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Abstract

Natural Killer (NK) cells play a crucial role in the early phase of immune responses against various pathogens. In
swine so far only little information about this lymphocyte population exists. Phenotypical analyses with newly
developed monoclonal antibodies (mAbs) against porcine NKp46 recently revealed that in blood NKp46- and
NKp46+ cells with NK phenotype exist with comparable cytotoxic properties. In spleen a third NKp46-defined
population with NK phenotype was observed that was characterised by a low to negative CD8α and increased
NKp46 expression. In the current study it is shown that this NKp46high phenotype was correlated with an increased
expression of CD16 and CD27 compared to the CD8α+NKp46- and NKp46+ NK-cell subsets in spleen and blood.
Additionally NKp46high NK cells expressed elevated levels of the chemokine receptor CXCR3 on mRNA level.
Functional analyses revealed that splenic NKp46high NK cells produced much higher levels of Interferon-γ and
Tumor Necrosis Factor-α upon stimulation with cytokines or phorbol-12-myristate-13-acetate/Ionomycin compared
to the other two subsets. Furthermore, cross-linking of NKp46 by NKp46-specific mAbs led to a superior CD107a
expression in the NKp46high NK cells, thus indicating a higher cytolytic capacity of this subset. Therefore porcine
splenic NKp46high NK cells represent a highly activated subset of NK cells and may play a profound role in the
immune surveillance of this organ.
Introduction
Natural Killer (NK) cells were initially characterised by
their spontaneous lytic activity against certain tumor and
virus-infected cells [1,2]. Besides their role as cytotoxic
cells through the production of perforin and granzymes,
NK cells are potent producers of cytokines like Interferon
(IFN)-γ and Tumor Necrosis Factor (TNF)-α [3] and thus
play important roles in immunomodulation and the de-
fence against viral, parasitic and bacterial pathogens [4]. A
considerable number of phenotypically and functionally
different NK-cell subsets have been identified up to date
[5]. For example, human NK cells can be divided into func-
tionally and also developmentally distinct subsets according
to their differing expression of CD56 in combination with
CD16 [6,7] and more recently CD11b and CD27 [8]. In the
mouse likewise CD27 and CD11b (Mac-1) are used to dis-
sect NK cells into functionally and developmentally differ-
ent subsets [9]. Additionally, the chemokine receptor
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CXCR3 is used in combination with CD27 to distinguish
NK-cell subsets in the mouse [10].
For porcine NK cells a perforin+CD2+CD3-CD4-CD5-

CD6-CD8α+CD8ß-CD11b+CD16+ phenotype has been
described and it was shown that these lymphocytes can
perform immediate cytotoxicity against NK-susceptible
targets [11-13]. Moreover, in parasitic as well as in viral
infections increases in NK cell number and activity have
been reported [14,15], but also inhibitory effects on NK-
cell mediated cytotoxicity and cytokine production by
viral infections are described [16-19]. Despite these hints
on important functions of porcine NK cells in vivo, so
far no investigations on the existence of functionally dif-
fering NK-cell subsets have been reported. Nevertheless,
a recent study from our group with newly developed
monoclonal antibodies (mAbs) against the activating re-
ceptor NKp46 enabled a more comprehensive insight
into the phenotype of porcine NK cells and putative sub-
sets [20].
NKp46 (CD335, NCR1) is a member of the natural cyto-

toxicity receptor (NCR) family, which is involved in the
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control of tumors and viral infections [21-26]. Moreover,
it has been used as a marker for NK cell identification in
different species like humans [27,28], monkeys [29,30], ro-
dents [30-32], cattle [33] and more recently in sheep [34]
and horses [35]. In contrast, NKp46 in the pig was shown
to divide porcine CD3-CD8α+ NK cells into NKp46- and
NKp46+ subsets in blood and all organs tested [20]. CD3-

CD8α+NKp46- NK cells show phenotypic and functional
properties of NK cells although they produce reduced
levels of IFN-γ compared to the NKp46+ subset after
in vitro stimulation. Additionally, a third NK cell popula-
tion with elevated NKp46 expression levels was identified
in high frequencies in spleen and liver, pointing towards a
special role of NK cells with this phenotype.
Therefore, in this study we focused on functional and

phenotypical properties of CD8αdim/-NKp46high NK-
cells in the spleen. We observed that these cells differ in
their expression of various NK-cell associated markers
including CD16, the TNF-receptor family member
CD27 and the chemokine receptor CXCR3 compared to
the CD8α+NKp46- and NKp46+ NK-cell subsets. Add-
itionally, this NK-cell subset showed an increased cyto-
kine production and cytolytic activity. Thus, our data
indicates that CD8αdim/-NKp46high NK cells in the pig
are in a highly activated state.

Material and methods
Isolation of porcine lymphocytes
Blood and spleens were obtained from 6–7 month-old
healthy pigs from an abattoir. Animals were subjected to
electric high voltage anaesthesia followed by exsanguin-
ation. This procedure is in accordance to the Austrian
Animal Welfare Slaughter Regulation. Peripheral blood
mononuclear cells (PBMC) were isolated using density
gradient centrifugation (Lymphocyte Separation Medium,
density: 1.077 g/mL, PAA, Pasching, Austria) as described
previously [36]. Dissected spleen was cut into small pieces
and mechanically dissociated by forcing through a sieve.
After a washing step in phosphate buffered saline (PBS,
PAA) cells were applied to density gradient centrifugation
to isolate mononuclear cells. Isolated lymphocytes were fi-
nally resuspended in culture medium or PBS containing
10% (v/v) porcine plasma for analysis by flow cytometry
(FCM).

