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Abstract

genotypes from a 7K subset to the 50K chip.

Background: Recombination events tend to occur in hotspots and vary in number among individuals. The
presence of recombination influences the accuracy of haplotype phasing and the imputation of missing genotypes.
Genes that influence genome-wide recombination rate have been discovered in mammals, yeast, and plants. Our
aim was to investigate the influence of recombination on haplotype phasing, locate recombination hotspots, scan
the genome for Quantitative Trait Loci (QTL) and identify candidate genes that influence recombination, and
quantify the impact of recombination on the accuracy of genotype imputation in beef cattle.

Methods: 2775 Angus and 1485 Limousin parent-verified sire/offspring pairs were genotyped with the lllumina
BovineSNP50 chip. Haplotype phasing was performed with DAGPHASE and BEAGLE using UMD3.1 assembly SNP
(single nucleotide polymorphism) coordinates. Recombination events were detected by comparing the two
reconstructed chromosomal haplotypes inherited by each offspring with those of their sires. Expected crossover
probabilities were estimated assuming no interference and a binomial distribution for the frequency of crossovers.
The BayesB approach for genome-wide association analysis implemented in the GenSel software was used to
identify genomic regions harboring QTL with large effects on recombination. BEAGLE was used to impute Angus

Results: DAGPHASE was superior to BEAGLE in haplotype phasing, which indicates that linkage information from
relatives can improve its accuracy. The estimated genetic length of the 29 bovine autosomes was 3097 cM, with a
genome-wide recombination distance averaging 1.23 cM/Mb. 427 and 348 windows containing recombination
hotspots were detected in Angus and Limousin, respectively, of which 166 were in common. Several significant
SNPs and candidate genes, which influence genome-wide recombination were localized in QTL regions detected in
the two breeds. High-recombination rates hinder the accuracy of haplotype phasing and genotype imputation.

Conclusions: Small population sizes, inadequate half-sib family sizes, recombination, gene conversion, genotyping
errors, and map errors reduce the accuracy of haplotype phasing and genotype imputation. Candidate regions
associated with recombination were identified in both breeds. Recombination analysis may improve the accuracy of
haplotype phasing and genotype imputation from low- to high-density SNP panels.

Background

The meiotic exchange of DNA between homologous
chromosomes is known as recombination. Recombination
events do not take place randomly throughout the gen-
ome, but tend to occur in recombination hotspots [1],
which are usually small regions in which recombination
rate is significantly higher than in surrounding regions.
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Rates of recombination on different chromosomes are
sex-specific, with rates in females being higher near
centromeres and rates in males being higher near telo-
meres [2]. Methodologies for discovering recombination
hotspots and descriptions of their properties have been
reviewed from the perspectives of mammals [3,4] and
plants [5]. Elucidating the characteristics of recombin-
ation might help understand the creation and loss of
haplotypes and explain genome-wide variation in link-
age disequilibrium (LD).
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Recombination rates are related to distance from the
centromere [5,6], and regional GC content [7,8]. The
location and activity of recombination hotspots is regu-
lated both by cis and trans acting genes [4]. Trans-acting
genes, such as PRDM9 control hotspot activation in mice
[9] and humans [1,4], and allow a meiosis-specific protein,
SPOL11 to initiate recombination [4]. Moreover, REC8 [10],
RNF212 [10-12] and other loci [11] have been found to in-
fluence genome-wide recombination activity in cattle [10]
and humans [11,12].

Genome-wide association studies (GWAS) associate
genomic variants with a trait of interest to identify pos-
itional candidate loci [13,14]. Haplotype-based associ-
ation tests and imputation from low- to high-density
genotyping panels can both improve the power of
GWAS to detect QTL [15] and most methods for haplo-
type phasing can also be used for genotype imputation.
Furthermore, the estimation of haplotype phase can use
LD information [16] and/or pedigree structure [17].
Statistical models used to infer haplotype phase and im-
pute missing genotypes include Hidden Markov models
[18,19], rule-based approaches [20], long-range phasing
algorithms [21], and other methods. The importance of
haplotype phase estimation and genotype imputation is
increasing as large-scale sequencing projects generate
genome-wide genotype information.

Effectiveness of genotype phasing and imputation are
influenced by marker density, extent of LD, effective
population size, marker minor allele frequency (MAF),
size of the training population, position on the chromo-
some, and the extent of pedigree relationships between
training and imputed populations [22-24]. Kirk and
Cardon [25] pointed out that a small number of geno-
typing errors can significantly decrease the apparent
haplotype frequency and the accuracy of haplotype re-
construction. Haplotype frequencies and counts are also
affected by recombination.

Although Sandor et al. [10] have reported estimated
heritabilities of recombination rate and the identification
of recombination hotspots and quantitative trait loci
(QTL) in dairy cattle, recombination rates have been less
investigated in cattle than in mice, humans and other
mammals. In our study, we quantified recombination
rates and their impact on phasing accuracy in two pure-
bred beef cattle populations i.e. Angus and Limousin.
Our goals were to: (i) examine the impact of pedigree in-
formation, phasing method, and single nucleotide poly-
morphism (SNP) location errors on the inference of
haplotypes, (ii) quantify the impact of recombination on
haplotype phasing, (iii) locate recombination hot win-
dows and QTL which influence genome-wide recombin-
ation numbers (GRN), and (iv) evaluate the relationship
between recombination rate and accuracy of genotype
imputation in beef cattle.
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Methods

