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Abstract

protein yield and for somatic cell score (SCS).

model.

Background: Genomic selection estimates genetic merit based on dense SNP (single nucleotide polymorphism)
genotypes and phenotypes. This requires that SNPs explain a large fraction of the genetic variance. The objectives
of this work were: (1) to estimate the fraction of genetic variance explained by dense genome-wide markers using
54 K SNP chip genotyping, and (2) to evaluate the effect of alternative marker-based relationship matrices and
corrections for the base population on the fraction of the genetic variance explained by markers.

Methods: Two alternative marker-based relationship matrices were estimated using 35 706 SNPs on 1086 dairy
bulls. Both pedigree- and marker-based relationship matrices were fitted simultaneously or separately in an animal
model to estimate the fraction of variance not explained by the markers, i.e. the fraction explained by the pedigree.
The phenotypes considered in the analysis were the deregressed estimated breeding values (dEBV) for milk, fat and

Results: When dEBV were not sufficiently accurate (50 or 70%), the estimated fraction of the genetic variance
explained by the markers was around 65% for yield traits and 45% for SCS. Scaling marker genotypes with
locus-specific frequencies of heterozygotes slightly increased the variance explained by markers, compared with
scaling with the average frequency of heterozygotes across loci. The estimated fraction of the genetic variance
explained by the markers using separately both relationships matrices followed the same trends but the results
were underestimated. With less accurate dEBV estimates, the fraction of the genetic variance explained by markers
was underestimated, which is probably an artifact due to the dEBV being estimated by a pedigree-based animal

Conclusions: When using only highly accurate dEBV, the proportion of the genetic variance explained by the
[llumina 54 K SNP chip was approximately 80% for Brown Swiss cattle. These results depend on the SNP chip used
and the family structure of the population, i.e. more dense SNPs and closer family relationships are expected to
result in a higher fraction of the variance explained by the SNPs.

Background

Genome-wide dense marker arrays that are available for
livestock populations cover all chromosomes with dense
single nucleotide polymorphism (SNP) markers [1].
Many dairy cattle populations are currently being geno-
typed using these arrays [2-4]. The main objective is to
apply genomic selection (GS) [5]. GS allows prediction
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of the genetic merit of young animals based on marker
information in the absence of own performance data.
The marker effects are estimated in a reference popula-
tion, which must have both genotypic and phenotypic
records. In the case of dairy bulls, phenotypic data come
from genetic evaluations in the form of daughter yield
deviation (DYD) or deregressed estimated breeding
values (dEBV) [6].

Identity by descent (IBD) alleles refer to alleles that
descend from a common ancestor in the base popula-
tion [7]. The coefficient of coancestry between two ani-
mals is defined as the probability that two randomly
sampled alleles from the two animals are IBD [8], and
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twice the coancestry is defined as their numerator rela-
tionship [8]. This approach leads to the estimation of a
matrix of relationships based on the pedigree informa-
tion. The latter is fundamental to estimate the genetic
parameters for complex traits such as heritability
(defined as the proportion of the phenotypic variance
in a population that is attributed to additive genetic
effects). The relationship matrix based on pedigree
data dates back to a base population, for which pa-
rents are unknown and which is considered unrelated,
unselected and non-inbred. The choice of the base
population affects the estimate of the additive genetic
variance [9].

However, the relationship matrix can also be esti-
mated from genome-wide genetic markers such as
panels of SNPs [10-12]. Methods have been developed
to construct such marker-based relationship matrices
[12-15]. Recently, these relationship matrices have been
used to dissect the additive genetic variance of complex
traits [16].