Cell culture
Isolated porcine PBMC and splenocytes were cultivated in
RPMI 1640 (PAA) with stable glutamine supplemented
with 10% (v/v) heat inactivated foetal calf serum (FCS,
PAA), 100 IU/mL penicillin and 0.1 mg/mL streptomycin
(PAA). Medium for sorted NK cells was additionally
supplemented with 1 mM sodium pyruvate (PAA), non-
essential amino acids (PAA) and 50 μM 2-mercaptoethanol
(Sigma-Aldrich, Vienna, Austria). Where indicated, cells
were additionally cultured in the presence of various cyto-
kines as outlined below.

Flow cytometry and antibodies
Freshly isolated PBMC or splenocytes were resuspendend
in PBS containing 10% (v/v) porcine plasma and labelled
for flow cytometric analysis. Cultured cells were re-
suspended in PBS containing 3% (v/v) FCS for FCM stain-
ing. All incubation steps were performed for 20 min on
ice. The following primary antibodies were used for cell
surface staining: unconjugated or Alexa647-conjugated
anti-NKp46 (IgG1, clone VIV-KM1, [20]), anti-CD3
(IgG2b, clone BB23-8E6, Southern Biotech, Birmingham,
AL, USA), PerCP-Cy5.5-conjugated anti-CD3 (IgG2a,
clone BB23-8E6-8C8, BD Biosciences, San Jose, CA,
USA), eFluor450-conjugated anti-CD3 (IgG1, clone PPT3,
custom-conjugation by eBioscience, San Jose, CA, USA),
unconjugated or FITC-conjugated anti-CD8α (IgG2a,
clone 11/295/33), PE-conjugated anti-CD8α (IgG2a, clone
76-2-11, BD Biosciences), anti-CD16 (IgG1, clone G7,
Serotec, Raleigh, NC, USA), Biotin-conjugated anti-CD27
(IgG1, clone b30c7, [37]). All non-commercial monoclonal
antibodies were produced in-house [38]. Where indicated,
these antibodies had been purified and covalently conju-
gated to fluorochromes or Biotin. Alexa Fluor-647 Protein
Labelling Kit (Life Technologies, Carlsbad, CA, USA) was
used for conjugation of anti-NKp46 mAbs according to
manufacturer’s instructions. FITC conjugation for anti-
CD8α mAbs was performed as described elsewhere [39].
Anti-CD27 mAbs were biotinylated using Sulfo-NHS-LC-
Biotin (Thermo Scientific, Pierce, Vienna, Austria) follow-
ing manufacturer’s instructions. Unspecific binding was
assessed by appropriate isotype-matched control anti-
bodies. For indirect labelling, anti-mouse anti-IgG1-PE
(Southern Biotech) and Streptavidin-Brilliant Violet 605
conjugate (BioLegend, San Jose, CA, USA) were used as
second-step reagents. To discriminate between live and
dead cells, Fixable Near-IR Dead Cell Stain Kit (Life Tech-
nologies) was used according manufacturer’s protocol with
0.05 μL reactive dye per reaction. If unconjugated and
conjugated antibodies with the same isotype were used
in combination, a sequential staining was performed.
Unconjugated primary mAb was used in a first step,
followed by isotype-specific dye-conjugated antibodies.
After secondary incubation, free binding sites of mouse-
isotype specific antibodies were blocked by whole mouse
IgG molecules (2 μg per sample, Jackson ImmunoResearch,
Suffolk, UK) followed by a further incubation step with
fluorochrome-conjugated primary mAbs.
FCM analyses were performed on a FACSCanto II or

FACSAria (BD Biosciences). Data of at least 5 × 104 lym-
phocytes per sample were recorded. Data were analysed
with FACSDiva software (Version 6.1.3, BD Biosciences)
and FlowJo software (Version 7.6.3., Tree Star, Ashland,
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OR, USA). Box plots were created by SigmaPlot software
(Version 11.0, Systat Software Inc., Erkrath, Germany).

Intracellular staining of IFN-γ
For intracellular staining of IFN-γ, PBMC and splenocytes
were stimulated in 96-well round-bottom plates at 2 × 105

cells per well in a final volume of 200 μL. Cells were either
stimulated with 30 IU/mL recombinant human Interleu-
kin (rhIL)-2 (Roche, Vienna, Austria) in combination with
25 ng/mL recombinant porcine Interleukin (rpIL)-12 and
100 ng/mL rpIL-18 (both R&D Systems, Minneapolis,
MN, USA) overnight, or left in medium alone as negative
control. For IFN-γ labelling, Brefeldin A (GolgiPlug, BD
Biosciences) was added to microcultures at a final concen-
tration of 1 μg/mL, 4 h prior to harvest. Cells were la-
belled with antibodies against CD3, CD8α and NKp46 as
stated above. Afterwards cells were fixed and perme-
abilized as described elsewhere [40] and labelled with anti-
IFN-γ-PE (IgG1, clone P2G10, BD Biosciences) as well as
corresponding isotype control mAb (mouse-IgG1-PE,
clone MOPC-21, BD Biosciences).

Fluorescence-activated cell sorting (FACS) of NK cells
For sorting of CD3-CD8α+NKp46- and CD3-CD8α+NKp46+

NK cells of blood as well as CD3-CD8α+NKp46-, CD3-

CD8α+NKp46+ and CD3-CD8αdim/-NKp46high NK cells
from spleen, isolated mononuclear cells were labelled
with primary antibodies against CD3, CD8α and NKp46
as described above. As secondary antibodies anti-IgG1-
PE (Southern Biotech), anti-IgG2a-Alexa647 and anti-
IgG2b-Alexa488 (both Life Technologies) were used. PBS
containing 5% (v/v) FCS and 2 mM EDTA was used for all
washing steps. Sorting was performed on a FACSAria (BD
Biosciences). Purity of sorted cell populations was at least
97.5% or higher. Sorted cells were either transferred directly
into cell culture or resuspended in TRI Reagent (Sigma-Al-
drich) and stored at −80°C for subsequent mRNA analysis.

CD107a degranulation assay
NK cell receptor mediated degranulation was assessed by
measuring the expression of CD107a on the cell surface in
combination with four-color flow cytometry to discrimin-
ate between the different NK-cell subsets. Degranulation
assays were performed according to a protocol for human
NK cells [41] and modified as follows. Triggering of NK-
receptors was performed by using monoclonal antibodies
against NKp46 (IgG1, clone VIV-KM3, [20]), CD16 (IgG1,
clone G7, Serotec) or a combination of both. Monoclonal
antibodies were coated on 96-well round-bottom wells by
incubation overnight at 4°C at a concentration of 3 μg/mL
each in PBS in a total volume of 50 μL per well. Isotype-
matched irrelevant antibodies served as control (6 μg/mL
in 50 μL per well). Plates were washed with PBS for three
times before cells were added.
Freshly isolated PBMC and splenocytes were stimu-
lated with rhIL-2 (25 IU/mL) and rpIL-15 (15 ng/mL,
Biosource, Nivelles, Belgium) overnight with 2 × 105

cells in a total volume of 200 μL per well, using 96-well
round-bottom plates. Since NKp46 was rapidly inter-
nalised after receptor triggering, cells were labelled with
Alexa647-conjugated anti-NKp46 mAb prior to transfer
into antibody-coated plates. The simultaneous use of
VIV-KM1 for fluorescence-staining and VIV-KM3 for
coating of plates was possible because the two mAbs
bind to different sites on NKp46 [20]. After two washing
steps to eliminate unbound anti-NKp46-Alexa647 anti-
bodies, cells were used at a concentration of 2 × 105

cells in a total volume of 200 μL per well (mAb-coated
96-well round-bottom plate) in the degranulation assay.
Additionally, microcultures were supplemented with
FITC-conjugated anti-CD107a mAb (IgG1, clone 4E9/11,
Serotec) at a final concentration of 4 μg/mL and the two
protein transport inhibitors Brefeldin A (GolgiPlug, final
concentration 1 μg/mL) and Monensin (GolgiStop, final
concentration 2 μg/mL) (both BD Biosciences). After an
incubation of one hour at 37°C, cells were re-labelled with
Alexa647-conjugated anti-NKp46 in combination with
PE-conjugated anti-CD8α and eFluor450-conjugated anti-
CD3 monoclonal antibodies for FCM as described above.

Analysis of IFN-γ and TNF-α production by ELISA
FACS-sorted NK-cell subsets from blood and spleen were
stimulated in 96-well round-bottom plates at 2 × 105 cells
in a final volume of 200 μL per well for cytokine produc-
tion. For IFN-γ and TNF-α production cells were stimu-
lated with a combination of rhIL-2 (30 IU/mL), rpIL-12
(25 ng/mL) and rpIL-18 (100 ng/mL). TNF-α production
was also analysed after stimulation with 50 ng/mL
phorbol-12-myristate-13-acetate (PMA) and 500 ng/mL
Ionomycin (both Sigma-Aldrich). After 24 h, supernatants
were collected and tested for cytokine production with
commercially available ELISA Kits for IFN-γ (Mabtech,
Nacka Strand, Sweden) and TNF-α (R&D Systems)
according to manufacturers’ protocols. Optical densities
(ODs) were measured at 450/620 nm with an ELISA
reader (Tecan, Sunrise, Crailsheim, Germany).

Analysis of gene expression by quantitative reverse-
transcriptase PCR (RT-qPCR)
Total RNA from FACS-sorted NK-cell subsets from blood
and spleen was isolated using TRI Reagent (Sigma-Aldrich)
according to manufacturer’s protocol. RNA quality control
and cDNA synthesis were performed as described else-
where [42]. Expression of target genes was determined by
real-time PCR, using an internal standard as calibrator.
The internal standard (IS) was generated by pooling equal
aliquots of the cDNA samples investigated in this study.
Primers for target genes were designed using either the
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public domain programmes Primer3 [43] or Primer-
BLAST [44] for CXCR3. All primers were synthesised com-
mercially (Eurofins MWG Operon, Ebersberg, Germany).
Sequence information of used primers is listed in Table 1.
Whenever possible, primers were forced to span over exon
junctions in order to increase specificity. For amplification
of target genes SYBRW green I (0.5×, Sigma-Aldrich) was
used as reporter dye. The qPCR reaction-mixes contained
iTaqW DNA polymerase (0.3 U/reaction, Bio-Rad, Hercules,
CA, USA), gene specific primers (250 nmol/L each), a final
concentration of 200 μmol/L dNTP each and 3 mmol/L
MgCl2 (for CXCR3 1.5 mmol/L were used) within provided
reaction buffer (1×, Bio-Rad). qPCR was performed on a
CFX96™ (Bio-Rad), PCR conditions are listed in Additional
file 1. Optimisation and validation of the qPCR assays with
target gene-specific primers are likewise described in more
detail in Additional file 1. Specificity of the generated PCR
products using a cDNA pool of samples was further veri-
fied by automated sequencing using the pGEM-T Easy vec-
tor system (Promega, Madison, WI, USA) and M13
standard sequencing primer (Eurofins MWG Operon). The
multiplex qPCR assay for the reference genes (β-Actin,
Cyclophilin A and GAPDH) that were used to normalise
each target-gene expression was performed as previously
described [45]. Each plate contained corresponding ran-
domly assigned RT-minus controls (10% of all samples in-
vestigated), the no-template controls (NTC), as well as the
IS. All samples were measured in duplicates.
Data were analysed using the CFX manager software