Genotype and phenotype

A total of 3570 Angus bulls born between 1955 and
2008, and 2275 Limousin cattle (1319 bulls and 955
daughters) born between 1974 and 2007 that were ge-
notyped with the BovineSNP50 BeadChip (Illumina,
San Diego, CA) were used in this study. Genotypes were
obtained using DNA samples extracted from semen or
hair samples and did not require an approved animal use
and care protocol. Genome-wide Mendelian consistency
was tested on sire-offspring pairs, and those that failed or
had genotype call rates (CR) below 95% were removed.
After selection, 2778 Angus and 1485 Limousin parent-
verified sire-offspring pairs remained. The average sizes of
the 604 Angus and 235 Limousin half-sib families were 4.6
(between 1 and 103) and 6.3 (between 1 and 135), respect-
ively. Individual SNPs with a CR less than 0.95, a MAF less
than 0.01, a p value for a Hardy Weinberg equilibrium test
less than 0.001, or a Mendelian inconsistency rate greater
than 0.0024 (95% quantile) were removed. After quality
control, 40 990 SNPs across 29 Bos taurus (BTA) auto-
somes in Angus and 38 815 SNPs in Limousin remained,
of which 34 788 were in common. Missing 50K genotypes
(0.45% and 0.02% of all Angus and Limousin genotypes,
respectively) were imputed using BEAGLE3.3 [19]. In
order to evaluate the relationship between recombination
rate and genotype imputation, a cross-validation study
was conducted to quantify the imputation accuracy. Im-
putation from low- to high-density SNP panels was per-
formed in Angus based on the use of only that subset of
7345 SNPs from the 50K panel that were on the GGP7K
panel (GeneSeek, Lincoln, NE) for those animals used in
the validation.

Haplotype phasing

Phasing of haplotypes was performed one chromosome
at a time using either the unrelated option in BEAGLE
3.3 [19] or DAGPHASE2.4 [17]. Phasing was first per-
formed using SNP coordinates from the UMD3.1 assem-
bly [26], which is known to contain some errors. The
USDA-AIPL linkage map [27] that was constructed from
linkage analysis based on the UMD3.1 assembly coordi-
nates was used as an alternative. The comparison of
phasing accuracies obtained from these two alternative
marker orders was determined for BTA15 as a represen-
tative example. The hidden Markov model based on the
Viterbi algorithm [28] implemented in BEAGLE was used
to reconstruct haplotypes and to impute from low- to
high-density SNP panels. In order to increase haplotype
phasing accuracy, BEAGLE was set to run 20 iterations of
the phasing algorithm and to sample 20 haplotype pairs
per individual per iteration. Before using DAGPHASE,
the assembly coordinates for the markers were used to
generate a genetic map assuming that 1 Mb equals 1
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c¢M. Then, DAGPHASE was used to reconstruct haplo-
types based on the output of a directed acyclic graph
(DAG) from BEAGLE with scale and shift parameters
set at 2.0 and 0.1, respectively.

The number of different haplotypes in every 1 Mb
window was counted for each chromosome in the Angus
population. Phasing errors can result in erroneous hap-
lotypes that might occur at low frequency, so only hap-
lotypes with a frequency greater than 5% (>5% quantile)
in each window were included.

Estimating recombination events
Recombination events were identified as phase changes
in the transmitted gametes by comparing the two recon-
structed haplotypes inherited by each offspring with the
two reconstructed haplotypes of their sire. Each recom-
bination event was localized to a recombination interval
defined by a pair of informative markers for which the
phase was known. Haplotype mismatches were not com-
mon but were identified when the putative paternally-
inherited haplotype of the offspring identified by BEAGLE
or DAGPHASE was not identical to either of the haplo-
types of the sire. Double crossover events that occurred in
intervals less than 2 Mb, animals with more than three
crossover events per chromosome, parent-offspring pairs
with a haplotype mismatch rate greater than 0.05, cross-
over events occurring in 1 Mb windows for which the esti-
mated recombination rate was significantly greater than
0.025 or which contained SNPs with a haplotype mis-
match rate greater than 0.05 were ignored. Such unlikely
crossover events were attributed to either genotyping or
phasing errors. The GRN for each parent-offspring pair
was calculated as the summation of observed crossover
events across the 29 autosomes. On average, one crossover
event occurs on a chromosome of size 1 Morgan (M) [29].
Accordingly, the average genome-wide recombination
distance per Mb was calculated as the GRN divided by
the total length of the 29 bovine autosomes. We found
that GRN decreased with increasing family size and that
haplotype phasing error rates were inflated in smaller
families. As a result, only half-sib families with at least
three offspring were retained in the following analysis.

The observed probabilities of 0, 1, 2, 3, >3 crossover
events were separately calculated for every autosome. For
a given number of crossovers, after removing unlikely
crossover events described above, the number of parent-
offspring pairs with that number of crossovers was divided
by the total number of parent-offspring pairs in the ana-
lyzed population, to obtain the observed crossover prob-
ability for that chromosome. This produced five observed
crossover probabilities for every autosome.

The five expected crossover probabilities were calculated
for each autosome based on its length in base pairs assum-
ing that crossover events follow a binomial distribution
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[30]. Ott [29] pointed out that N = 4 would be a reason-
able maximum crossover number for chromosomes for
which the maximum recombination rate is less than
0.5. The equation to calculate the expected crossover
probabilities was:

p= (N )mya-smy,

where p is the expected crossover probability, N is the
maximum number of crossover events per chromosome,
t is the observed number of crossover events (0/1/2/3/4)
per chromosome, and x is the length (M) of the corre-
sponding chromosome, assuming 100 Mb is 1 M.

The expected genetic length of each chromosome (M)

4, ..
was computed as E ., ip; where i is the number of cross-

over events (1/2/3/4) on the corresponding chromosome,
and p; is the expected probability of crossover i. The ex-
pected chromosomal recombination distance per Mb
was calculated as the expected genetic length (cM) di-
vided by the physical length (Mb) of the corresponding
chromosome.

Recombination rate was estimated for every non-
overlapping 1 Mb window to identify recombination
hot windows. Some recombination intervals for a par-
ticular recombination event could not be localized to
positions strictly within a single 1 Mb window. In those
cases, a part of the recombination event was considered
to have occurred in each window that spanned the recom-
bination interval. The recombination rate in a defined 1
Mb window was computed as:

v = (Zzzlxk/ rk) /T,

where c,, is the observed window recombination rate, n
is the total number of recombination events observed
on the corresponding chromosome, x; is the overlap (in
Mb) between the 1 Mb window and recombination
interval k, ry is the length (in Mb) of the recombination
interval, and T is the total number of sire-offspring
pairs.

Estimating heritabilities

Genome-wide recombination numbers of sires were treated
as phenotypes, thus sires with multiple offspring had re-
peated records. Narrow sense heritabilities (/) of GRN
were estimated separately for each breed using a repeat-
ability model in ASReml3.0 [31]. The model equation
was

y=1lu+Zu+Zp +e,

where vy is the vector of repeated genome-wide recom-
bination phenotypes for sires, y represents the unknown
mean treated as a fixed effect, u is the vector of random
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animal effects with Var(u) = Ac?, where A is the pedi-
gree relationship matrix among sires, p is the vector of
permanent environmental effects, 1 and Z are design
matrices, and e is the vector of residual effects.

A marker-based heritability was estimated using a
BayesC model [32,33] as implemented in GENSEL4.0
software [34]. BayesC assumes that all SNP effects have
a common variance, and the prior for that variance has
a scaled inverse Chi-square distribution. The model
equation was:

k
yi=ut ijlzijsj + e,

where y; is the average GRN for sire i, u is the popula-
tion mean, k is the number of SNP, z; is genotype code
(0/1/2) for SNP j in sire i, s; is the random effect for
s, N (0,02), with probability 1-1
sj = 0, with probability
a weighted residual effect. Parameter 7 was set to 0 in
this study. BayesC with 7 equal to 0 is equivalent to
GBLUP (Genomic Best Linear Unbiased Predictor), ex-
cept that the variance components are treated as un-
known with scaled inverse chi-squared priors. Markov
chain Monte Carlo (MCMC) sampling with 41 000 iter-
ations in which the first 1000 samples were discarded
for burn-in, was used to make inferences about variance
components and heritability. The weighting factor (w,,)
[35] for residual variance was calculated as:

SNP j with { ,and e; is

_ 1-h*
where 4” is the narrow sense heritability estimated from
pedigree, ¢ is the proportion of genetic variation that
could not be explained by markers, ¢ is the repeatability,
and # is the number of observations for the sire. In this
study, ¢ was assumed to be equal to 0.40 for both Angus
and Limousin, according to [36].

Genome-wide association study

Mapping QTL that influence sire mean GRN was
undertaken using the BayesB method [37] with weight-
ing factors defined as for the above model implemented
in GENSEL4.0 software [34]. BayesB assumes that each
SNP effect is drawn from a distribution with a locus-
specific variance with scaled inverse Chi-square prior
distributions, and that a fraction (1 — 7z) of the markers
have non-zero effects. Parameter 7 was assumed to be
equal to 0.995, which results in about 0.5% of the SNPs
fit in the model at each iteration. Based on simulations,
Sun et al. [38] showed that the BayesB method could
precisely map QTL. The genome was divided into non-
overlapping 1 Mb windows and the posterior distribu-
tion of the percentage of genetic variance attributed to
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each window was constructed from the MCMC samples
(e.g. [39]). The expected percentage of genetic variance
explained by each of the ~2600 1 Mb windows is about
0.04% under a polygenic model. Windows that explained
at least 0.2% (5 fold the expected percentage) of the
genetic variance [39], and extended regions on either
side of these windows (+2 Mb) were considered to rep-
resent QTL. Unpublished simulations using beef cattle
genotypes showed that the location of a QTL can be up
to 2 Mb up- or downstream of a 1 Mb window that ex-
plains a high proportion of genetic variance. The win-
dow posterior probabilities of association (WPPA) of
candidate windows (i.e. with at least 0.2% genetic variance)
was at least 1.5-fold greater than the average WPPA of 1
Mb windows across the genome. WPPA is the posterior
probability that a window harbors a QTL, which is the
proportion of samples for which at least one SNP in the
window was included with a non-zero effect. The SNP
that had the highest posterior probability of inclusion
(PPI) and explained the largest proportion of genetic vari-
ance in each central candidate window was identified as a
candidate SNP. The PPI is estimated as the percentage of
MCMC samples in which a given SNP had a non-zero ef-
fect. The proportion of genetic variance explained by each
candidate SNP was assessed as the difference in genetic
variance explained by the window when it included or ex-
cluded the candidate SNP. Significance of the effect of the
candidate SNP was evaluated in an animal model with
ASReml3.0 [31], by fitting the SNP genotype as a fixed
class effect. Bonferroni adjustment was applied to p values
from that single SNP analysis by accounting for the num-
ber of effective chromosome segments across the genome
(M,), which was calculated as [40]:

M, = 2N, Lk/log(N.L),

where N, is the effective population size, L is the aver-
age length of a chromosome in Morgan (~1 M), and k is
the number of chromosomes (k = 30). In this study, N,
was assumed to be equal to 545 for Angus and 91 for
Limousin, based on [41].