The proportion of the genetic variance not captured by
markers (C,,;s) represents the variance that cannot be
used by GS and affects the maximum accuracy that can
be achieved by GS [17]. The term ‘missing heritability’
[18] describes the fact that marker-phenotype associa-
tions identified in genome-wide association studies do
not explain all the genetic variance in complex traits (e.g.
height in humans). Some strategies have been proposed
to reduce C,,;5: (1) increasing the sample size in order to
also detect genes with smaller effects, (2) expanding the
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studies to non-European samples in human genetics, (3)
enlarging the collection of phenotypes to explore gene-
gene interactions, (4) changing the structure of the train-
ing population, mainly in terms of the relatedness of the
included individuals, and (5) moving to the genomic se-
lection approach instead of estimating the marker effect
for each SNP individually [13,19,20]. In animal breeding,
some results suggest that the Illumina Bovine54K chip
array (Illumina Inc., San Diego, CA) does not capture all
the additive genetic variation for all dairy traits [21-23],
even when using the GS approach, it estimates simultan-
eously all the SNP effects.

The main objective of this study was to estimate the
fraction of the genetic variance not explained by the
54 K Ilumina SNP chip. Two alternative marker-based
relationship matrices were used for analysis.

Methods

Genotypic and phenotypic data

A total of 1092 Italian Brown Swiss bulls were genotyped
with the Illumina Bovine54K chip (Illumina Inc., San
Diego, CA). These bulls were born between 1963 and
2002. Figure 1 shows the distribution of the genotyped
bulls over the birth years. All the SNPs on the X-
chromosome were excluded from the analysis, which left
51 582 markers. The quality control process removed
1421 SNPs that had more than 5% missing genotypes
and 14 455 SNPs with a minor allele frequency lower
than 5%. Six sires were deleted because their genotyping
rate was lower than 95%. Editing was performed with
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two different software packages: SAS® (SAS Inst. Inc,
Cary, NC) and PLINK v1.07 [24]. At the end of the qual-
ity control process, genotypes were available for 1086
sires with 35 706 SNPs and with a missing genotype rate
of 0.66%.

The phenotypic data available were the EBV for fat
yield (FAT), milk yield (MILK), protein yield (PROT)
and somatic cell score in milk (SCS) for each bull, which
were calculated by the Italian National Association of
Brown Swiss (ANARB). The EBV were deregressed as
proposed by Garrick [21], in order to eliminate the
shrinkage contained in the EBV and to remove ancestral
information. The deregressed EBV (dEBV) were used as
phenotypic records for the bulls with heritability equal
to the reliability of the EBV.

Three subsets were formed according to the reliability
of EBV as follows: animals with a reliability of at least
50% for each trait; animals with a reliability greater than
70% for each trait; animals with a reliability of at least
90% for each trait.

Relationship matrices: A and G

A pedigree file was extracted from the Italian Brown
Swiss herd book. Pedigree was traced back five genera-
tions and the pedigree file included 6826 entries. The
completeness in the pedigree was 100% up to the grand-
parents, and decreased to ~90% thereafter. The equiva-
lent number of known generations as calculated by the
software Pedig [25] was on average 5.14 and the median
was 5.23. The pedigree file was used to estimate the
additive genetic relationships (A) with an adapted ver-
sion of the procedure proposed by Meuwissen and Luo
[26], as implemented in ASREML [27].

Two genomic relationship matrices (G) were com-
puted for all genotyped animals. The first Gy was based
on the method proposed by VanRaden [12]. Let M be
the marker-genotype matrix with number of individuals
(n) and number of loci (m) as dimensions. The elements
in the matrix M were coded as -1 (homozygous for one
allele) 0 (heterozygous) and 1 for (homozygous for the
other allele). The nxm matrix P contains columns with
all elements 2(p;-0.5), where p; is the frequency of the
second allele at locus i. The matrix P was subtracted
from M to give Z =M - P. Finally, matrix Gy was calcu-
lated as:

/

2Z:ilpi(1_l]i) .

