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Abstract

Johne's disease (JD) is a chronic enteric infection of cattle caused by Mycobacterium avium subsp. paratuberculosis
(MAP). The high economic cost and potential zoonotic threat of JD have driven efforts to develop tools and approaches
to effectively manage this disease within livestock herds. Efforts to control JD through traditional animal management
practices are complicated by MAP’s ability to cause long-term environmental contamination as well as difficulties
associated with diagnosis of JD in the pre-clinical stages. As such, there is particular emphasis on the development
of an effective vaccine. This is a daunting challenge, in large part due to MAP’s ability to subvert protective host
immune responses. Accordingly, there is a priority to understand MAP’s interaction with the bovine host: this may
inform rational targets and approaches for therapeutic intervention. Here we review the early host defenses
encountered by MAP and the strategies employed by the pathogen to avert or subvert these responses, during
the critical period between ingestion and the establishment of persistent infection in macrophages.
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result from modern livestock management practices.
Furthermore, speculation that MAP may represent a
zoonotic threat has elevated the priority of this disease
from an issue of food production to one of food safety.

Efforts to control JD through improved animal man-
agement efforts have had limited success. This is largely
due to difficulties associated with reliable detection of
infected animals in the absence of clinical signs of dis-
ease, as well as the ability of the pathogen to persist in
the environment. These difficulties make traditional ap-
proaches to manage the disease largely ineffective, and
they place particular emphasis on the need to develop
an effective vaccine to prevent disease transmission. To
date, the vaccines that have been utilized for JD have re-
duced MAP shedding and clinical disease but have not
been effective in preventing infection. This may further
complicate management of the disease by increasing the
prevalence of subclinical MAP infections within a herd.

That the vast majority of animals exposed to MAP
do not develop clinical disease indicates that the
bovine immune system - when appropriately activated
- can effectively control the infection. These observa-
tions offer guarded confidence that it may be possible
to develop a vaccine which can prevent infection. The
limited success of vaccine development efforts to date
likely reflects the complexity of this host-pathogen
interaction; in particular MAPs ability to subvert crit-
ical host immune responses. As such, understanding
the mechanisms employed by the host as well as the
counter-measures employed by the pathogen may re-
veal rational points of therapeutic intervention.

2. Johne’s disease

Clinical manifestations of MAP infection of cattle in-
clude diarrhea, progressive weight loss, general wasting
and decreased milk production. These clinical symptoms
usually appear two to five years after the initial infection,
which generally occurs during the neonatal period.
Disease progression involves a general deterioration of
health and productivity. If the disease is allowed to pro-
gress, cattle eventually succumb to either dehydration or
cachexia. Notably, in a production setting, infected ani-
mals are typically culled shortly after the first indications
of clinical disease. Pathology associated with JD is pri-
marily localized to the terminal small intestine but may
be much more extensive and encompass both the small
and large intestine. The intestinal wall becomes mark-
edly thickened, which may inhibit nutrient absorption,
and tissue change is characterized by the extensive for-
mation of submucosal granulomas.

3. Species tropisms of MAP
MAP is classically described as a pathogen of ruminants
with a host range that includes cattle, sheep, goats, and
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deer [1,2]. However, MAP has also been isolated from a
number of wildlife species including badgers, coyotes,
crows, cats, opossums, rabbits and raccoons [3,4]. While
the priority of MAP investigations is generally cattle, the
ability of this pathogen to infect wildlife species raises
concerns that these species could act as disease reser-
voirs that enable transmission of MAP to naive livestock
herds. Conversely, there is also the threat of disease
transmission from MAP-infected domestic herds into
the surrounding wildlife.

4. Disease transmission

While some calves may be infected with MAP in utero,
most infections are thought to occur during the neonatal
period. MAP typically enters the calf through the oral
route by consuming infected material - soil, feces, MAP
infected milk or colostrum - or as a result of oral contact
with contaminated surfaces, including udders. MAP may
also be transferred by other bodily fluids such as saliva,
uterine fluid, or semen [5,6]. Recent studies have indi-
cated that MAP may also be acquired through inhalation
of aerosols [7]. Vertical transmission of MAP is most
common, however, horizontal transmission from either
calf-to-calf or calf-to-contaminated wildlife and contami-
nated wildlife-to-calf, potentially including insects, has
also been observed [8,9]. While wildlife reservoirs of dis-
ease represent a potential source of infection, MAP most
often enters a cattle herd through the acquisition of an
infected cow [9].

The susceptibility of cattle to infection by MAP is
largely age-dependent. Calves experience the greatest
susceptibility during the first few months of life with in-
creasing tolerance developing between four months to
one year [10]. By one year of age, calves achieve a level
of MAP resistance comparable to that of an adult cow:
they can be infected with MAP but this requires higher
infectious doses and longer exposure periods [11,12].
The increased susceptibility of young calves to MAP in-
fection may be due to a number of contributing factors.
The higher porosity of the open gut of newborn calves
may offer greater opportunity for pinocytosis of MAP
[12]. Maternal antibodies to MAP within colostrum may
also promote the uptake of MAP through enhanced
opsonization of the bacteria [13]. Finally, a general im-
maturity of the innate and/or adaptive immune systems
may contribute to an increased susceptibility of newborn
calves to MAP infection [14,15].

5. Host resistance to MAP infection

Importantly, only 10-15% of cattle exposed to MAP de-
velop clinical disease, indicating that most calves suc-
cessfully control the infection [16]. The ability of
individual animals to successfully control a MAP infec-
tion likely reflects contributing factors such as host
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health and genetics, environmental conditions, infec-
tious dose and variables associated with different MAP
strains. There have been numerous efforts to identify
specific host genetic factors that predict MAP suscepti-
bility. Such investigations are typically conducted with
the goal of identifying biomarkers to guide the breed-
ing of disease tolerant animals. Unfortunately, as might
be anticipated, bovine genetic susceptibility to MAP
infection is complex. This is perhaps best exemplified
by a recent meta-analysis of two genome-wide associ-
ation studies that revealed multiple loci associated with
MAP infection of cattle involving 11 different chromo-
somes [17]. The identification of genetic predictors of
MAP resistance is further complicated by the breed-
specificity of some of these biomarkers. For example,
in Brahman-Angus crossbred animals there is an associ-
ation between infection status and the caspase associated
recruitment domain 15 (CARD15) gene that is not ob-
served in Holstein cattle [18]. Other priority resistance
genes have been proposed based on i) involvement in other
mycobacterial diseases, ii) roles in host defense and iii) as-
sociations with Crohn’s disease, including solute carrier
family 11 member 1 (SLC11A1) (also known as NRAMP1),
Toll-like receptors (TLRs), major histocompatibility com-
plex (MHC) and cytokines (interleukin-10 and interferon-
gamma) and their receptors [19].