(Bio-Rad) in the linear regression mode. For the quanti-
fication we applied the method described elsewhere [45].
Target gene expression was displayed as 2^-ΔΔCq values
representing the fold changes relative to IS.

Statistical analysis
Data was analysed for statistical significance by SPSSW

(SPSS Statistics Version 20.0, IBM Corp., Armonk, NY,
USA). Datasets with two groups (PBMC) were analysed
Table 1 Primers used in the RT-qPCR assays of sorted porcine

Target gene – accession number Target Primer sequences

forward (F) and revers

NM_001123143 NKp46 primers as published in [2

EU282355.1 NKp30 F: TCTATTACCAGGGCAA

R: GTCACTGGGGTCTAG

NM_213813.1 NKG2D F:ACAGCAGAGAAGACC

R: GGAACCATCTTCCCA

XM_003135179.3 CXCR3 F: CCGACCACAAGCACC

R: TGGCGTTGGCTCATCT

Sequences of primers (5´-3´) for target genes as well as primer positions on (+) stra
temperature in °C are indicated.
using paired two-tailed Student’s T-test. For datasets
containing more than two groups (spleen) one-way vari-
ance analysis with Bonferroni correction for paired sam-
ple means was applied. If sample size per group was < 4,
no statistical evaluation was performed. Three different
levels of significance were defined: p < 0.05 (indicated
by *), p < 0.01 (indicated by **) and p < 0.001 (indicated
by ***).

Results
Splenic NKp46high NK cells vary in their expression of NK-
cell associated surface markers
To expand the knowledge about the phenotype of previ-
ously described NKp46-defined NK-cell populations in
swine [20], we performed flow cytometric analyses of lym-
phocytes isolated from spleen and blood. A gating hier-
archy was used throughout the experiments to exclude
doublets, dead cells as well as CD3+ T cells. Remaining
CD3- lymphocytes were further analysed for CD8α and
NKp46 expression (see Additional file 2). As previously
described [20], among CD3- lymphocytes two NK popula-
tions could be found in blood, namely NKp46- and
NKp46+ cells that were both CD8α+ (Figure 1A, upper
graph). The third NKp46-defined subset that was found in
spleen (Figure 1A, lower graph) was characterised by a
low to negative CD8α expression and increased expression
of the activating receptor NKp46. This applied to all ani-
mals analysed, resulting in a mean fluorescence intensity
(MFI) for NKp46 that was 4–7 times higher than in the
splenic NKp46+ subset (7258 ± 1649 to 1362 ± 397 re-
spectively, Figure 1B, upper graph). CD8α+NKp46+ cells in
blood and spleen showed comparable expression levels of
the activating receptor (1462 ± 437 and 1362 ± 397 re-
spectively). We then investigated differences in the ex-
pression level of CD8α in the respective NK-cell
subsets. Splenic NKp46high NK cells showed a signifi-
cantly reduced level of CD8α expression compared to the
other splenic NK-cell subsets in all animals analysed
NK cells

Position on +
strand

Product
length (bp)

Product
melt.temp (°C)

e (R)

0], rtprimerdb ID: 8346 110 87.0

ATGTGAAGT 345 209 91.0

AATCACTCAT 554

AGGATTTCTTCA 598 104 82.0

CTGCCAGG 702

AAAGCA −69 94 90.0

CAGGGA 25

nd, length of specific product in base pairs (bp) and product melting
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Figure 1 Varying expression of NKp46, CD8α, CD16 and CD27 on NK-cell subsets in blood and spleen. (A) Following five-colour staining,
PBMC and splenocytes were gated on CD3- cells and further subgated according to their NKp46/CD8α expression pattern in NKp46- and NKp46+

NK cells in blood (upper graph) and NKp46-, NKp46+ and NKp46high NK cells in spleen (lower graph). (B) 14 healthy 6–7 month old pigs were
investigated for NKp46 and CD8α expression levels in the NKp46-defined NK-cell subsets. Box-plots show the mean fluorescence intensity of the
two markers. (C) NK-cell subsets defined in (A) were further analysed for their expression of the surface markers CD16 and CD27. Histograms
show the expression of the two markers within the respective NKp46-defined subsets (CD8α+NKp46-: blue histograms, CD8α+NKp46+: green
histograms, CD8αdim/-NKp46high: red histograms) in blood (upper graphs) and spleen (lower graphs) according to the corresponding isotype
control (grey histrograms with dotted lines). Box-plots show the mean fluorescence intensity of CD16 and CD27 of the NKp46-defined NK-cell
subsets in blood and spleen of 14 healthy 6–7 month old pigs. (B + C) Significant differences between the subsets in blood or spleen are
indicated (* = p < 0.05, ** = p < 0.01, *** = p < 0.001).
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(NKp46high: 495 ± 219, NKp46+: 2702 ± 647, NKp46-:
3098 ± 818, Figure 1B, lower graph). Of note, NKp46- and
NKp46+ NK cells in blood as well as spleen also showed a
differential expression of CD8α, although it was not as ob-
vious as for the NKp46high subset. Within each location
NKp46- NK cells showed the highest expression of CD8α,
thus indicating a correlation between an increase of
NKp46 and a decrease of CD8α expression on porcine
NK-cell subsets.
To get more insight into the phenotype of the NKp46-
defined NK cells we further analysed the expression of
CD16 and the TNF-receptor family member CD27. The
latter is an important marker to distinguish between
NK-cell subsets in mouse and human [8-10,46] and the
porcine orthologue of CD27 was recently identified [37].
No marked difference in CD16 or CD27 expression be-
tween blood NKp46- and NKp46+ NK-cell subsets could
be observed, although NKp46+ cells showed a slightly
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increased CD27 expression (Figure 1C). A clear differ-
ence between the three splenic NKp46-defined NK-cell
subsets could be observed for CD16 (NKp46high: 42 588
± 12 000, NKp46+: 35 521 ± 12 419, NKp46-: 31 285 ± 11
267, Figure 1C) and was even more obvious for CD27 ex-
pression (NKp46high: 7978 ± 2866, NKp46+: 1562 ± 909,
NKp46-: 1149 ± 604, Figure 1C). NKp46- NK cells showed
the lowest and NKp46high NK cells the highest expression
of both markers, thus indicating a positive correlation be-
tween NKp46, CD16 and CD27 expression levels.

Splenic NKp46high NK cells produce the highest levels of
cytokines
In human and mice higher CD27 expression on NK cells
is associated with an increased cytokine production
[9,10,46,47]. If the same holds true for porcine NK cells,
splenic NKp46highCD27high NK cells should be the most
prominent cytokine producers compared to the other
subsets. We therefore compared IFN-γ and TNF-α pro-
duction between the different NK-cell populations in
blood and spleen of several individuals (n = 4). Intracellu-
lar staining for IFN-γ in total PBMC and splenocytes was
performed after in vitro stimulation with a combination of
rhIL-2, rpIL-12 and rpIL-18 overnight. Cells cultured in
medium alone served as negative control and did not
show any IFN-γ production. The percentage of IFN-γ+

NK cells was significantly higher in the blood NKp46+

NK-cell subset compared to blood NKp46- cells after cyto-
kine stimulation (21.7% ± 4.7 versus 9.7% ± 3.1, respect-
ively, Figure 2A and B). Nevertheless, the produced
amount of IFN-γ per cell, investigated by the MFI, was
similar for both blood NK-cell subsets (19 072 ± 7009 for
NKp46+ and 20 006 ± 8634 for NKp46-, Figure 2B, right
graph). Splenic NKp46high NK cells clearly showed the
highest frequency of IFN-γ+ cells compared to the other
two splenic subsets whereas NKp46- cells had the lowest
frequency (NKp46high: 11.2% ± 3.6%, NKp46+: 7.2% ± 3,
NKp46-: 2.9% ± 1.5, Figure 2A and B). Additionally, the
amount of IFN-γ produced per cell was considerably
higher in the NKp46high subset (NKp46high: 25 790 ± 2615,
NKp46+: 10 432 ± 3211, NKp46-: 12 008 ± 2396, Figure 2B,
right graph). Yet, stimulated splenic NK-cell subsets
showed an overall lower frequency of IFN-γ producing
cells compared to blood.
Results of intracellular cytokine staining were confirmed

by ELISA (Figure 2C). FACS-sorted CD3-CD8α+NKp46-

and CD3-CD8α+NKp46+ NK cells from blood and CD3-

CD8α+NKp46-, CD3-CD8α+NKp46+ and CD3-CD8αdim/-

NKp46high NK cells from spleen were stimulated with
rhIL-2, rpIL-12 and rpIL-18 overnight and supernatants
were tested for IFN-γ production. Blood NKp46+ NK cells
produced higher levels of IFN-γ (2 to 3-fold) compared to
the blood NKp46- subset (58 ± 28 ng/mL versus 21 ± 13
ng/mL, respectively, Figure 2C), which is consistent with
the data obtained by flow cytometry. In spleen differences
between the NK-cell subsets were much more pronounced
as NKp46high NK cells showed a 5 to 20-fold higher IFN-γ
production compared to the NKp46+ (217 ± 74 ng/mL to
25 ± 12 ng/mL, Figure 2C), and 14 to 50-fold higher pro-
duction compared to the NKp46- NK cells (217 ± 74 ng/
mL to 9 ± 5 ng/mL).
In addition to IFN-γ, TNF-α production of the different

FACS-sorted NK-cell subsets was measured by ELISA
after cytokine or PMA/Ionomycin stimulation overnight
(Figure 3). After stimulation with rhIL-2, rpIL-12 and
rpIL-18, splenic NKp46high NK cells likewise showed the
highest levels of TNF-α. Thus TNF-α production was 4 to
12-fold higher in the NKp46high NK-cell subset compared
to splenic NKp46+ NK cells (530 ± 196 pg/mL to 96 ± 64
pg/mL, Figure 3A) and 9 to 15-fold compared to NKp46-

NK cells (530 ± 196 pg/mL to 52 ± 26 pg/mL, Figure 3A).
Blood NKp46+ NK cells showed a 1.5 to 6-fold higher
TNF-α production compared to the blood NKp46- NK-
cell subset (204 ± 66 pg/mL to 97 ± 78 pg/mL, Figure 3A).
No obvious differences could be observed for TNF-α
production between blood or spleen NKp46- and NKp46+

NK-cell subsets after PMA/Ionomycin stimulation
(Figure 3B) whereas splenic NKp46high NK cells again
showed an increased TNF-α production compared to
splenic NKp46+ (3 to 11-fold, 4629 ± 1704 pg/mL to 748 ±
224 pg/mL, Figure 3B) and splenic NKp46- NK cells (3 to
14-fold, 4629 ± 1704 pg/mL to 1060 ± 540 pg/mL).
Data from both, IFN-γ as well as TNF-α production

indicated that splenic NKp46high NK cells, that also
displayed an increased CD27 expression, are the most
potent cytokine producing NK cell subset.