Using the human-bovine comparative map implemented
in VCMap3.0 [42], orthologous human genome regions
corresponding to candidate bovine windows were located.
Positional candidate genes within these orthologous hu-
man regions were identified using the NCBI Human Gen-
ome Overview Build 36.3 (http://www.ncbi.nlm.nih.gov/
mapview/). A list of previously published human candidate
genes related to meiosis, recombination, or the cell cycle
were extracted from OMIM [43]. Using VCMap3.0 [42] or
Ensembl (http://www.ensembl.org), locations of the bovine
orthologs of these genes were mapped to the bovine gen-
ome. These locations were used to test for concordance
between locations of candidate genes and identified QTL.
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Imputation from low- to high-density and cross-validation
of imputation accuracy

Cross-validation was used to determine the accuracy of
BEAGLE imputation from 7K to 50K SNPs in the Angus
dataset. The genotyped bulls were clustered into five
groups using a K-means clustering method based on
additive genetic relationships between animals [44]. The
aim of this method was to increase within-group and
decrease between-group relationships. Four testing
groups were used for phasing haplotypes from the 50K
SNP genotypes, while imputation from the 7K SNP
panel was performed in the fifth validation group. This
was repeated with each of the five groups being treated
once as the validation group. The 7K SNP genotypes
were extracted from the 50K SNP genotypes for the val-
idation group.

Accuracies of imputation were quantified per marker
and summarized per chromosome and per animal. The
imputation accuracy was evaluated as the fraction of the
imputed genotypes that were identical to the original ge-
notypes on the 50K SNP panel in the validation group.
Imputation accuracy was also quantified separately in
every 1 Mb window along each chromosome.

Levels of LD between every two adjacent SNPs were
evaluated as 7%, the squared simple correlation between
genotypes of two adjacent SNPs using R software [45].
These measures of LD between adjacent markers were
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averaged to provide a single measure of LD for each 1
Mb window.

Results

Phasing accuracy and crossover probability

Figure 1 shows that the probability of zero crossover events
per chromosome increased with decreasing chromosome
length, while the probability of two or more crossover
events decreased. The observed proportion of individuals
with more than three crossover events was higher than the
expected value for all autosomes. In general, DAGPHASE,
which uses linkage information from parent-offspring
relationships, produced a distribution of crossovers for
which the observed frequencies were closer to the ex-
pected values, indicating that it was superior for phasing
compared to BEAGLE with pedigree ignored.

The distributions of observed numbers of crossovers
on BTA15 were close to the expected values for both
the Angus and Limousin breeds, except for the propor-
tion of more than two crossover events per meiosis [see
Additional file 1: Figure S1A], which exceeded the ex-
pected values. Possible reasons for the phasing errors
that likely caused the discrepancies between expected
and observed crossover probabilities are small half-sib
family sizes (median size was 2 in both populations),
limited numbers of parent-offspring pairs, and errors in
some mapped SNP locations. Both the Angus (41.4%)
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Figure 1 Probability of zero (black), one (red), two (green), three (blue), and more than three (purple) crossover events per
chromosome for each of the 29 bovine autosomes in Angus. Solid line represents expected probability calculated by Karlin's map function,
dashed line represents observed probability using DAGPHASE, and dotted line represents observed probability using BEAGLE.
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and Limousin (36.6%) breeds had a large proportion of
half-sib families represented by only one son. Compared
to Angus, the Limousin breed had a higher probability of
more than two crossover events per meiosis, probably be-
cause of its smaller sample size which reduces the accur-
acy of haplotype phasing. The higher accuracy in Angus
compared to Limousin was also observed for autosomes
other than BTA15 [see Additional file 1: Figure S1B]. It
has been found that the larger the phasing sample size, the
greater the haplotype phasing accuracy [15].

Figure 2 compares observed probabilities of crossover
events on Angus BTA15 using UMD3.1 versus USDA-
AIPL locus coordinates. A total of 1304 SNPs were
assigned based on the UMD3.1 and 1262 SNPs based
on the USDA-AIPL, with 1234 common SNPs. The esti-
mated probability of more than two crossover events
using USDA-AIPL coordinates was smaller than that
using the UMD3.1 coordinates, which suggests that a
better genome assembly can improve the accuracy of
phasing.

Number of haplotypes and recombination rates

The average number of unique haplotypes per 1 Mb win-
dows (+SD) was 37.1+13.8 in Angus. Despite the presence
of outliers, there was a linear relationship between number
of haplotypes and recombination rate [see Additional
file 2: Figure S2]. The number of haplotypes declined
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with decreasing window-wide recombination rates, be-
cause new haplotypes are formed by recombination. Re-
combination hot or cold windows were defined as
windows with recombination rates greater than 0.02
(1.5 standard deviations from the mean) and lower
than 0.004, respectively. These definitions differ from
those previously used for dairy cattle (60 Kb window)
[10] and humans (<2 Kb window) [4], because of the
different lengths of the defined window. The average
number of SNPs (+SD) was 17.8 (+4.5) in hot windows
and 13.7 (+5.8) in cold windows. The average numbers
of haplotypes (+£SD) in hot and cold windows were ad-
justed for the corresponding average number of SNPs.
The number of haplotypes was equal to 50.9+13.3 (ran-
ging from 23.4 to 99.5) in hot windows, and 24.5+6.8
(ranging from 7.4 to 47.2) in cold windows, respectively
(Figure 3). The correlation coefficient between the aver-
age number of unique haplotypes within each window
and the recombination rate in that 1 Mb window was
0.64. All autosomes showed significant disparities in
numbers of haplotypes per 1 Mb windows between hot
and cold windows.

Analysis of genome-wide recombination number (GRN)

A total of 76 186 and 32 052 informative crossover events
were identified in Angus and Limousin gametes, respect-
ively. The physical length of the 29 bovine autosomes is

-~

0.5

Crossover probability

1
Number of crossover events on Angus BTA15

and USDA-AIPL coordinates (blue).
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Figure 2 Representative example of expected and observed crossover probabilities on autosome 15 in Angus using UMD3.1 (green)
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Figure 3 Relationship between number of haplotypes and crossover rate within 1 Mb windows across the 29 autosomes in Angus.
Number of haplotypes in hot (red) and cold windows (blue), which were defined as windows with a recombination rate 2 0.02 (=1.5 standard
deviations from the mean) and windows with recombination rate < 0.004, respectively; *indicates a significant difference with p < 0.05, and
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25114 Mb (UMD3.1), which corresponds to an average
genetic length of 3097 cM (Table 1). On average, the
genome-wide recombination distance per Mb across the
29 autosomes was 1.23 ¢cM/Mb. BTA20 had the lowest,
and BTA23 the highest cM per Mb ratio. Figure 4 shows
the expected and estimated recombination distances per
Mb for the 29 bovine autosomes. Recombination distances
per Mb differed between chromosomes; short chromo-
somes had greater genetic distances per Mb than long
chromosomes [2]. Chromosomal recombination distances
per Mb estimated in the two breeds were similar, with a
correlation coefficient of 0.84 between Angus and Limou-
sin. However, the recombination distances per Mb were
lower than the expected values for most autosomes, which
suggests that conservative filtering of unlikely crossover
events leads to an underestimation of the chromosome-
specific recombination distance per Mb.

Taking BTA15 as an example, the correlation between
window recombination rates in the Angus and Limousin
breeds was equal to 0.56, and recombination rates in a 1
Mb window varied from 0 to over 0.02 [see Additional
file 3: Figure S3A]. A large number of recombination
hot and cold windows were detected across the chromo-
some. Since bovine chromosomes are acrocentric, with
the centromere at the proximal chromosome end, recom-
bination rates were relatively low in that region. Reduced
information at the proximal end of the chromosome could

also lead to a low accuracy of detected recombination
events. As shown in Additional file 3: Figure S3B, the
location of hot and cold windows for recombination
was consistent for the two breeds across the genome,
although, in some instances, window shifts existed, such
that a higher recombination rate for Angus corresponds
to a lower recombination rate for Limousin and vice versa.
Across the genome, the correlation of 1 Mb window re-
combination rate between the Angus and Limousin breeds
was high, with a correlation coefficient of 0.49. The aver-
age window recombination rates per 1 Mb (+SD) were
equal to 0.0099+0.0052 and 0.0088+0.0053 in Angus and
Limousin breeds, respectively. A total of 427 and 348 hot
windows were identified in Angus and Limousin, respect-
ively, of which 166 were in common. Hot windows were
found in both the proximal and distal chromosome ends,
while cold windows clustered around the middle of each
chromosome and the proximal chromosome end.

The average number of recombination events per
chromosome differed between autosomes. Longer auto-
somes tended to have more recombination events. The
average GRN (£SD) was equal to 27.4+5.0 in Angus and
26.9+4.8 in Limousin. These values were close to the
paternal recombination numbers of 27.6 reported by
Chowdhury et al. [11] and 27.0 reported by Kong et al.
[21] in humans. GRN did not differ significantly between
the breeds [see Additional file 4: Figure S4]. Estimates of
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Table 1 Physical length, estimated genetic length and
recombination distance per Mb of bovine autosomes

Chromosome Genetic length (cM)® Physical length (Mb)® cM/Mb

1 166.0 158.3 1.05
2 148.0 137.1 1.08
3 141.8 1214 1.17
4 1325 1202 1.10
5 130.0 121.2 1.07
6 134.2 119.5 1.12
7 1255 1126 1.1
8 1244 1134 1.10
9 110.3 105.7 1.04
10 1189 104.3 1.14
11 129.9 107.3 1.21
12 1173 91.2 1.29
13 1183 84.2 140
14 1274 84.7 1.51
15 1103 85.3 1.29
16 1124 817 1.38
17 97.0 752 1.29
18 1032 66.0 1.56
19 100.8 64.1 1.57
20 737 720 1.02
21 90.2 716 1.26
22 914 614 149
23 90.0 525 1.71
24 85.8 62.7 1.37
25 62.0 429 145
26 69.8 517 1.35
27 60.9 454 1.34
28 573 46.3 1.24
29 68.0 515 1.32
Total 3097.3 25114 1.23

2Estimated using Karlin’s map function; ®bovine UMD3.1 genome assembly.

GRN slightly decreased with increasing family size (with a
correlation coefficient near -0.1), as did the observed vari-
ation of GRN across families, which is probably due to an
increase of phasing errors in small families [see Additional
file 5: Figure S5].

Estimated heritability and QTL for genome-wide
recombination number

The pedigree-based estimates of heritability of GRN
(+SE) by ASReml3.0 [31] were equal to 0.26+0.030 and
0.23+0.042 and estimates of repeatability were equal to
0.33+0.027 and 0.30+0.038 in Angus and Limousin, re-
spectively. However, estimates of marker-based herit-
ability of GRN (+SE) by BayesC in GENSEL4.0 software
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[34] were slightly lower, i.e. 0.17£0.039 in Angus and
0.14+0.031 in Limousin. Results reported in Saatchi
et al. [44] demonstrate that the marker-based heritability
of routinely recorded traits (e.g. calving ease) of American
Angus beef cattle was sometimes lower than the value of
the pedigree-based heritability. This suggests that markers
only captured a proportion of the genetic variance esti-
mated from pedigree.

Manbhattan plots of the proportion of genetic variance
explained by each 1 Mb window across the genome for
GRN in Angus and Limousin are in Figure 5. The num-
ber of windows explaining at least 0.2% of the additive
genetic variance was 35 in Angus and 22 in Limousin.
The cumulative variance explained by those windows was
equal to 17.8% in Angus and 8.2% in Limousin. Windows
that exceeded 0.2% additive genetic variance and had
1.5-fold average WPPA were considered to be signifi-
cant for further study [see Additional file 6: Table S1].
Different candidate SNPs were identified within each
window in Angus and Limousin. The highest proportion
of genetic variance (3.48%) was explained by a 1 Mb
window located at 67 Mb on BTA21 for Angus, which
had a high WPPA (0.45) and a significant SNP accounting
for 3.42% of the genetic variance. The most significant re-
gion in the Limousin breed was a 1 Mb window located at
89 Mb on BTA4 and explained 2.55% of genetic variance.
Positional candidate genes [see Additional file 6: Table S1],
that have been reported to be involved in meiotic recom-
bination, DNA replication, DNA repair or the cell cycle
[43] were detected within or near (+2 Mb) significant win-
dows but only in Angus; RAD51C, RAD52C, and XRCC3
are involved in both meiotic recombination and repair
of damaged DNA, while PRMTS8 is only involved in
DNA repair, whereas PTPRM and RAD17 regulate cellular
processes, such as differentiation and cell cycle checkpoint
control.

Imputation accuracy and recombination rate

In Angus, the average imputation accuracy across animals
was equal to 0.981, ranging from 0.81 to 1.00, and the
average imputation accuracy per chromosome was also
equal to 0.981, ranging from 0.97 to 0.99 [see Additional
file 7: Table S2]. BTA21 had the lowest imputation ac-
curacy (0.973), while BTA4 had the highest accuracy
(0.985). The average marker density (i.e. average dis-
tance in kb between two adjacent markers) was equal to
61.0 kb, ranging from 54.6 to 70.9 kb, and the average r*
between adjacent markers within each 1 Mb window was
0.237, ranging from 0.192 to 0.269. Imputation accuracy
increased slightly as marker density and r* increased.

In Additional file 8: Figure S6A, Angus bulls were
grouped according to the number of observed crossover
events per chromosome. The average imputation accuracy
(+SD) in groups with no, one, two and more than two
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crossover events was equal to 0.986+0.00835, 0.983+0.0191,
0.981+0.0203, and 0.980+0.0215, respectively. Imput-
ation accuracy decreased only slightly as the number of
crossover events increased. Taking BTA1 as an example,
imputation accuracy was highest in individuals with no
crossover events, and lowest in individuals with more
than two observed crossover events due to a higher risk
of phasing errors.

Window-wide imputation accuracy decreased with
increasing recombination rate [see Additional file 8:
Figure S6B]. The correlation coefficient between window-
wide imputation accuracy and recombination rate was
equal to -0.49 and the regression coefficient of imputation
accuracy on recombination rate was equal to -1.0. Average
imputation accuracies of 0.975 (ranging from 0.913 to
0.995), and 0.990 (ranging from 0.927 to 1.00) were found
in hot and cold windows, respectively. Figure 6 shows
that imputation accuracy was lower in recombination
hot windows than in cold windows.

Discussion

Impact of phasing methods

Accuracy of phasing haplotypes was quantified in rela-
tion to recombination events. DAGPHASE [17], which
uses linkage information from parent-offspring rela-
tionships was superior to using BEAGLE [19] with rela-
tionships for phasing haplotypes ignored. DAGPHASE

Page 10 of 14

extracts both population LD and linkage information
for phasing, rather than relying on LD alone [17]. To
infer haplotypes of offspring with both genotyped par-
ents, parental haplotypes and linkage information were
used. For offspring with one genotyped parent, linkage
and LD information were jointly used by DAGPHASE,
while only LD information extracted from the BEAGLE-
produced DAG file was used to determine haplotypes of
individuals with both parents non-genotyped. DAG-
PHASE uses a diploid Hidden Markov model (HMM)
and Viterbi algorithm with linkage and LD information
to improve phase reconstruction [17]. BEAGLE also
assumes a HMM but uses EM-style updating that lo-
cally clusters haplotypes [19]. BEAGLE with the options
applied in this study phased related individuals as if they
were unrelated. Ignoring additive genetic relationships
can lead to inconsistent haplotypes between related in-
dividuals. Thus, the accuracy of estimating haplotypes
can be improved by using linkage information from rel-
atives [15]. However, DAGPHASE does not reconstruct
haplotypes of parents, while LINKPHASE, another algo-
rithm from the Phasebook software package [17], could
use offspring information to modify phase reconstruc-
tion in parents. Further investigation is needed to ver-
ity whether the combination of both DAGPHASE and
LINKPHASE may lead to more robust results in large
families.
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Assumptions for the identification of recombination
events
Haldane’s (e.g., [3,10]) and Kosambi’s map functions (e.g.,
[2,46]) are often used to calculate recombination probabil-
ities and to estimate the genetic length of each chromo-
some. In contrast, in this study crossover events were
assumed to follow a binomial distribution following Karlin
[30]. Haldane [47] assumed a Poisson distribution and
that crossovers in adjacent intervals occur independently.
Kosambi’s function [48] makes strong assumptions about
interference between nearby crossovers. Kosambi’s func-
tion appears to produce more realistic map distances than
Haldane’s function [29]. Both these map functions postu-
late that theoretically an unlimited number of crossovers
can occur per chromosome. However, Karlin [30] assumed
that, at most, N crossovers could be independently distrib-
uted in an interval, with the number of events following a
binomial distribution. In Additional file 9: Figure S7, the
autosomes were sorted by their genetic length (M), and
chromosomal recombination rates produced using Karlin’s
formula (with N = 4) were intermediate to those produced
by the Kosambi and Haldane functions. Lian et al. [49]
reported that crossover interference increases with de-
creasing chromosome length. Since strong positive cross-
over interference exists, quantifying the level of crossover
interference on each chromosome could improve the esti-
mation of recombination rates. For example, Broman and
Weber [50] found that in human family data a gamma
distribution better characterized chromosome-specific
crossover interference than did four other distributions.
Many instances of double crossover events over a short
distance (i.e. within 1 Mb) and individuals with excessive
numbers of recombination events were observed. Geno-
typing, phasing, and map errors can cause overestimation
of recombination rates and lead to biases in determining
haplotypes from genotypic data. The data were carefully
filtered for the presence of apparent double crossover
events. Two crossover events separated by a small distance
(<2 Mb) were attributed to phasing errors and were ig-
nored from calculation of crossover probabilities and
GRN. Other phasing or genotyping errors, such as when a
sire had a recombination rate significantly higher than
0.025 in a certain window, or when all sons in a family
showed two or more crossover events at the same loca-
tion, were also ignored in subsequent analyses. More than
two crossover events located nearby suggests a marker
order error. Rather than removing the unlikely recombin-
ation event as we did here, a reordering of the markers
should be considered for further study [51]. The existence
of gene conversion across the chromosome is another
possible cause of apparent double crossover events. Dur-
ing meiosis, heteroduplexes are generated in the form of
either crossover or non-crossover events. Gene conversion
is the non-crossover form of a heteroduplex, which is the
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consequence of mismatched base pairs in a heteroduplex
region corrected by DNA repair mechanisms [52]. Hetero-
duplex regions can extend for several kb and can contain
some mismatched base pairs [52]. The resolution of the
SNP panel used in this study did not allow heteroduplex
regions to be confirmed. Some of the double crossovers
over a short distance (i.e. within 1 Mb), which we ignored
may represent gene conversion. There is evidence that
crossover hot spots are hot spots for gene conversion in
mice [53] and humans [54].

Impact of homozygous segments on the identification of
recombination events

Each recombination event was identified within a recom-
bination interval, which is the segment of homozygous
non-informative loci that could have belonged to the
haplotype of either parent. Recombination that occurs
within a long homozygous segment cannot be localized.
The average length of recombination intervals was 1.38
Mb (~23 SNPs) for Angus and for Limousin. The aver-
age number of SNPs in homozygous segments in sires
was equal to 3.82+12.34 (~0.23+0.74 Mb) in Angus and
3.4246.73 (~0.20+0.40 Mb) in Limousin. Long homozy-
gous segments were defined as those containing more
than 20 SNPs. On average, an autosome contained 3.4+1.3
such long segments in Angus and 1.5+0.7 in Limousin.
Therefore, the impact of long homozygous segments on
the identification of recombination events is not expected
to be a factor in this study.

Estimation of chromosome recombination distance per
Mb and heritability of GRN

The average chromosome-specific cM per Mb ratio in-
creased with chromosome size, as in previous studies
[2,46]. Kong et al. [2] reported an average genomic re-
combination distance per Mb of 1.19 cM/Mb in
humans. Our estimate of 1.23 cM/Mb was similar to the
1.25 cM/Mb value reported by Arias et al. [46] based on
the Btau4.0 assembly [55] with a total physical length of
2468.3 Mb for the 29 autosomes, rather than 2511.4 Mb
for the UMD3.1 assembly. Inconsistencies in chromosome
lengths and marker order led to different chromosome
genetic lengths.

The pedigree-based heritabilities in Angus (0.26) and
Limousin (0.23) were slightly higher than that (0.22) re-
ported by Sandor et al. [10] in a sample of 13 975 Dutch
Holstein-Friesian bulls within three-generation paternal
half-sib families. A repeatability model with GRN re-
cords for sires was considered in our study. Sandor et al.
[10] fitted genome-wide recombination rates corrected
for family size in an animal model. Differences in gener-
ation structures, sample sizes, and estimation models
could lead to disparities in heritability estimates. Kong
et al. [56] estimated a heritability of recombination rate
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of 0.30 in humans, which indicates that a large genetic
component underlies variation in recombination rate
and that the heritability of GRN differs between breeds
and species.