6. Zoonotic threat of MAP

The economics costs, as well as animal health and wel-
fare considerations, are sufficient to define JD as a prior-
ity for the livestock industry. However, the disease has
taken on even greater importance with the possible im-
plication of MAP as a causative agent or contributing
factor in Crohn’s disease, an inflammatory bowel disease
of humans [20].

In the absence of definitive evidence regarding the contri-
bution of MAP to Crohn’s disease, mitigating the risk of
MAP transfer from cattle to humans may be an important
precautionary action. Reducing MAP transmission in cattle
would not only have a significant positive impact on public
perception, reducing MAP transmission in cattle would
have direct economic benefits to livestock producers. By
themselves, animal health and welfare aspects of JD are of
sufficient importance to justify the development and imple-
mentation of a vaccination program that could prevent
transmission of MAP. Historically, vaccination has been an
extremely effective tool for control of infectious diseases in
humans and animals. Unfortunately efforts to develop an
effective vaccine for MAP have had limited success [21].
While the initial BCG vaccine developed in the early 1900s
is still utilized, the functional utility of this vaccine is largely
limited to reduced shedding of MAP by infected animals
[22]. Mycopar® (strain 18), a whole inactivated MAP vac-
cine has only shown protection from clinical disease, but
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not infection, potentially exacerbating the problem of
asymptomatic carriers [22]. The limited success of
traditional approaches of vaccine development for JD
indicates that a greater understanding of the virulence
mechanisms of MAP is required in order to adopt a
more strategic approach to vaccine design. Specifically,
we propose that understanding the mechanisms by
which MAP subverts host immune responses will form
the basis for developing and evaluating an effective
vaccine.

7. Stages of MAP infection

The primary focus of this review is to critically review what
is known regarding events that occur during the earliest
stages of MAP infection of the bovine host. Specifically the
host defenses activated and bacterial counter-measures
employed during the period between oral uptake of MAP
and its establishment of a persistent infection within mac-
rophages. This critical period can be sub-divided into two
distinct functional stages: 1) MAP invasion of the gut, and
2) Infection and survival in macrophages. Within each stage
MAP encounters a variety of host defense systems that
must be averted or subverted in order for the pathogen to
establish infection.

7.1 Stage 1: MAP invasion of the intestinal barrier

7.1.1 Tissue uptake of MAP

MAPs' efforts to establish infection are not limited to
considerations of the conditions that exist within a
single animal; they extend to changes in conditions that
exist across hosts. Within infected herds horizontal
transmission of MAP often occurs during calves’ nursing
from an infected dam. Patel et al. demonstrated that
pre-incubation of MAP in mammary epithelial cells or
milk increased MAPs ability to infect bovine epithelial
cells, suggesting that the cellular environment within the
infected host primes the pathogen for invasion of intes-
tinal epithelial cells of the next target host [13]. Gene ex-
pression analysis attributed this increased virulence to a
small subset of genes which included virulence factors
and MAP-specific genes of unknown function [23].

Oral challenge models suggest MAP may invade the
host as early as the oral mucosa in the tonsils. This con-
clusion is supported by models that have demonstrated
the tonsillar crypts as a route for MAP infection [24].
Following entry through the tonsils it is proposed that
MAP spreads to the mesenteric lymph nodes and ileum
via the blood [25]. There is some concern, however, over
the physiological significance of these routes of infection.
Less aggressive oral infection models, using lower doses
of MAP, have implicated the ileum as the primary point
of MAP invasion [25] (Figure 1).

Using a gut surgical loop model, our group observed
that MAP infected the jejunal region of newborn calves



Arsenault et al. Veterinary Research 2014, 45:54
http://www.veterinaryresearch.org/content/45/1/54

Page 4 of 15

(1) lleum (m) Cecum (n) Large Intestine (o) Anus (p) Uterus.

Figure 1 Uptake of orally ingested MAP. MAP is ingested (1) and travels through the Gl tract. It may also be taken up in tonsillar crypts and
transported to the ileum. In the rumen (2) the bacterium’s FAP is activated and is opsonized by fibronectin upon entering the lower digestive
tract (3). After reaching the ileum (4) MAP is phagocytized by M cells of Peyer's patches following recognition of the bacterium through the fibronectin
receptor (5) and travels across the epithelium to intra-epithelial macrophages, which take up complement-coated MAP via complement receptors (6).
Infected macrophages form granulomas (7), which harbor latent MAP infections. During active JD (8), MAP may be transmitted to an unborn calf (5), to
neonates following priming in mammary glands and in milk causing increased virulence (9), or through fecal matter contaminating the environment (10).
(@) Mouth (b) Salivary Glands (c) Esophagus (d) Rumen (e) Reticulum (f) Omasum (g) Abomasum (h) Gallbladder (i) Pancreas (j) Duodenum (k) Jejunum
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with the induction of strong, but non-fatal, mucosal im-
mune responses. MAP infection of the ileal region of
newborn calves was also observed within our intestinal
loop infection studies [26,27]. Following oral ingestion
of MAP, while all regions of the small intestine should
be exposed to bacteria, there is increasing evidence for
significant regional differences in mucosal immune sys-
tem development during the neonatal period [14,15].
Further characterization of innate and acquired immune re-
sponses following MAP infection at specific sites through-
out the gastro-intestinal tract may be of considerable
significance in understanding MAP pathogenesis. It
will be important to determine if the ileal Peyer’s patch
(PP) truly provides a unique portal of entry by which
MAP establishes persistent infections. There are marked
age-dependent changes in the structure and function of
this lymphoid tissue [28] which may be consistent with an
age-dependent susceptibility to MAP infection. Further-
more, this information may also be critical for the design
and delivery of a protective vaccine if immune effector

cells must localize to a specific region of the small
intestine.

7.1.2 Mechanisms of MAP invasion from the intestine

Experimental infection studies have suggested that MAP
invasion appears to occur through both microfold (M)
cells of the Peyer’s patches as well as differentiated
epithelial cells [29-31]. Passage of MAP through the ru-
minant digestive system activates the bacterial cell wall
protein fibronectin attachment protein (FAP) to promote
opsonization by fibronectin [32]. Fibronectin, in turn, links
MAP to the luminal surface of intestinal M cells through fi-
bronectin receptors. This fibronectin-dependent mechan-
ism of MAP uptake likely contributes to the preferential
uptake of MAP through M cells, which are enriched with
the P1 fibronectin receptor [33]. There may be alternate,
fibronectin-independent, mechanisms for MAP entry into
intestinal epithelial cells, although the physiological signifi-
cance of these routes of entry has yet to be firmly estab-
lished [31]. The MAP invasion of this first host cell barrier
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occurs very quickly, within 30 min of contact [34]. These
cells then translocate MAP from the intestinal lumen to
the submucosa [35]. Within the submucosa MAP is then
ingested by macrophages. Following an experimental infec-
tion, MAP translocation from the intestinal lumen into
submucosal macrophages occurs in a matter of minutes to
hours [35] (Figure 1).

7.2 Stage 2: Infection of and survival within the
macrophage

Macrophages play a critical role in the host-pathogen
interaction of JD. Not only do they serve as a central ef-
fector for mediating the destruction of MAP but also, in
the event of their subversion by MAP, being transformed
into protected havens for the survival, proliferation and
dissemination of the pathogen.

7.2.1 MAP invasion of the macrophages

After penetrating the intestinal epithelial barrier, MAP
specifically invades sub-epithelial macrophages, which
have several families of receptors involved in the uptake
of mycobacteria: the complement receptors (CR1, CR3, and
CR4), the immunoglobulin receptors (FcR), the mannose
receptor and scavenger receptors [36]. Different routes of
entry into macrophages may have important consequences
for intracellular survival, each utilizing different receptor-
mediated systems and resulting in unique patterns of
cytokine secretion inducing differential immune responses
[36]. In particular, uptake via complement receptors limits
macrophage activation [37]. That the uptake of MAP into
bovine macrophages is enhanced by the opsonization with
the serum from either healthy or JD cattle indicates
complement-mediated uptake of MAP [38]. Preferential
uptake of MAP into bovine macrophages through the
complement system may represent a strategy of the bac-
teria to evade critical host defenses (Figure 1).

7.2.2 Blocking phagolysosome fusion

One of the most critical periods in the establishment of
a persistent infection occurs immediately after MAP
entry into the macrophage phagosome. Through pro-
grammed changes in membrane markers and acidifica-
tion of the internal compartment, phagosomes undergo
step-wise development to a late endosome. Fusion of
the late endosomes with lysosomes, creating phagolyso-
somes, generates an environment that is chemically and
biochemically tailored for the destruction of internalized
particles, including MAP [39]. The survival of the internal-
ized bacteria depends on its ability to disrupt the formation
of the mature phagolysosome in order to avoid the result-
ing hydrolysis and oxidation reactions. Inhibition of phago-
some acidification and phagolysosome fusion represent
critical mechanisms by which mycobacteria survive within
macrophages [40].
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Macrophage subversion requires strategies of active inter-
vention by mycobacterial pathogens. Cheville et al. demon-
strated changes in patterns of endosomal markers that
supported the ability of live, but not dead, MAP to block
endosomal maturation [41]. Within the same study, a simi-
lar trend was observed whereby only viable MAP was able
to block the acidification of phagosomes [41]. Investigations
performed by other groups, considering other markers of
phagosomal maturation, such as the Rab GTPase family,
have reached similar conclusions that live MAP is required
for inhibition of phagosomal maturation [40].

Given the importance of phagolysosomal maturation, it is
perhaps not surprising that MAP employs a number of
complementary - and potentially redundant - mechanisms
for subversion of this process. In one scenario, inhibition of
phagosome maturation and phagosome-lysosome fusion is
mediated through MAP’s efforts, directed on the phago-
somal membranes. For example, mycobacterial lipids are
proposed to integrate into - and thereby disrupt the struc-
tural and functional characteristics of the phagosome mem-
branes [42]. Specifically, a mycobacterial sulfolipid has been
shown to be sufficient to impair phagosome fusion [43].
Mycobacteria can also influence the functional characteris-
tics of the phagosome membrane through the secretion of
the lipid phosphatase SapM. During phagosome develop-
ment, phosphatidylinositol 3-phosphate (PI3P) is an essen-
tial membrane-trafficking regulatory lipid that allows the
phagosome to acquire lysosomal constituents [44]. In host
cells infected with dead mycobacteria, PI3P functions
normally, but in host cells infected with live mycobac-
teria, PI3P is eliminated on a continuous basis by the
hydrolysis activity of SapM [40]. This mechanism is
likely used by MAP as, based on our NCBI-NR Blast
results, its genome contains a phosphoesterase protein
very similar in amino acid sequence to the SapM found
in M. tuberculosis (Figure 2).

Acidification of the phagosome is an essential component
of the maturation process as lysosomal vacuoles contain a
complement of hydrolytic enzymes that depend on an
acidic environment for their optimum catabolic activity.
Vacuole acidification is achieved through the action of the
vacuolar H" - ATPase (V-ATPase), a primary active
transport protein that utilizes the energy of ATP to
pump protons into the vacuole [45]. Disruption of
vacuole acidification is a priority evasion mechanism
for intracellular pathogens; phagosomes containing
pathogenic mycobacteria have substantially higher pH
than those containing either nonpathogenic or killed
organisms [45]. Through neutralization of this pump
or inhibition of its recruitment to the vacuole MAP is
able to prevent phagosomal acidification [46]. Through
gene expression studies Weiss et al. and Murphy et al.
[47,48] found that expression of the V-ATPase was
higher in MAP-infected macrophages as compared to
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signaling pathways.
.

Figure 2 Inhibition of phagolysosomal maturation by MAP. MAP sulpholipds inhibit the formation of the phagolysosome by hindering the
merging of the phagosome with the lysosome. SapM dephosphorylates phosphotidylinositol phosphates, disrupting membrane-trafficking regulation.
V-ATPase is involved in phagosome-lysosome fusion. It is bound by mycobacterium protein PtpA and excluded from the phagosome thus inhibiting
fusion. Rab5 stimulates fusion of early endosomes. Through retention of Rab5, as well as inhibition of recruitment of early endosomal autoantigen 1 (EEAT)
to mycobacterial phagosomes, MAP is able to avert the maturation of endosomes into functional mycobacteriocidal compartments. Normally TACO is
released from the phagosome allowing the lysosome to fuse. This release is inhibited by MAP. Mycobacteria are known to influence MAPK-p38 through
LAM activation of TLR2. This ultimately leads to the inhibition of EEAT. TLR2 also induces production of IL-10 inhibiting a number of other innate immune

V-ATPase

- V-ATPase

Phagosome

those infected with non-pathogenic mycobacteria [49].
These findings highlight this system’s priority to MAP
infection and indicate MAP’s actions are not mediated
at the level of regulation of transcription. Instead MAP
secretes a protein effector molecule, protein tyrosine
phosphatase (PtpA), into the vesicle contents. PtpA
binds a specific subunit of the macrophage V-ATPase
machinery that is responsible for luminal acidification
and is speculated to coordinate phagosome-lysosome
fusion through interaction with the macrophage class
C vacuolar protein sorting complex. PtpA, through its
interaction with the V-ATPase, mediates dephosphory-
lation of VPS33B resulting in exclusion of V-ATPase
from the phagosome thereby inhibiting phagosome
acidification [50] (Figure 2).

Maturation of the endosomes occurs in a stepwise,
highly regulated fashion. A number of host proteins,
including ATPase N-ethylmaleimide- sensitive factor
(NSF), soluble NSF attachment proteins (SNAPs), and
vesicle and target membrane SNAP receptors (SNARES)
are essential for the maturation and fusion of endosomes
[51,52]. These processes are regulated through Rab
GTPases; Rab5 stimulates fusion of early endosomes
while Rab7 promotes fusion of mature phagosomes
with endosomes and lysosomes [53]. By retaining Rab5
and inhibiting recruitment of early endosomal autoantigen
1 (EEA1) to mycobacterial phagosomes, MAP is able to
avert the endosome’s maturation into functional mycobac-
teriocidal compartments [54] (Figure 2). Additional mecha-
nisms for MAP’s inhibition of phagolysosome membrane
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fusion have been described. One such mechanism may be
halting the release of the tryptophan aspartate-containing
coat protein (TACO) from the phagosome. Normally,
TACO is released from the phagosome, allowing fusion
with the lysosome [55] (Figure 2).

Mycobacteria also appear to subvert the maturation of
the endosomes through higher-order influences on cell
signaling. Studies have demonstrated interconnection be-
tween mitogen activated protein kinase (MAPK)-p38 sig-
naling and the endocytic pathway. Specifically, MAPK-p38
signaling blocks the association of EEA1 and LAMP-3 with
late endosomes, whereas blocking MAPK-p38 signaling
causes phagosomal acidification and enrichment of the late
endocytic markers [56]. This suggests that MAPK-p38 has
a negative regulatory role in phagolysosome biogenesis
(Figure 2).

7.2.3 Blocking macrophage responsiveness

7.2.3.1 Pattern recognition receptors Pattern recogni-
tion receptors (PRRs) are responsible for the perception
of microbial challenge with subsequent induction of pro-
tective host responses [29]. Activation of PRRs occurs
through the binding of receptor-specific pathogen asso-
ciated molecular patterns (PAMPs). The Toll-like recep-
tors (TLRs) represent a major PRR sub-category. In
addition to the standard immune induction and cytokine
responses initiated by the various TLRs, other cellular
processes important to mycobacterial pathogenesis are
also TLR-mediated, including phagosomal maturation
[57]. Individuals with mutations in the TLR system show
increased susceptibility to a variety of infectious chal-
lenges, including mycobacteria [58]. Further, dynamic
levels of TLR expression in response to natural MAP in-
fection implicate a role for this system in protection
against MAP. The specific role of the TLR system in
defense against MAP appears complex. Activation of
certain TLRs, such as TLRY, seem to initiate responses
that are critical in defense against MAP [59] while acti-
vation of other TLRs, such as TLR2, induce responses
that suppress immune defense against MAP [60].

7.2.3.2 TLR9 While several mammalian TLRs are in-
volved in controlling mycobacterial infection [61,62] TLR9
is of particular interest due to its role in natural defense as
well as the potential for use of TLRY agonists as immuno-
therapeutics for mycobacterial infections [59]. TLR9 recog-
nizes and binds to microbial DNA as identified by the
presence of unmethylated CpG motifs. In mouse models,
CpG oligodeoxynucleotides (ODNs) have value in the treat-
ment of mycobacterial infections [63] and pretreatment of
human macrophages with CpG ODNS, but not other TLR
ligands, promoted phagolysosome development and inhib-
ited M. tuberculosis growth [64].
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Given the demonstrated role of TLRs, specifically TLRY,
in host defense against MADP, as well as the therapeutic po-
tential of TLR9 agonists in the treatment of mycobacterial
infections, our group investigated the consequences of
MAP infection on the responsiveness of bovine monocytes
to TLRY stimulation [65]. Inspite of a 10-fold increase in
TLR9 expression and maintained uptake of CpG ODNE,
classical TLR9-mediated responses were inhibited in MAP-
infected bovine monocytes. Other TLR9-mediated
responses, which occur through non-canonical signaling, in-
cluding oxidative burst, remained functional. Kinome ana-
lysis using species-specific peptide arrays confirmed that
classic TLRY signaling is redirected by MAP to proceed
through a Pyk2 mediated mechanism (Figure 3). Pyk2 medi-
ated signaling does not hinder infection as CpG ODN:ss fail
to promote MAP clearance. Instead Pyk2 signaling appears
to function to the advantage of the pathogen: treatment of
MAP-infected bovine monocytes with Pyk2 inhibitors sig-
nificantly reduced the number of intracellular MAP bacteria
[65]. Although the mechanism by which MAP exerts this
nuanced effect on TLR9 signaling is unknown, these results
are consistent with a multifaceted strategy to generate an
intracellular environment that favors a persistent infection.

7.2.3.3 TLRs 1 and 2 Toll-like receptor 2 (TLR2),
through the formation of heterodimers with TLRs 1 and 6,
has the potential to bind to a range of PAMPs [66]. Poly-
morphisms of TLR2 have been associated with increased
susceptibility of cattle to paratuberculosis [58]. TLR2 has
been implicated in the recognition of mycobacteria through
the binding of bacterium cell wall lipoproteins [18]. TLR2
is activated by Mannosylated liparabinomannan (Man-
LAM) to initiate signaling though the MAPK—p38 pathway.
A primary outcome of this signaling is increased interleukin
(IL)-10 gene expression. IL-10 is known to suppress pro-
inflammatory cytokines, chemokines, IL-12, and major
histocompatibility factor class-II expression. The induction
of IL-10 expression through Man-LAM-induced TLR2-
MAPK-p38 signaling is a primary mechanism by which
MAP suppresses the antimicrobial responses of bovine
macrophages. Indeed, many of the suppressive effects of
MAP on bovine macrophages can be replicated by exposing
bovine monocytes to purified Man-LAM. The subversive
effects of MAP on infected macrophages can, conversely,
be reversed by pre-incubating cells with neutralizing anti-
TLR2 antibodies. This pre-treatment results in increased
phagosome acidification, phagosome maturation, and the
killing of MAP [67]. That anti-TLR2 antibody treatment
does not decrease the IL-10 concentration in culture super-
natants indicates that TLR2 has IL-10-independent roles in
altering phagosome acidification and maturation, such as
through inhibition of EEA1 (Figure 2).

ManLAM also reduces host gene expression of tumor
necrosis factor alpha (TNFa) and IL-12. It also increases
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Figure 3 Inhibition of toll-like receptor signaling by MAP. Signaling pathways based on known phosphorylation events of TLR9. A coloring
scheme is used to illustrate phosphorylation events that were detected by peptide array kinome analysis when analyzing lysates from bovine
monocytes stimulated with CpG ODNs in the presence and absence of MAP infection. Differential levels of phosphorylation relative to the media
treated control (p < 0.1) are presented. Green for increased phosphorylation, red for decreased phosphorylation and blue for insignificant
phosphorylation or peptide not present on array. Adapted from Arsenault et al. [89]. (Copyright © American Society for Microbiology).

the expression of Src homology region 2 domain-
containing phosphase-1 (SHP-1) [68]. SHP-1 is a tyro-
sine phosphatase that down-regulates macrophage
immune responses. ManLAM has also been found to
inhibit the expression of IL-12 in host dendritic cells
[69]. M. tuberculosis and M. bovis bacilli Calmette-Guérin
are two Mycobacterium species that also contain ManLAM
in their cell wall. Exposure of host cells to ManLAM from
these species resulted in no detectable TLR-dependent im-
mune activation [70]. ManLAM has been implicated in the

inhibition of interferon gamma (IFNy)-induced macro-
phage activation [71] and the induction of transforming
growth factor beta (TGEP) [72]. The elimination of IFNy
and the activation of TGFP pathways can lead to a switch
from a Type 1 helper T-cell (Thl) to a Th2 immune re-
sponse, which is generally considered ineffective against
intracellular mycobacterial infections [72].

From various studies, it appears that TLR1 and TLR2
are affected differently by mycobacterial infection. In
both mesenteric lymph node (MLN) mononuclear cells
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and in peripheral blood mononuclear cells (PBMCs)
from cattle infected with MAP a significant decrease in
TLR1 expression is observed. In the same studies, there
was no significant change in the expression of TLR2
[62]. Thus the immune effects may be the result of a
lack of subsequent interaction between TLR1 and TLR2.

7.2.3.4 Interferon gamma signaling IFNy plays a cen-
tral role in immune defense against a variety of intracel-
lular pathogens, including mycobacteria [73]. IFNy
signaling induces a range of bactericidal responses in-
cluding induction of reactive oxygen and nitrogen inter-
mediates, production of cytokines and promotion of
phagosome maturation. IFNy activates target cells by
binding to a high-affinity IFNy receptor for activation of
the Janus family kinase - Signal Transducer and Activa-
tor of Transcription (JAK-STAT) pathway [74]. Mice
deficient in IFNy are more susceptible to intracellular
pathogens [75]. Humans with mutations in the IFNy
receptor chains experience infection by low-virulence
environmental mycobacterial strain infections and suffer
from recurring bouts of tuberculosis [76]. Multiple stud-
ies have outlined the importance of IFNy to the patho-
genesis of JD. Cattle in the subclinical, excretory stage of
JD produce increased levels of IFNy at the ileal and cecal
lymph nodes [77]. When PBMCs are isolated from in-
fected cattle and stimulated with MAP antigens in vitro,
they display a greater release of IFNy than that observed
in cells from uninfected cattle [78]. Furthermore, we ob-
served increased MAP-specific IFNy production by mes-
enteric Ln cells within one month after MAP infection
[27]. Therefore, IFNy production appears to be an early
response to MAP infection and this response continues
throughout a persistent infection.

Given the importance of IFNy for control and clear-
ance of intracellular pathogens, this host defense mech-
anism is a logical target for disruption by MAP. A
number of other pathogens have been shown to suppress
IFNy and JAK/STAT1/2 signaling through a number of
mechanisms including decreased expression of IFNy re-
ceptors [79,80], decreased association of STAT with
transcriptional co-activators [79], and induced expres-
sion of suppressor of cytokine signaling (SOCS), which
binds and inactivates JAK to block JAK/STAT signaling
[80]. Man-LAM also promotes activation of tyrosine
phosphatase-1, an inhibitor of JAK/STAT signaling [68].
The clinical observation that IFNy production persists
throughout MAP infection suggests that the evasion
strategy used by MAP is disruption of IFNy signaling.
Specifically, while pretreatment of macrophages with IFNy
enhanced their ability to clear mycobacterial infections [81]
the same treatment, given post-infection, is unable to
achieve efficient clearance of the bacterium [82]. These re-
sults suggest that once MAP has established itself with the
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macrophage it is able to inhibit IFNy dependent clearance;
however, if the antimicrobial activity of the macrophage is
stimulated by IFNy prior to infection, clearance is possible.

