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Abstract

imputation software programs Beagle and DAGPHASE.

genotypes (0.41%).

Background: Imputation of genotypes from low-density to higher density chips is a cost-effective method to
obtain high-density genotypes for many animals, based on genotypes of only a relatively small subset of animals
(reference population) on the high-density chip. Several factors influence the accuracy of imputation and our
objective was to investigate the effects of the size of the reference population used for imputation and of the
imputation method used and its parameters. Imputation of genotypes was carried out from 50 000 (moderate-
density) to 777 000 (high-density) SNPs (single nucleotide polymorphisms).

Methods: The effect of reference population size was studied in two datasets: one with 548 and one with 1289
Holstein animals, genotyped with the lllumina BovineHD chip (777 k SNPs). A third dataset included the 548
animals genotyped with the 777 k SNP chip and 2200 animals genotyped with the Illumina BovineSNP50 chip.

In each dataset, 60 animals were chosen as validation animals, for which all high-density genotypes were masked,
except for the Illumina BovineSNP50 markers. Imputation was studied in a subset of six chromosomes, using the

Results: Imputation with DAGPHASE and Beagle resulted in 1.91% and 0.87% allelic imputation error rates in the
dataset with 548 high-density genotypes, when scale and shift parameters were 2.0 and 0.1, and 1.0 and 0.0,
respectively. When Beagle was used alone, the imputation error rate was 0.67%. If the information obtained by
Beagle was subsequently used in DAGPHASE, imputation error rates were slightly higher (0.71%). When 2200
moderate-density genotypes were added and Beagle was used alone, imputation error rates were slightly lower
(0.64%). The least imputation errors were obtained with Beagle in the reference set with 1289 high-density

Conclusions: For imputation of genotypes from the 50 k to the 777 k SNP chip, Beagle gave the lowest allelic
imputation error rates. Imputation error rates decreased with increasing size of the reference population. For
applications for which computing time is limiting, DAGPHASE using information from Beagle can be considered as
an alternative, since it reduces computation time and increases imputation error rates only slightly.

Background

Since 2007, large numbers of dairy cattle have been geno-
typed with various 50 k chips, mainly the BovineSNP50
BeadChip [1]. Genotypes obtained from these chips can
be used to perform association studies to identify loci that
affect traits of interest, or to obtain more reliable breeding
values at a younger age, to enable genomic selection of
animals. These genomically enhanced breeding values
(GEBV) are used routinely in several breeding programs.
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Apart from the BovineSNP50 BeadChip, other 50 k chips
have been developed. Genotype imputation, which pre-
dicts marker genotypes at non-genotyped loci, has been
used to share information generated by different 50 k
chips, and facilitates the exchange of genotypes be-
tween organizations using different chips [2,3]. Imput-
ation uses either population-based or family-based linkage
disequilibrium (LD) between loci, or a combination of
these two types of information, to derive genotypes at
non-genotyped loci. Various imputation algorithms and
software have been developed. The most commonly used
software packages for bovine datasets are Beagle [4],
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Alphalmpute [5], Fimpute [6], Impute [7], findhap [8] and
the PHASEBOOK package, which consists of LinkPHASE
and DAGPHASE [9]. Imputation has been shown to be
accurate: imputation between two different 50 k chips
with approximately 10 k SNPs in common resulted in an
allelic imputation error rate of 1.0% when using DAG-
PHASE, and when approximately 1000 animals had geno-
types on both chips [2]. A 1.0% imputation error rate is
considered sufficiently low to allow exchange of genotypes
between different SNP chips [2].

Imputation can also be applied to predict genotypes on
higher density chips from lower density chips, e.g. the Illu-
mina Bovine3K chip [10], that contains 2.9 k SNPs, or the
[llumina BovineLD chip [11,12], with 6.9 k SNPs. Several
authors have investigated imputation error rates obtained
when genotypes were imputed from this or other low-
density panels to the Illumina BovineSNP50 chips. Weigel
et al. [13] used a Jersey reference population of 2542 ani-
mals genotyped with 43 k SNPs. They applied IMPUTE
2.0 [7] and found genotype imputation error rates of
10.8% and 5.8% when validation animals had genotypes
for only 5 or 10% of the SNPs, respectively. Thus, allelic
imputation error rates were approximately equal to 5.4
and 2.9%, respectively. Dassonneville et al. [14] found im-
putation error rates of 55% and 3.9% in a Nordic and
French dataset with approximately 3000 reference ani-
mals, when imputation was performed from the Illumina
Bovine3K chip to the [llumina Bovine50K chip. When the
size of the reference set was approximately 11 000 (dataset
1) or 12 000 animals (dataset 2), imputation error rates
were 4.0 and 2.1%, respectively. Mulder et al. [15] found
allelic imputation error rates of 3.8 and 2.8% when im-
puting from an in-silico chip of 3 k and 6 k SNPs, re-
spectively, to 50 k SNPs, using DAGPHASE [9] and a
reference set for imputation of approximately 5300 ani-
mals. Dassonneville et al. [16] studied imputation error
rates using the Beagle software [4] for imputing geno-
types from the Illumina Bovine 3 K and two in-silico
chips (with 3 k and 6 k SNPs) to the BovineSNP50 chip
in the Holstein, Montbéliarde, and Blonde d’Aquitaine
breeds. Within breeds, the lowest allelic imputation
error rate was 0.9% for imputation from the 6 k in-
silico chip with the Holstein breed and the highest
error rate was 4.8% for imputation from the Illumina
Bovine3K chip with the Blonde d’Aquitaine breed. Differ-
ences between breeds were to a large extent due to the size
of the reference population in each breed. The reference
population for imputation was largest in Holstein (3071
animals) and lowest in Blonde d’Aquitaine (754 animals).

In 2010, the Ilumina BovineHD BeadChip [17] with
approximately 777 k SNPs became available. A strategy
to take advantage of the BovineHD chip could be to re-
genotype all animals previously genotyped with low- or
moderate-density chips, but the resulting gain in reliability
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of GEBV may not outweigh the large additional cost.
Therefore, genotyping part of the population with the
BovineHD chip and subsequently imputing the animals
genotyped with 50 k chips to the HD chip is considered
an attractive alternative, provided that imputation can be
done with a low error rate.

Imputation error rate depends on several factors, some
of which were illustrated in the above examples: (1) ef-
fective population size; (2) number of markers on the
lower density and the higher density chips; (3) distribu-
tion of markers on those chips; (4) (minor) allele fre-
quency of the imputed alleles; (5) quality of the marker
map used for imputation; (6) relationship between the
animals in the reference set and the animals to impute;
(7) number of animals in the reference set for imput-
ation (i.e. genotyped on high density); and (8) the imput-
ation method and, if applicable, the parameter settings
used. Factors 6-8 are to some extent under our control
and can be varied to study their effect on imputation
error rates. The objective of this study was to investigate
the effect of reference population size used and the im-
putation method and its parameters on the error rate for
imputation from the BovineSNP50 to the BovineHD
chip.

Methods

Genotypes and animals

Datasets composed of animals genotyped with the
[llumina BovineHD chip (Illumina, San Diego, California,
USA) were created. In the remaining of this manuscript,
this chip will be referred to as the HD-chip. Dataset 1
(Table 1) consisted of the first batch of animals genotyped
with the HD-chip by the Eurogenomics consortium.
These were 548 high impact bulls from the Eurogenomics
reference population [3], for which the call rate (fraction
of SNPs for which the genotype was scored) was at least
0.90. Dataset 2 consisted of the animals in dataset 1, plus
410 males and 331 females. All 1289 animals had a call
rate of 0.90 or higher. In dataset 1, four different valid-
ation groups were formed, each consisting of 60 different
animals that did not have any descendants with HD-
genotypes. For the validation animals, the genotypes of all
markers except those on the Illumina BovineSNP50 [1]
were masked. In the remaining of this manuscript, this
chip will be referred to as the 50 k-chip. The HD-
genotypes of the remaining 488 animals in each subset
were used as reference to impute the masked genotypes of
the 60 validation animals. In dataset 2, the same four val-
idation groups were formed as in dataset 1, and the refer-
ence set consisted of the remaining 1229 animals.

In addition to these two datasets that contained only
animals with HD genotypes, a third dataset was consti-
tuted as an alternative to dataset 1. In dataset 3, 2200
bulls genotyped with the 50 k-chip were added, to study
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Table 1 Number and type of animals in each of the three analyzed datasets

Dataset HD reference Additional  Validation Imputation method applied
Males  Females 50k animals A B C D
genotypes  (males)
(males) Beagle 2.1.3/DAGPHASE  Beagle 2.1.3/DAGPHASE = Beagle = DAGPHASE
scale 2.0, shift 0.1 scale 1.0, shift 0.0 33.0

Dataset 1 488 0 0 60 Yes Yes Yes Yes

Dataset 2 898 331 0 60 No No Yes No

Dataset 3 488 0 2200 60 Yes No Yes No

the effect on imputation of adding information that
could assist in optimally phasing the HD genotypes.

Genotype data was edited as follows: (1) SNPs with a
minor allele frequency less than 0.025 were removed; (2)
Hardy-Weinberg equilibrium: SNPs for which the fraction
of heterozygotes deviated by more than 0.15 from the
expected fraction of heterozygotes based on allele fre-
quencies were removed; (3) call rate: SNPs with called ge-
notypes for less than 90% of the animals were removed.

In all datasets, only SNPs mapped to either BTAI, 6,
11, 14, 20, or 29 were selected. This subset was chosen
to reduce computational effort, and this number of
chromosomes was considered large enough to produce
imputation results that would be representative for the
whole genome, and also provide insight into variation
between chromosomes with regard to imputation re-
sults. Details on the chromosomes used in the analysis,
with regard to the number of unmasked loci, total num-
ber of loci, fraction of unmasked loci in validation ani-
mals, and length of the chromosome are in Table 2.

Imputation

The marker map used for imputation was the UMD 3.1
map (University of Maryland, College Park, MD). In
dataset 1, imputation was performed using the different
imputation software packages with parameter values
presented in Table 1. Method A was the method de-
scribed by Druet and Georges [9], and uses both linkage
and linkage disequilibrium information to optimize
phasing and imputation. Briefly this method consisted of
phasing haplotypes partially using LinkPhase [9], 10 it-
erative rounds of DAGPHASE [9] and Beagle 2.1.3 [4] to
optimize phasing in the reference animals, and 10
rounds of alternating DAGPHASE and Beagle on the
complete dataset, followed by one round of DAGPHASE
using the Viterbi algorithm [18] for haplotype recon-
struction and imputation. The scale and shift parameters
for Beagle were equal to 2.0 and 0.1, respectively. These
parameters determine if clusters of haplotypes share
enough similarity to merge into one cluster or not. The
number of remaining clusters increases with decreasing
values of the scale and shift parameters, and imputation
accuracy is higher with a higher number of remaining
clusters. Full details of this method can be found in [9].

Method B was the same as method A, except for the
scale and shift parameters, which were chosen to be
equal to 1.0 and 0.0. These are the default values used in
Beagle. In method C, phasing and imputation were per-
formed with Beagle (version 3.3.0), without using pedi-
gree (linkage) information. In Beagle 3.3.0, the default
values for scale and shift are equal to 1.0 and 0.0, and
cannot be changed. Method D used the directed acyclic
graph (DAG) generated by Beagle in method C as input
for one round of DAGPHASE. This method was consid-
ered as an attractive alternative to method C, because
the already available DAG can be used for new animals
genotyped on the moderate-density chip, without the
need to impute previously imputed animals again [16].

The effect of imputation software and its parameters on
imputation errors was obtained from analysis of dataset 1.
The results of method C in datasets 1 and 2 provide insight
on the effect of reference population size on imputation
error rates. The effect of adding animals genotyped at
medium density on imputation error rates is obtained by
comparing results from dataset 1 and dataset 3.

Evaluation
Datasets and imputation methods were evaluated for
their allelic imputation error rate:

Nijmputed=observed

err(%) = * 100, (1)

Nimputed.and.observed

where err(%) = allelic imputation error rate, as a per-
centage; Nimputed<observed = Number of alleles for which

Table 2 Details on chromosomes in the analyses

BTA n_50k n_HD fr_unm Length(cM) n50k/cM
1 2571 37791 0.0680 158.32 16.24
6 1989 29805 0.0667 11945 16.65
1" 1696 27398 0.0619 107.28 15.81
14 1376 17269 0.0797 84.63 16.26
20 1164 18381 0.0633 71.99 16.17
29 793 12690 0.0625 51.50 1540

For each chromosome: number of markers that were not masked in validation
animals (n_50k), total number of markers (n_HD), fraction unmasked (fr_unm),
length of chromosome in centiMorgan, and average number of unmasked
markers per cM (n50k/cM).
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the imputed allele was not equal to the non-missing ob-
served allele; Nimputed.and.observed = NumMber of alleles for
which the imputed allele was compared with the non-
missing observed allele.

More information on imputation error rates was ob-
tained by calculating the average allelic imputation error
rate for a number of traceability classes. Traceability is
defined as the additive relationship of a validation animal
with its closest HD-genotyped ancestors, summed across
all ancestry paths [15]. This can also be interpreted as
the expected proportion of the genome inherited from
HD-genotyped ancestors. Traceability has values be-
tween 0 and 1 when not accounting for inbreeding in
the population. Validation animals were assigned to clas-
ses with 0.025 difference between highest and lowest
traceability. Adjacent classes were joined into one class,
to reduce the number of classes and to have approxi-
mately the same number of animals in all classes. The
difference between highest and lowest traceability value
in each class was maximized at 0.25. For each class, the
average imputation error rate was computed.

Higher imputation error rates are expected for low fre-
quency alleles, because the reference population may
contain limited or no information on the haplotypes that
contain these alleles. To verify this, allelic imputation
error rates will be presented as a function of the allele
frequency, on a per allele basis. Because of the low fre-
quency alleles, the contribution to overall imputation
error rate per locus may be limited, and therefore the
imputation error rate will also be presented as a function
of the minor allele frequency. This is evaluated on a per
locus basis, with imputation errors of both the low fre-
quency and the high frequency allele being combined.

Results

Table 3 shows average imputation error rates across four
replicates in the analyzed datasets and models. In dataset
1, with 488 reference animals genotyped with the Bovi-
neHD chip, