal cases are unlikely to
become the subject of successful studies.
Thirdly, detailed analysis of a few of the mouse

mutants suggests that isolated NTDs can also result
from the effect of hypomorphic alleles, combinations of
heterozygous mutations, genetic background effects and/
or gene-environmental interactions. This partial loss of
function or multi-factorial etiologies may more closely
resemble to human NTDs [3].

Outlook
Kibar and colleagues have identified three VANGL1
mutations (V239I, R274Q, and M328T) in patients with
sporadic and familial neural-tube defects [101]. How-
ever, the phenotype associated with V239I varied among
patients. Notably, the mother of the proband with the
V239I de novo mutation did not have NTD. They think
this finding is consistent with the proposed multi-factor-
ial model for NTD formation. V239I has probably a par-
tial or complete loss of function effect and it interacts
with other genetic loci or unknown environmental fac-
tors to modulate the incidence and severity of the defect
[101].
As discussed above, the development of NTDs is asso-

ciated with multi-factors. To date, the concept is com-
monly accepted that the development of NTDs is
related to the gene mutations and the gene interaction
with other environment factors, which can explain some
inexplicable phenomena related to deficiency [136], ino-
sitol [25,137], diabetes [138], We think that the gene-
environmental interaction is an important process in
which the environmental factors can affect the gene
expression and affect the process of transcription and
translation.

Conclusions
In this paper, we have reviewed recent studies and high-
lighted an intimate relationship between PCP signaling
pathway and the development of NTDs. The nature of
this relationship remains to be further studied. What is
certain is that the PCP, also called tissue polarity, is not
only restricted to epithelial tissues, but is also found in
mesenchymal cells throughout animal development. The
PCP signaling pathway is highly conserved in various
species, which mediates changes in cell polarity and cell
motility in neurulation, through the activation of cytos-
keletal pathways, such as RhoA and Rho kinase. Several
components of the PCP pathway are expressed in the
process of neural tube closure, and the disrupted func-
tion of the PCP pathway members in Xenopus, zebrafish

and mouse are connected with various defects, and final
lead to NTDs. In this process, the interaction of proteins
within PCP pathway and PCP proteins with proteins in
other pathways are also demonstrated. Although gene
mutations in PCP that cause NTDs in humans are rarely
reported, it is noted that environmental factors and
other genetic factors may affect the expression of the
PCP genes.
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