To investigate the mechanism (s) by which MAP blocks
IFNy-dependent responses our group used kinome analysis
to compare monocyte responses to [FNy in the presence or
absence MAP infection [65]. Significant JAK-STAT signal-
ing was observed in IFNy-stimulated bovine monocytes in
the absence of MAP infection. In contrast, IFNy stimula-
tion of MAP-infected bovine monocytes failed to induce
patterns of peptide phosphorylation consistent with JAK-
STAT activation. The inability of exogenous IFNy to induce
differential phosphorylation of peptides corresponding to
early JAK-STAT intermediates in infected monocytes sug-
gested that MAP blocked signaling at, or near, the IFNy re-
ceptor. Further investigation revealed that following MAP
infection there was increased expression of SOCS1 and
SOCS3 genes, negative regulators of the [FNy receptor, as
well as decreased expression of IFNy receptor chains 1 and
2 genes. These transcriptional changes occurred sequen-
tially with early induction of SOCS1 and 3 genes and
subsequent repression of the IFNy receptor genes [65]
(Figure 4). These observations agree with previous
findings that MAP infection of mouse macrophages
inhibited JAK-STAT signaling via decreased expression
of the IFNy receptor genes [83].

It has been suggested that MAP inhibition of IFNy re-
sponsiveness is mediated by the specific effector molecule
PtpB. M. tuberculosis with the mPtpB gene knocked-out
survived as well as wildtype bacteria within unstimulated
macrophages, but survival of the mutant mycobacterium
was severely impaired when infected macrophages were
stimulated with IFNy [84]. These observations support the
conclusion that PtpB plays an essential role in disrupting
the IFNYy receptor signaling pathway by either dephosphor-
ylating a key signaling intermediate or the receptor itself.
MAP may employ more than one mechanism to evade
IFNy induced antimicrobial responses since purified sul-
pholipids from mycobacteria have also been found to block
immune priming of human monocytes as indicated by the
failure of these cells to induce superoxide production in re-
sponse to IFNy stimulation [85] (Figure 4).

Thus, if MAP establishes infection in quiescent macro-
phages it can alter the expression of IFNy receptors and
activate pathway suppressors to ensure evasion of both
innate and acquired immune responses. Understanding
these evasion mechanisms and the cells within which
they are active may contribute to the rational design of a
protective vaccine and/or therapeutics that promote
clearance of a MAP infection. Developing vaccines that
induce a strong Thl or IFNy response may be inad-
equate if these responses are unable to activate IFNy-
induced antimicrobial responses prior to MAP infection.
Therefore, vaccination prior to MAP exposure is a major
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Cytosol

signaling intermediate, or perhaps the receptor itself.

Figure 4 Inhibition of IFNg signaling by MAP. MAP infection inhibits JAK-STAT signaling via increased expression of negative regulators of the
IFNy receptor, SOCS1 and SOCS3, as well as decreased expression of IFNy receptor chains 1 and 2. These modifications of cellular responsiveness
occurred in temporal fashion with early induction of SOCST and 3 with subsequent repression of the IFNy receptor. MAP inhibition of IFNy responsiveness
may be mediated by MAP effector molecule PtpB. PtpB may disrupt the normal IFNy receptor immune signaling pathway by dephosphorylating a key

Reduced
Receptor
Expression

Expression

Nucleus

challenge when newborn calves are the primary popula-
tion at risk.

7.2.3.5 Superoxide dismutase The bactericidal activity
of the mature phagolysome is enhanced through the
production of reactive chemical molecules, including re-
active oxygen intermediates such as superoxide anion,
hydrogen peroxide and hydroxyl free radicals [42]. While
these reactive species are associated with the killing of
mycobacteria [86] there is controversy over the extent to
which ROIs contribute to the destruction of intracellular
MAP. Specifically, while bovine monocytes generate super-
oxide anion in response to stimulation with a number of
stimulants, very little ROI is produced in response to MAP
infection or to IFN-y stimulation of MAP infected mono-
cytes [87]. These observations may be interpreted as evi-
dence that ROIs are ineffective against MAP and therefore
are not activated by the host. Conversely, ROIs may repre-
sent a significant threat to MAP and therefore MAP has
evolved to subvert an important host defense. MAP has the
capacity to secrete superoxide dismutase, which neutralizes
superoxide radicals which suggests there may be an advan-
tage in neutralizing this host defense [88]. Inhibition of ROI

production may also occur as a consequence of MAP in-
hibition of IFN-y induced signaling [65]. Interestingly, the
inhibition of TLR9 signaling by MAP does not result in an
inhibition of oxidative burst [89].

7.2.3.6 Nitric oxide The harsh environment of the
phagolysosome includes production of another group of
anti-mycobacterial molecules, the reactive nitrogen inter-
mediates (RNIs) [90]. Similar to the ROIs there is contro-
versy as to the contribution of RNIs to host defense against
different mycobacteria in different species. In mouse mac-
rophages, the IFN-y-induced production of nitric oxide is
directly related to the ability to kill a number of myco-
bacteria including M. tuberculosis, MAP, and M. leprae
[71,82,90]. Further, chemical inhibition of nitric oxide
production increases the intracellular survival of M.
tuberculosis in mouse macrophages [90]. The relevance
of RNIs to JD is supported by the ability of MAP-
infected bovine monocytes to increase nitric oxide pro-
duction in response to IFN-y stimulation [91]. While
chemically-generated nitric oxide is effective in killing
MAP the quantities of nitric oxide that are produced in
bovine mononuclear phagocytes are generally considered
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insufficient to mediate exclusive destruction of the bacteria
[91]. That mycobacteria inhibit the recruitment of nitric
oxide synthase to mycobacteria-containing phagosomes
does suggest that this host defense represents a potential
threat to survival of this pathogen [92].

7.2.3.7 Apoptosis There is general consensus that MAP
influences the apoptotic tendencies of bovine macro-
phages, but with conflicting opinion on whether this is
in a pro- or anti- apoptotic manner. However, it may be
inappropriate to classify MAP as either pro- or anti-
apoptotic. Instead, under different situations, or at different
stages of the infection cycle, MAP may assume either of
these roles. For example, virulent strains of M. tuberculosis
have been shown to initially postpone apoptosis to allow
early intracellular replication, and later induce necrotic cell
death to exit the cell when intracellular conditions no lon-
ger favor growth [93].

From the perspective of the host, apoptosis of infected
cells serves to clear the pathogen. Apoptosis, but not nec-
rotic macrophage death, of mycobacteria-infected macro-
phages induces the intracellular killing of bacilli. Further,
MAP infected immune cells that undergo apoptosis are
phagocytosed by healthy macrophages, providing the host
immune system opportunity to limit further MAP growth
[94]. However, this process may be a means of spreading to
healthy macrophages while remaining hidden from im-
mune surveillance, limiting the inflammatory response.
Apoptosis of infected macrophages also provides the op-
portunity for presentation of MAP antigens to guide adap-
tive immune responses through efferocytosis, a process
associated with macrophages and neutrophils, distinct from
Fc receptor-mediated apoptosis [95]. Apoptosis of MAP-
infected macrophages also limits the acute inflammation
and tissue damage that typically occurs with the release of
chemotactic molecules following cell lysis.

From the perspective of MAP, establishing a persistent
infection depends on its ability to infect new macro-
phages prior to activation of their antimicrobial defenses.
Thus, the local microenvironment into which MAP is
released from infected host cells may be critical. MAP
release from apoptotic cells or the phagocytosis of
MAP-infected apoptotic bodies may be one mechanism
to avoid inflammation and activation of uninfected mac-
rophages. A protected environment within the macro-
phages provides an ideal haven for replication but to
maintain a persistent infection it is critical that adjacent
macrophages also provide an appropriate site for further
replication.

7.2.3.7.1 MAP promotes apoptosis of infected macro-
phages Several investigations indicate that MAP infection
of macrophages promotes apoptosis [96]. This appears to
be an active effort by the bacteria, or the result of a
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macrophage response to live bacteria, as heat-killed MAP
induce significantly less apoptosis [96]. Periasamy et al. re-
ported no change in macrophage death at low MAP MOIs
(MOI =1) but caspase-dependent apoptosis was observed
at higher MOIs (MOI = 10) with caspase- and nitric oxide-
independent apoptosis and necrosis at the highest MOIs
(MOI =50). These observations were interpreted as evi-
dence that mitochondrial damage initiates cell death pro-
cesses in MAP infected macrophages [97]. A change in the
mechanisms mediating apoptosis at different MOIs may
parallel events that occur during natural infection.

7.2.3.7.2 MAP inhibits apoptosis of infected macro-
phages Another school of thought suggests that sup-
pression of macrophage apoptosis may be central to the
immune evasion strategy employed by MAP and other
mycobacterium. Infected macrophages undergo apop-
tosis for a number of reasons, one of which may be to
facilitate more efficient presentation of bacterial antigens
to the immune system [98]. Thus, MAP may inhibit
apoptosis to not only allow more time for bacterial repli-
cation but to also decrease detection by the immune
system. MAP-infected macrophages are more resistant
to H,O,-induced apoptosis, normally an inducer of
macrophage apoptosis [98]. One mechanism by which
MAP inhibits apoptosis is by reducing expression of
capase 3/7 and 8 genes resulting in decreased caspase 3/
7, 8, and 9 activity [99]. Additionally, by inducing macro-
phage secretion of IL-10, pathogenic mycobacteria may
also limit apoptosis since IL-10 inhibits TNFa expression
and increases release of soluble TNFR2 to neutralize
TNF« activity [39]. Man-LAM has also been implicated
in the regulation of apoptosis by preventing an increase in
cytosolic calcium concentration. Cytosolic calcium facili-
tates apoptosis by increasing mitochondrial membrane per-
meability, resulting in the release of pro-apoptotic products
[39]. Man-LAM also stimulates phosphorylation of Bad a
pro-apoptotic protein which prevents the molecule from
binding to anti-apoptotic proteins, such as Bcl-2. Free Bcl-2
prevents release of cytochrome ¢ from mitochondria [30].
Interestingly, recent kinome analysis of MAP-infected in-
testinal tissues identified an over-representation of pro-
survival signaling [27]. The pro-survival signaling in the
MAP infected tissue was most pronounced in animals de-
veloping early antibody responses to MAP antigens but not
the typical cell-mediated immune responses associated with
MAP clearance.

7.2.3.8 IL-10 The cytokine IL-10 is produced by mono-
cytes, macrophages, and B- and T- lymphocytes [99]. IL-
10 reduces expression of IL-12, thus, suppressing the
Thl-type immune responses [100]. IL-10 also inhibits
production of pro-inflammatory cytokines and decreases
antigen presentation by macrophages and dendritic cells
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[99]. All of these effects, as discussed elsewhere in this
review, have the potential to enhance MAP survival
within macrophages. Weiss et al. reported that MAP in-
fection resulted in an even greater expression of IL-10
than the closely related bacterial species Mycobacterium
avium subsp. avium [47]. In a subsequent study, neu-
tralizing the IL-10 produced by macrophages infected
with MAP there was an increase in: expression of TNFq,
IL-12, IL-8, MHC-II; acidification of phagosomes; apop-
tosis of macrophages; and production of nitric oxide
[99]. Each of the above is known to enhance the immune
killing of MAP; and indeed, 57% of MAP bacteria were
killed within 96 h post-infection with IL-10 neutralization.
Understanding the mechanism (s) by which MAP enhances
macrophage secretion of IL-10 will provide insight into the
immune evasion strategies that contribute to a persistent
infection. This information may also provide the rational
basis for developing an attenuated vaccine strain that in-
duces protective immunity without the risk of a persistent
infection.

8. Conclusions

MAP is a pathogen of clear concern for animal health and
it results in a significant economic cost to dairy and other
livestock producers. To date, limited success has been
shown in controlling, treating and ultimately curing MAP
infection. The losses incurred by the dairy industry due to
infected animals, and the ongoing concerns of a zoonotic
disease threat through contaminated dairy products, sug-
gest that a successful vaccine against MAP infection would
be a valuable and welcome development. Due to the im-
mune evasion strategies employed by MAP to subvert both
the induction of acquired immune responses and immune
effector responses, a vaccine that prevents MAP infection
remains elusive. The crucial period for intervention in a
MAP infection is before or during MAP invasion and es-
tablishment of infection within the macrophage. This is the
stage we have reviewed here. MAP is very effectively
shielded from the host immune system once it is estab-
lished and growing within the macrophage. To be success-
ful in producing a specific therapeutic or vaccine for a
bacterium such as MAP one must understand the mecha-
nisms of immune evasion and pathogenesis. We have dis-
cussed how MAP invades the mucosal barrier, and the
mechanisms employed to establish a persistent infection.
Several strategies involving specific bacterial components
are employed in concert by MAP to allow successful host
colonization. Any of these bacterial components, or a com-
bination, may be useful targets for therapeutic intervention
or vaccine generation. The knowledge of MAP that we
have reviewed here has been generated by host-pathogen
interaction studies, genomics, kinomics and proteomics.
These detailed studies of the mechanism of MAP patho-
genesis will hopefully lead to the targeted interventions that
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are necessary for the treatment of MAP. Ultimately this will
enhance animal health, animal production and human food
safety.

9. Abbreviations

ASK1: Apoptosis signal-regulating kinase 1; AP-1-Jun: Activator protein-1-JUN;
ATP: Adenosine triphosphate; BCG: Bacillus Calmette-Guerin; Bcl-2: B-cell
lymphoma 2; CARD15: Caspase associated recruitment domain 15; CD4+:
Cluster of Differentiation 4 positive; CpG: Cytosine phosphodiester
guanine; CR1: Complement receptor 1; CR3: Complement receptor 3;

CR4: Complement receptor 4; DNA: Deoxyribonucleic acid; EEAT: Early
endosomal autoantigen 1; Erk1: Extracellular signal-regulated kinase 1;
Erk2: Extracellular signal-regulated kinase 2; FADD: Fas-Associated protein
with Death Domain; FAP: Fibronectin attachment protein; FcR: Immunoglobulin
receptors; Gl: Gastrointestinal; GTP: Guanidine triphosphate; IFNy: Interferon
gamma; IkBa: Nuclear factor of kappa light polypeptide gene enhancer in B-cells
inhibitor, alpha; lkka: Inhibitor of nuclear factor kappa-B kinase subunit alpha;
Ikkf3: Inhibitor of nuclear kappa-B kinase subunit beta; Ikky: Inhibitor of nuclear
kappa-B kinase subunit gamma; Ikke: Inhibitor of nuclear kappa-B kinase
subunit epsilon; IL-13: Interleukin-1 beta; IL-8: Interleukin 8; IL-10: Interleukin-10;
IL-12: Interleukin-12; IRAKT: Interleukin-1 receptor-associated kinase 1;

IRAK2: Interleukin-1 receptor-associated kinase 2; IRAK4: Interleukin-1
receptor-associated kinase 4; IRF6: Interferon regulatory factor 6; JAK-
STAT1-2: Janus kinase-Signal transducer and activator of transcription;
JAKT: Janus kinase 1; JAK2: Janus kinase 2; JD: Johne's disease; JNK1:
c-Jun N-terminal kinase 1; JNK2: c-Jun N-terminal kinase 2; JNK3: c-Jun
N-terminal kinase 3; kDa: kilo-Dalton; LAMP-3: Lysosome-associated
membrane glycoprotein 3; M cell: Microfold Cell; ManLAM: Mannosylated
lipoarabinomannan; MAP: Mycobacterium avium subsp. paratuberculosis;
MAPK-p38: Mitogen-activated protein kinase p38; MEKK1-MKK1: Mitogen-
activated protein kinase kinase kinase 1; MHCII: Majpr hisocompatability
complex class-Il; MKK2: Mitogen-activated protein kinase kinase kinase 2;
MKK3: Mitogen-activated protein kinase kinase kinase 3; MKK4: Mitogen-
activated protein kinase kinase kinase 4; MKK6: Mitogen-activated protein
kinase kinase kinase 6; MLN: Mesenteric lymph nodes; MOI: Multiplicity of
infection; MyD88: Myeloid differentiation primary response gene 88; NCBI-
NR: National Center for Biotechnology Information — New RefSeq; NFkB
p65: Nuclear factor kappa-light-chain-enhancer of activated B cells p65;
NLRP3: NOD-like receptor family, pyrin domain containing 3; NRAMP1: Solute
carrier family 11 member 1 (alternative name); NSF: N-ethyl-maleimide-sensitive
factor (NSF); ODN: Oligodeoxynucleotides; PAK1: Serine-Threonine-protein kinase
1, PAMP: Pathogen associated molecular patterns; PBMC: Peripheral blood
mononuclear cells; PCR: Polymerase Chain Reaction; PIP3: Phosphatidylinositol 3-
phosphate; PKCa: Protein kinase C alpha; PKCP: Protein kinase C beta; PRR: Pattern
recognition receptor; PtpA: Protein tyrosine phosphatase A; PtpB: Protein tyrosine
phosphatase B; Pyk2: Protein tyrosine kinase 2; Rab5: Ras-related protein 5;

Rab7: Ras-related protein 7; Rac: Ras-related C3 botulinum toxin substrate;

Raf: Serine-threonine-protein kinase; RelA: v-rel reticuloendotheliosis viral
oncogene homolog A; RNI: reactive nitrogen intermediate; ROI: reactive oxygen
intermediate; SapM: Secreted acid phosphatase; SC11A1: solute carrier family 11
member 1; Shc: Src homology 2 domain-containing; SHP-1: Src homology region
2 domain-containing phosphatase-1; SNAP: soluble NSF attachment proteins;
SNARES: Vesicle and target membrane SNAP receptors; SOCS1: Suppressor of
cytokine signaling proteins 1; SOCS3: Suppressor of cytokine signaling proteins 3;
Src: Proto-oncogene tyrosine-protein kinase Src; STAT: Signal transducers and
activators of transcription; TAB1: TGF-beta activated kinase 1; TAB2: TGF-beta
activated kinase 2; TACO: Tryptophan aspartate-containing coat protein;

TAK1: TGF-beta activated kinase 1; TBK1: TANK binding kinase 1; TGFb: Tumor
growth factor beta; Th1: Type 1 helper T cell; Th2: Type 2 helper T cell; TLR1:
Toll-ike Receptor 1; TLR2: Toll-ike Receptor 2; TLRO: Toll-like Receptor 9;

TNFa: Tumor necrosis factor alpha; TNFR2: Tumor necrosis factor receptor
superfamily member 1 beta; Tpl2: Tumor progression locus 2 protein kinase;
TRAF6: TNF receptor-associated factor 6; V-ATPase: Vacuolar-type H™-ATPase;
VPS33B: Vacuolar protein sorting-associated protein 33B.
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