The second genomic relationship matrix (Gy) was
computed as:

Gy =
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where W is the Z matrix but with each element scaled
based on the allele frequency of each locus as follows:
wyj = ——2— [12,14].
2,(1-7,)

Correction for the base population

Both the G matrix and the pedigree-based relationship
matrix, A, are expressed relative to a base population, i.
e. an original population in which all animals are as-
sumed unrelated and non-inbred, and these populations
may differ between the pedigree-based and genomic re-
lationship matrices [15]. To correct for these differences,
the scale of G was changed to that of A based on
Wright's F-statistic [7]. We expressed the total inbreed-
ing of animal i in the G matrix as:

Fi = Gy-1 or Fy =Fy+ (1-Fy) Fj,

where Fy; is the average inbreeding in the population, i.e.
the average of the diagonal elements of G minus 1, and
F; is the inbreeding of animal i relative to the popula-

tion average inbreeding F,;, which is calculated as:

_ (Fa=Fg) __ (Gi=1-Fy)
Fis =0 ="F0

The average population inbreeding of G was set equal
to that of A by rescaling the diagonal element of G cor-
responding to individual i as:

G;; - Ast + (l_Ast)Fst + 17

Where A, is the average of the diagonals of A minus
1. The off-diagonals of G were rescaled similarly, using
the same F;, and Ay values. Numerator relationships
were transformed to kinships, @, i.e. by dividing the rela-
tionship by 2, and performing the base-correction on the
kinship level, which is the same level as that of inbreed-

ing, i.e.
G
2 Lt

—-———~2 and
(1-Fg)

Djis =

G = 2[Ay + (1-Ay) Dy,

where @ j;; is the kinship of animal j and i relative to the
base population inbreeding, Fi,.

Estimation of variance components

To estimate the fraction of the genetic variance captured
by dense markers covering the entire genome, the ap-
proach of Goddard et al. [28] was used. Both matrix A
and G were fitted in the model simultaneously in order
to estimate the fraction of the genetic variance captured
by each of these matrices. The variance component ana-
lyses were performed by ASREML-R [29], using the fol-
lowing model:

Y= 1lu+Zja+ Zru +e,
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where vy is the vector of the dEBV; p is the overall mean;
Z, and Z, are the incidence matrices for pedigree-based
and genomic random animal effects, respectively; a is
the vector of the random additive genetic animal effects
using the pedigree-based relationship matrix, with a ~ N
(0, Ac2); u is the vector of random additive genetic effect
using the genomic relationship matrix, with u ~ N(0,
Go2); and finally, e is the vector of random residual ef-
fects. Because the number of daughters per bull was
high for all bulls, the reliabilities of the dEBV were high
and varied little between bulls, and a homogeneous error
variance structure was assumed.

If we assume that A is an unbiased estimate of G, and
write G = A + D [28], where D is a matrix of deviations
from pedigree relationships due to the segregation of a
finite number of chromosome segments in the genome,
the genetic variance of the records becomes V(g) = Go?
+Ao02 = A(c? + 02) + Do>. Hence, as in a model that fits
only pedigree relationships (y=1p+ Z;a +e), the total
genetic variance is explained by the A matrix and the
segregation of chromosome segments that are traced by
the markers is explained by o2 The fraction of genetic
variance not captured by the markers on the SNP chip
(C,1iss) Was thus estimated as:

2
Cniss = 1_% =1-—"—
g
where ofg is the total genetic variance, oﬁ is the variance
due to marker-based relationships and ¢ is the variance
due to pedigree-based relationships.

The two additive genetic variances were also estimated
by fitting each separately: the additive genetic animal
variance using the pedigree-based relationship matrix
(62,) and the additive genetic variance using the gen-
omic relationship matrix (67,). The estimate of a7, was
used to calculate an alternative estimate for the fraction
of genetic variance not addressed by the markers on the

SNP chip (C,,iss2) as follows: Cpio = 1 — =2 The es-

0
timate C,,» has the advantage that 0% is known to

yield an unbiased estimate of the genetic variance, but it
has the disadvantage that o is likely to include more
genetic variance than that explained by QTL that are in
LD with the markers [11]. E.g. if only some of the chro-
mosomes contain markers, these markers can explain
genetic variance at the unmarked chromosomes, because
the markers trace family relationships. If, in the latter
case, the pedigree-based relationship matrix is fitted simul-
taneously with the marker-based relationship matrix, the
variance due to the unmarked chromosomes is expected to
be included in the polygenic variance, o2, because the
pedigree-based relationship matrix more closely resembles
the family relationships at the unmarked chromosomes

2
gu

2
Uﬂ
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than at the marked chromosomes, which may show rela-
tionships that (randomly) deviate from the pedigree. Thus,
C,iss2 1s expected to underestimate the fraction of missing
genetic variance.

Results

Descriptive statistics

Descriptive statistics for each trait and dataset are in
Table 1. In the group of bulls with dEBV reliabilities of at
least 50%, the dEBV average reliability was ~90% (+7%)
for the production traits (FAT, PROT and MILK), and
82.6% (+10.7%) for SCS. The subset of sires with dEBV
reliabilities of at least 70% had a similar average reliability
of ~91% (+5%) for the production traits. The lowest aver-
age reliability in this subset was 85.7% (+7.4%) for SCS.
Finally, the subset of bulls with reliabilities of at least
90% had an average reliability close to ~94% (+3%) for all
traits. As expected, the differences in the average of the
reliabilities between traits tended to decrease with in-
creasing minimum reliability requirements.

Proportion of genetic variance not explained by markers
The fraction of genetic variance not explained by mo-
lecular markers based on C,,;, was estimated for all
datasets (50, 70 and 90 dEBV reliabilities) and traits
(FAT, PROT, MILK and SCS). Results are in Table 2. For
dFAT50, the estimate of C,,;, was 0.373 +0.068 based
on Gy and 0.363 + 0.069 based on Gy. The estimates of
C,.iss were smaller for the dFAT70 subset than for the
dFAT50 subset. For dFAT90, the estimate was 0.305 +
0.074 Gy, while the Gy matrix did not result in con-
verged variance component estimates. Algorithms other
than the AI-REML algorithm might have converged (e.g.
the EM-algorithm, which is known to be slow), but the
convergence difficulties are probably due to the small
size of the dataset, thus resulting variance component
estimates would have been unreliable.

The fraction of the genetic variance not explained by
molecular markers based on C,,;» through the additive
genetic variances was estimated separately for all data-
sets and traits (Table 3). Results for C,,; followed the
same trends as for C,,; but the values of C,, > were
lower probably due to its underestimation of the fraction
of the missing genetic variance.

Results for dMILK, dPROT and dSCS were similar to
those described above for dFAT for both genomic rela-
tionship matrices. Estimates of C,,; for dMILK70 and
dPROT70 hardly differed from those for dMILK50 and
dPROT50, respectively. The subsets with dEBV90 re-
sulted in estimates of C,,;, of 0.199 (+0.101) for
dMILK90 and 0.206 (+0.098) for dPROT90 when using
Gy. These estimates were not significantly different from
those obtained with the larger datasets for the same
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Table 1 Descriptive statistics for de-regressed estimated breeding values (dEBV) and reliabilities (1) for

production traits*

Trait Subset Number of dEBV r? (%)
label observations Mean D Mean D

Fat yield dFAT50 1034 -8.1 26.3 90.2 74
dFAT70 1006 -8.7 26.1 91.0 58
dFAT90 655 =127 254 94.3 29

Milk yield dMILK50 1034 —-205.9 666.9 90.7 73
dMILK70 1014 -214.7 665.6 914 56
dMILK90 691 -316.1 646.9 94.4 29

Protein yield dPROT50 1034 -8.2 233 90.6 7.1
dPROT70 1009 -8.7 232 91.3 56
dPROT90 681 -12.1 229 94.4 29

Somatic cell score dsSCS50 978 0.246 1.206 826 10.7
dsCs70 848 0.233 1.118 85.7 74
dsSCS90 223 0.018 0.972 952 29

*Subsets of the genotyped sire population were divided based on minimum reliabilities (50, 70, or 90); SD: standard deviation.

traits (AEBV50 or dEBV70), although they were system-
atically lower for all traits.

The highest estimates for C,,; were obtained for
dSCS50, with 0.532 (+0.091) for Gy. When using Gy, the
corresponding C,,;;s estimate was lower (0.486 +0.095).
The smallest C,,;,; estimate was obtained for dSCS90:
0.061 (+0.197) using Gy. The variance component ana-
lysis with Gy on the same dataset did not converge. This
was the smallest dataset and, although the average reli-
ability was the highest, estimates of C,,;,; were not sig-
nificantly different from 0.

Table 2 Proportion of genetic variance not explained by
markers (C,,iss) £ standard error (SE) for dEBV for
production traits*’

Label Gy Gy

dFATS0 0.363 +0.069 0.373 £0.068
dFAT70 0.363+0.072 0.369 + 0.070
dFAT90 NC 0.305+£0.074
dMILK50 0.337+0.076 0.357 £0.074
dMILK70 0.342+0.077 0.358 £ 0.075
dMILK90 0.199+0.101 0.245 £0.098
dPROT50 0.345+0.077 0.363 £ 0.074
dPROT70 0.344+0.078 0.357 £0.076
dPROT90 0.206 + 0.098 0.235+0.095
dsCs50 0486 +0.095 0.532 £0.091
dscs70 0492 +0.101 0.530 +0.097
dsCso0 0.061+0.197 NC

*Subsets of the genotyped sire population were divided based on minimum
reliabilities (50, 70, or 90); NC: Log-likelihood was not available since the
iterative procedure was not convergent; 'Gy, and Gy: genomic relationship
matrices as proposed by [14] and [12], respectively, and corrected to the same
base population.

In general, estimates of C,,;s» decreased as the reliabil-
ity of the dEBV increased. Estimates of C,,, differed
from estimates of C,,;, probably because C,> is ex-
pected to underestimate the fraction of the missing gen-
etic variance.

Discussion

We estimated the fraction of the genetic variance not
accounted by SNPs in the marker panel (C,,;) based on
the Illumina 54 K SNP chip for complex traits in dairy
cattle. The results showed that the estimates of C,,,;
depended on the reliability of the phenotypic traits con-
sidered, i.e. the dEBV used as response values. When the
accuracy of the dEBV increases, i.e. when the correlation

Table 3 Proportion of genetic variance not explained by
markers (Cpiss2) for dEBV for production traits*’

Label Gy Gy
dFATS0 0.116 0.097
dFAT70 0.108 0.089
dFAT90 0.026 0.024
dMILK50 0.073 0.055
dMILK70 0.075 0.057
dMILK90 0.125 0.101
dPROT50 0.054 0.035
dPROT70 0.052 0.031
dPROT90 0.031 0.008
dsCsSs50 0.149 0.149
dscCs70 0.152 0.152
dSCs90 —0.024 —-0.024

*Subsets of the genotyped sire population were divided based on minimum
reliabilities (50, 70, or 90); 'Gy and Gy: genomic relationship matrices as
proposed by [14] and [12], respectively.
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between dEBV and the true breeding value increases, the
proportion of the genetic variance explained by SNPs
tended to increase. When the reliability of the dEBV is
low, the family/pedigree information greatly contributes
to the estimation of the EBV, which results in a larger
fraction of the variance being explained by A and, in
turn, in upward biases of C,,;,. Because the estimates of
the C,,,;ss values, are expected to be overestimated due to
the use of (family information in) dEBV, the best esti-
mates of C,,,; are obtained for data sets with high reliabil-
ities, which resulted in estimates around 0.2. This implies
that the maximum accuracy of GEBV is V(1-C,,s) = 0.9,
which agrees with the result of Daetwyler [22], who stud-
ied the increase in the accuracy of GEBV with increasing
training population sizes.