Splenic NKp46high NK cells show a superior cytolytic
activity after triggering of activating receptors
It was already shown that blood NKp46- and NKp46+ NK-
cell subsets show comparable cytolytic activity against
xenogeneic and allogeneic target cells in a NKp46-
independent manner [20]. To investigate whether the
NKp46high phenotype was also correlated with an in-
creased cytolytic activity we performed CD107a de-
granulation assays in combination with multi-colour
flow cytometry. We used monoclonal antibodies against
NKp46 or CD16 to mimic receptor-specific ligands to
look at a possible correlation between receptor density
and cytolytic activity of the different NK-cell subsets in
blood (Figure 4) and spleen (Figure 5). Background de-
granulation was determined by using irrelevant-isotype
matched control antibodies.
Blood NKp46+ NK cells showed a clear cytolytic activity

after triggering with anti-NKp46 mAbs indicated by the
induction of CD107a (Figure 4). As expected, NKp46- NK
cells showed no obvious increase in CD107a expression
after anti-NKp46 stimulation. Although blood NKp46- as



Mair et al. Veterinary Research 2013, 44:13 Page 7 of 14
http://www.veterinaryresearch.org/content/44/1/13
well as NKp46+ NK cells got activated by triggering of
the Fc receptor CD16, this stimulation led to a higher
cytolytic activation in the NKp46+ NK-cell subset
(25.6% ± 6.6 compared to 15.7% ± 8.1 in the NKp46-

NK cells, Figure 4B). Co-crosslinking of both receptors
also led to a higher CD107a expression in the blood
NKp46+ NK-cell subset. Interestingly, a comparison of
data for the three different stimulations of the blood
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NKp46+ NK-cell subset revealed no co-stimulatory effect
after co-crosslinking of NKp46 and CD16 (Figure 4A+B).
Similar results were obtained for spleen NKp46- and

NKp46+ NK-cell subsets (Figure 5). Splenic NKp46+ NK
cells showed a higher cytolytic activity after triggering
with anti-NKp46 and/or anti-CD16 mAbs compared to
NKp46- NK cells (15% ± 4.7 to 5.4% ± 4.7 for NKp46
and 13.6% ± 5.4 to 8.7% ± 3.4 for CD16, Figure 5A+B).
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No obvious difference in the proportion of CD107a+

cells as well as CD107a MFI could be observed in the
splenic NKp46+ NK-cell subset when comparing the differ-
ent mAb-stimulations for all animals analysed (Figure 5B,
n = 5). However, NKp46high NK cells showed a strongly in-
creased frequency of CD107a+ cells (22.7% ± 7.3) as well as
increased CD107a expression level per cell (MFI of 2501 ±
726) after receptor triggering of NKp46. Likewise after
triggering of CD16, splenic NKp46high NK cells showed
an increased cytolytic activity compared to the other
two NK-cell subsets (18.4% ± 4.6 and a MFI of 1725 ±
267, Figure 5A+B). A slight increase of both read-outs
after co-receptor triggering with CD16 and NKp46
could be observed for this NK-cell subset compared to
the NKp46+ cells where no obvious additive effect on
degranulation could be found.
The comparison of cytotoxic capability by degranulation

assays demonstrated that blood NKp46+ NK cells showed
an overall higher proportion of CD107a+ cells than splenic
NKp46+ NK cells, regardless which receptor had been ac-
tivated (mean of all stimulated fractions, blood NKp46+

CD107a+: 22.5% versus spleen NKp46+CD107a+: 15.2%).
However, CD107a expression levels per cell, analysed by
MFI, did not differ strongly (mean of all stimulated frac-
tions, blood MFI NKp46+CD107a+: 1184 versus spleen
MFI NKp46+CD107a+: 916). Instead, again regardless
which receptor had been activated, the blood NKp46+

NK-cell subset showed more similar frequencies of
CD107a+ cells to the spleen NKp46high NK-cell subset
(mean of all stimulated fractions, blood NKp46+CD107a+:
22.5% versus spleen NKp46highCD107a+: 23.4%).