Genomic regions associated with GRN

GWAS have been widely applied in humans [57] and live-
stock [58]. Because inferences from Bayesian methods are
based on the joint posterior distribution, they are useful
for GWAS [59]. Regardless of the method used, detection
of large-effect QTL is easier than detection of small-effect
QTL. Unpublished simulations using beef cattle genotypes
shows that causal mutations may lie in regions upstream
or downstream of the window that has the strongest asso-
ciation. Although flanking regions near the most strongly
associated windows (+2 Mb) were investigated, further
analyses are needed to confirm our results. Significant
windows associated with genome-wide recombination
were located on different chromosomes in the Angus and
Limousin breeds. However, Saatchi et al. [60] identified
QTL of growth and production traits with consistent
effects across multiple breeds. Further investigation is
needed to verify whether the location and impact of re-
combination QTL differs between breeds. Two regions,
one on BTAG6 for the Angus breed and one on BTA4 for
the Limousin breed, were found to explain a significant
proportion of the genetic variance (>0.2%), but SNPs with
the highest PPI within these two windows were not signifi-
cant. However, the previous validated genes RNF2I2
[10-12] and SPO11 [4], were 4 Mb downstream from the
window detected on BTA6 in Angus and 4 Mb upstream
from the window detected on BTA4 in Limousin, respect-
ively. Differences in mapping results for genome-wide re-
combination number (or rate) in plants [8], humans [11],
dairy cattle [10], and beef cattle suggest that genome-wide
recombination could be regulated in a species-specific
manner, that the effects of QTL differ between species,
and that the genetic determinism of regulation of re-
combination is probably polygenic.

Influence of recombination on imputation accuracy and
haplotype phasing

Imputation accuracy was higher in the regions with
denser markers and higher LD levels (). With denser
markers, better imputation accuracy is expected [24,61]
and stronger LD between SNPs improves the recon-
struction of haplotypes [62]. Higher recombination rates
reduced the accuracy of haplotype phasing and genotype
imputation and conversely, imputation accuracy was
lowest in recombination hot windows.

The use of haplotypes is advantageous for genomic pre-
diction and GWAS [16,63] provide accurately phased hap-
lotypes. Marker location errors within a genome assembly
can be detected by recombination analysis. An improved
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genome assembly leading to a more accurate reflection of
true meiotic recombination could be produced by reorder-
ing the markers. Similarly, the accuracy of haplotype phas-
ing and imputation from low- to high-density SNP panels
could be improved by using recombination results. How
to implement recombination information in haplotype
phasing and imputation remains a challenging question.

Conclusions

This study investigated the relationships between recom-
bination, haplotype phasing, and imputation in two breeds
of cattle. The accuracy of phasing using DAGPHASE
was superior to BEAGLE, which did not use linkage in-
formation from parent-offspring. The major reasons for
the detection of unlikely recombination events are gene
conversion and phasing errors. Gene conversion is caused
by mismatch correction in heteroduplex regions. Phasing
errors can be influenced by limited sample size, small
half-sib families, low marker density, and marker loca-
tion errors in the genome assembly. The QTL mapping
results for genome-wide recombination number in Angus
differed from those in Limousin, which suggests that
recombination is under polygenic control. High levels
of recombination decrease the accuracy of phasing and
genotype imputation. These results suggest that recombin-
ation analysis can detect location errors within the
genome assembly, and could be used to improve the in-
ference of haplotype phase and the accuracy of genotype
imputation from low- to high-density panels.

Additional files

Additional file 1: Figure S1. Expected and observed crossover
probabilities in Angus and Limousin. (A) Representative example of
expected and observed crossover probabilities in Angus (green) and
Limousin (blue) for autosome 15. (B) Probability of zero (black), one (red),
two (green), three (blue), and more than three (grey) crossover events for
the 29 bovine autosomes in both Angus and Limousin. Plain line
represents expected probability, dashed line represents observed
probability in Angus, and dotted line represents observed probability in
Limousin.

Additional file 2: Figure S2. Correlation between number of
haplotypes and recombination rate within 1 Mb windows across the 29
autosomes in Angus.

Additional file 3: Figure S3. Recombination rate within TMb window
estimated in Angus and Limousin. (A) Representative example of the
variation in recombination rate within 1 Mb windows across bovine
autosome 15. The plain line (upper) corresponds to the recombination
rate estimated in Angus, while the dashed line (lower) corresponds to
the recombination rate estimated in Limousin. (B) Variation in
recombination rate within T Mb windows across the 29 bovine
autosomes. The plain line (upper) corresponds to the recombination rate
estimated in Angus, while the dashed line (lower) corresponds to
recombination rate estimated in Limousin.

Additional file 4: Figure S4. Frequency distribution of genome-wide
recombination number (GRN) in both Angus (left) and Limousin (right).
Additional file 5: Figure S5. Distribution of genome-wide recombination

number in Angus and Limousin families. (A) Representative example of
distribution of genome-wide recombination number (GRN) in Angus
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half-sib families. Only sires with no more than 20 offspring are
presented. Sires were sorted according to the number of their offspring.
(B) GRN in Angus half-sib families. Black dots correspond to GRN in sons
sorted by sires and red dots correspond to the average GRN for each
sire. (C) GRN in Limousin half-sib families. Black dots correspond to GRN
in sons sorted by sires and red dots correspond to the average GRN for
each sire.

Additional file 6: Table S1. Candidate windows and SNPs for genome-
wide recombination number in Angus and Limousin. T Mb windows that
explain a significant proportion of genetic variation (>0.2%), and results
for significant SNPs and positional candidate genes within these windows
detected for genome-wide recombination number in Angus and
Limousin.

Additional file 7: Table S2. Imputation accuracy, number of markers,
SNP density and average LD for bovine autosomes in Angus based on
UMD3.1 assembly locus coordinates.

Additional file 8: Figure S6. Relationship between imputation accuracy
and recombination rate across the 29 autosomes in Angus. (A) Average
imputation accuracy in individuals with zero (red), one (green), two
(blue), and more than two (purple) crossover events across the 29
autosomes. (B) Correlation between imputation accuracy and crossover
rate (cM/Mb) within 1T Mb windows.

Additional file 9: Figure S7. Chromosome-wide recombination
probabilities calculated using Karlin's (red), Haldane's (green) and
Kosambi's (blue) map functions.
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