For all production traits, the fraction of the genetic
variance not explained by the SNPs was significantly dif-
ferent from 0, even when the phenotypes were very ac-
curate (reliability > 90%), and were, therefore, very close
to the true breeding values. Correction for the base
population did not affect the fraction of the genetic vari-
ance explained by markers for any of the marker-based
relationships here used. The differences in Cy,;s estimates
between using Gy and Gy were negligible for all traits and
all subsets. Similarly, when using EBV instead of dEBV
(results not shown), the results were virtually the same.

If original performance records of production and SCS
phenotypes are used to estimates C,,,;;, instead of dEBV,
the upward biases mentioned above are not expected to
occur. The error variances would be higher than when
using dEBV, but the value of o2 would not be inflated,
because family information does not contribute to own
phenotype (in contrast to dEBV phenotypes).

The sources of phenotypic information used in gen-
omic analyses are very heterogeneous and vary from in-
dividuals with highly reliable information, i.e. progeny-
tested bulls, and animals with phenotypes with low
levels of accuracy, i.e. young cows. To take into account
these differences in reliability in a weighted analysis, it is
necessary to know the value of C,,,; for each phenotype
[22]. In addition, a polygenic effect must be included in
the model to account for unmarked genetic effects.
Knowledge of the fraction of the genetic variance not ex-
plained by markers is also required to predict the accur-
acy of the genomic predictions for each individual in the
population, since it affects the maximum accuracy that
can be achieved [17].

The base population correction of the genomic rela-
tionship matrix generally affected neither the proportion
of genetic variance captured by markers, nor the genetic
variance captured by the pedigree-based relationship
matrices, which agrees with [17,30] but not with [31].
The latter authors, however, scaled the relationships in
the opposite direction, i.e. when G relationships were too
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high, they scaled all relationships downwards, which fur-
ther decreased the differences in relationships that were
already small since relationships are bound by a max-
imum of 1 (and vice-versa when G relationships were too
small). Moreover, the correction for the base population
facilitates the integration of relationship matrices A and
G into a single matrix (H), according to Legarra et al.
[32], Christensen and Lund [13], and Meuwissen et al.
[15].

We also estimated C,,;s> using the pedigree-based es-
timate of genetic variance. The denominators of C,,
and C,,» were significantly different from each other
but both estimates revealed that the genomic relation-
ship matrix could explain more than 95% of genetic vari-
ance if sufficiently reliable phenotypes are used (with
reliabilities greater than 95%).

It should be noted that the estimates of C,,, and
C,iss» depend on the SNP chip used, i.e. more dense
SNP chips are expected to yield lower estimates of C,,,;s
and C,,» (a larger fraction of the variance is explained
by the SNPs), and also on the family structure of the
population [33]. Populations with more closely related
individuals are expected to yield high LD between SNPs
and QTL, even when they are physically quite far apart
and, therefore, lower estimates of C,,;;. The population
structure of the Italian Brown Swiss population reflects
that of a typical dairy breeding population, and, thus,
our results probably apply also to other dairy breeding
populations.

Conclusions

The fraction of genetic variance explained by genetic
markers from high-density SNP panels was significantly
different from O for the complex traits analyzed when
the phenotypes are not highly accurate. The minimum
fraction of the genetic variance not explained by the
markers (C,,;) was equal to 0.2, which was estimated
based on the most accurate phenotypes. This value
agrees with other values reported in the literature. Cor-
rection of the genomic relationship matrix for the vari-
ance of the allele frequency of each locus (Gy) instead of
the average frequency of heterozygotes (Gy), hardly ex-
plained any additional genetic variance. Our estimate of
Cuiss of 0.2 implies that about 80% of the genetic vari-
ance is explained by the Illumina 54 K SNP chip. Values
for C,,ss are expected to depend on the density of the
chip (a larger SNP chip is expected to explain a larger
fraction of the genetic variance) and on family relation-
ships in the population, i.e. closer family relationships
are expected to reduce C,,,;q-
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