Splenic NKp46high NK cells differ in their expression of the
activating receptor NKp30 and the chemokine receptor
CXCR3
So far, our functional data indicated that splenic
NKp46high NK cells are in an elevated stage of activa-
tion. Therefore we further analysed the expression of
other NK-associated markers like the NK-receptors
NKp30 and NKG2D in this NK-cell subset. Moreover,
expression of the chemokine receptor CXCR3 was in-
vestigated since the expression of CXCR3 in combin-
ation with CD27 can be used for the identification of
NK-cell subsets with different functional properties in
the mouse [10]. Therefore, FACS-sorted NKp46-defined
NK-cell subsets of blood and spleen were analysed for
expression of these markers by quantitative RT-PCR
(Figure 6). Additionally, NKp46 mRNA levels in the dif-
ferent NK-cell subsets derived from blood and spleen were
analysed. Results confirmed data obtained from protein
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expression, showing the same differential expression of
NKp46 mRNA in the respective subsets (Figure 6). Inter-
estingly, despite high NKp46 expression, for the NCR-
family member NKp30 a reduced expression was found
for splenic NKp46high NK cells compared to the other two
splenic subsets. Blood NKp46- NK cells seemed to express
slightly higher levels of NKp30 as blood NKp46+ NK cells.
NKG2D mRNA levels were very homogeneous among
the different NKp46-defined subsets. Also, this receptor
showed the lowest variation in expression levels between
different individuals. The most prominent difference in
RNA expression was observed for the chemokine re-
ceptor CXCR3. Splenic NKp46high NK cells showed an
overall higher expression of this receptor compared to
NKp46- and NKp46+ NK-cell subsets from both spleen
and blood. For NKp46- and NKp46+ NK cells from
blood and spleen similar expression levels of CXCR3
were observed.
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Discussion
Recently, the phenotype of porcine NK cells was revisited
in a study from our group using newly developed mAbs
against porcine NKp46. Interestingly, CD3-CD8α+ NK cells
in the blood were shown to be either NKp46+ or NKp46-

[20]. Additionally, a third NK-cell subset with elevated
NKp46 expression was found in high frequencies in spleen
and liver that was associated with a CD8αdim/- phenotype.
In the current study we aimed to investigate this splenic
NKp46high NK-cell subset in more detail and elucidate pos-
sible functional as well as phenotypical differences to the
NKp46- and NKp46+ NK-cell subsets in the pig.
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Splenic NKp46high NK cells showed highly elevated ex-
pression of this activating receptor compared to the
other two NKp46-defined subsets in spleen as well as in
blood in all animals analysed, which could be demon-
strated on protein as well as on mRNA level. Addition-
ally, splenic NKp46high NK cells displayed a strongly
decreased expression of CD8α, a receptor that was so far
described to be expressed by all NK cells in the pig
[12,13]. Of note, also the NKp46- and NKp46+ NK cells
in blood and spleen showed minor differences in their
CD8α expression. We observed a negative correlation,
thus an increase of NKp46 expression was accompanied
by decreased expression level of CD8α. Furthermore, ex-
pression levels of CD16 and the TNF-receptor family
member CD27 differed between the three NKp46-
defined NK-cell subsets. CD27 expression was clearly
enhanced in splenic CD8αdim/-NKp46high NK cells and
this subset also displayed slightly higher levels of CD16
compared to the other two splenic subsets. In contrast,
NKp46- NK cells showed the lowest expression of both
receptors, thus indicating a positive correlation in the
expression levels of NKp46, CD16 and CD27.
Only few reports highlight on differential expression

levels of NKp46 on NK cells in other species, although the
existence of NKp46dull and NKp46bright NK cells was al-
ready described in the late 1990s on human NK cells [48].
Additionally, it was reported that cells within distinct hu-
man NK-cell subsets show different levels of NKp46 ex-
pression. Thus, higher CD56 expression [23,49,50] as well
as higher CD27 expression [46,47] was associated with
higher surface density of NKp46 on human NK cells. Ob-
viously, the latter is akin to the correlation of NKp46 and
CD27 we observed in the pig. More recently a phenotype
of human NK cells with elevated expression of NKp46
was reported, which show an activated phenotype and
seem to play a profound role in hepatitis C virus infection
[23]. Likewise to our findings, in that study NKp46high NK
cells showed a higher expression of CD27. Furthermore,
the authors of this report used the different expression
levels of NKp46 to separate NK cells into distinct subsets,
similar to the approach of our study.
CD27 is used to distinguish between different NK-cell

subsets in mouse and human. In the mouse, CD27 in
combination with CD11b is used to differentiate function-
ally as well as developmentally different NK-cell subsets
[9,51]. CD27 divides the mature CD11bhigh murine NK
cells into two distinct subsets. CD27high NK cells show a
higher proliferative capacity and additionally an increased
cytokine production compared to the CD27low NK-cell
subset [9,10]. In regard to cytotoxicity, differing reports
exist. It was shown that murine CD27high NK cells show
elevated cytolytic activity compared to the CD27low NK-
cell subset [9]. However, another report describes the
CD27low/-CXCR3- NK cells to be the more cytolytic subset
in the mouse [10]. In human NK cells, high CD27 expres-
sion is also linked to higher cytokine production and the
CD27low/- phenotype correlates with an overall higher
cytolytic activity [8,46,47]. In contrast, the recent study on
human NK cells that used NKp46 to distinguish between
different NK-cell subsets showed that NKp46highCD27high

NK cells have an enhanced cytokine production and cy-
tolytic activity [23]. We likewise observed this bi-
functionality in the NKp46highCD27high NK-cell subset in
spleen, with an elevated IFN-γ and TNF-α production
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after in vitro stimulation but also higher cytolytic capacity
after triggering of the activating receptors CD16 or
NKp46 compared to the other two splenic NK-cell sub-
sets. Consistent with this data, it was already suggested
that higher density of the activating receptor NKp46 on
the NK-cell surface is associated with higher cytolytic
function [23,48,50]. Interestingly, we could not observe an
obvious synergistic effect after co-crosslinking of both re-
ceptors in our study. Nevertheless, similar results were
shown for CD16 and NKp46 co-triggering in resting hu-
man NK cells [52]. We observed an overall lower cytotoxic
activity in the NKp46- subset in blood and spleen when
stimulated with anti-CD16 antibody, although the expres-
sion level of CD16 was only slightly lower as in the
NKp46+ NK cells. In our previous study we showed that
blood NKp46- porcine NK cells had a cytotoxic capacity
comparable to blood NKp46+ NK cells in killing assays
using xenogeneic and allogeneic cell lines as targets [20].
The lower killing capacity we observed in this study may
be caused by the triggering of only a single activation
pathway, whereas the killing of target cells is likely to re-
sult from the triggering of several activating receptors
and/or lack of inhibitory signals.
Although splenic NKp46high NK cells produced higher

levels of IFN-γ compared to the other two subsets as
shown by ELISA, the overall proportion of IFN-γ produ-
cing cells was lower compared to blood NK cells. There-
fore, the higher cytokine production seems to result
from a superior cytokine production on a single cell
level as indicated by the higher MFI for IFN-γ in the
splenic NKp46high NK-cell subset. Similar results could
be observed for the cytolytic activity determined by
CD107a degranulation assays after receptor triggering.
Although the proportion of CD107a+ cells was not
higher in the splenic NKp46high subset compared to
blood NKp46+ NK cells, NKp46high NK cells showed the
highest CD107a expression levels on a per cell basis.
Thus, these data may suggest also a higher killing cap-
acity on a single cell level within the splenic NKp46high

NK cells. Taken the functional findings together, our
data indicate that NKp46high NK cells are in a highly
activated state and can readily release high amounts of
cytokines or cytolytic granules upon stimulation.
To get further insight into the phenotype of the NKp46-

defined NK-cells subsets in the pig we finally performed
RT-qPCR analyses of distinct NK-cell associated markers.
Expression analyses of other activating receptors, namely
NKp30 and NKG2D, showed no marked differences be-
tween the NKp46-defined NK cell subsets in blood as well
as in spleen. Splenic NKp46high NK cells showed slightly
lower levels of the NCR-family member NKp30. NKG2D
that is described as important NK-cell receptor involved
in target recognition in other species [53] was very uni-
formly expressed between the different NK-cell subsets in
the pig, which is consistent with data in mouse and hu-
man where NKG2D shows an overall similar expression
pattern between different NK-cell subsets [9,47]. The most
prominent difference in expression between the NKp46-
defined NK-cell subsets was observed for CXCR3. Splenic
NKp46high NK cells showed elevated levels of this chemo-
kine receptor compared to the other two subsets. Like-
wise, mouse CD27high NK cells showed the highest levels
of CXCR3 and recently a further sub-division of murine
NK-cells by these two markers has been proposed [10].
The chemokine receptor CXCR3 is associated with the re-
cruitment of NK cells into the lymph node [54] and accu-
mulation in tumors [55]. In the murine spleen, CXCR3 is
important for intrasplenic trafficking of NK cells upon in-
flammatory signals [56] as well as the mobilisation and
migration of NK cells from the spleen into the periphery
[57]. Thus, one can speculate that the elevated expression
of CXCR3 on porcine splenic NKp46high NK cells may in-
dicate that this NK-cell subset is in a “ready-to-go” state
for recruitment of NK cells into the periphery or within
the spleen.
In conclusion, our data shows that the splenic

NKp46high NK cells are in a highly activated state and can
be readily activated upon in vitro stimulation. Further-
more NKp46high NK cells are characterised by a distinct
receptor expression pattern compared to the NKp46- and
NKp46+ porcine NK-cell subsets in blood as well as in
spleen, including the TNF-receptor family member CD27
that can be used to separate functionally and developmen-
tally different NK-cell subsets in other species.
Additional files

Additional file 1: Optimisation and validation of qPCR assays for
NK-associated gene-specific primers. The suitability of the newly
designed primers was verified in separate experiments by performing
dilution series of PCR products in 1:10 or cDNA pools in 1:2 steps in
quadruplicates. The dilution series, in conjunction with the melt
characteristics of the PCR product, were used to optimise the assays
regarding the primer concentration, annealing and extension times and
the efficiency for the PCR. The optimised PCR conditions including
annealing and extension conditions as well as the reaction parameters
(slope of the regression analysis corresponding to the efficiency of the
qPCR) and the dynamic range for detecting 100% positive of the lowest
dilution are indicated in the table. A product was detected in the RT-
minus control of some samples, nevertheless these showed at least 5.5
Cqs or more difference to the respective RT-plus sample (ΔCT values are
indicated in the table). Calibration curve, melt curve and amplification
blot for each target is illustrated.

Additional file 2: Gating hierarchy used for FCM analysis of NKp46-
defined NK-cell subsets of porcine PBMC and splenocytes. (A)
Lymphocytes were gated according to their light scatter properties. (B)
To exclude potential doublet cells, a FSC-H/FSC-W gate followed by a
SSC-H/SSC-W gate was used. (C) For Live/Dead discrimination, Near-IR
stain was used. For further analysis only live cells (Near-IR negative) were
included. (D) To exclude T cells, lymphocytes were further gated on CD3-

cells. (E) For the identification of different NK subsets CD8α and NKp46
expression was analysed. For PBMC CD3-CD8α+ cells were divided into

http://www.biomedcentral.com/content/supplementary/1297-9716-44-13-S1.pdf
http://www.biomedcentral.com/content/supplementary/1297-9716-44-13-S2.pdf


Mair et al. Veterinary Research 2013, 44:13 Page 13 of 14
http://www.veterinaryresearch.org/content/44/1/13
NKp46- and NKp46+ NK cells. In spleen a third subset could be defined
according to its CD8αdim/- and NKp46high phenotype.
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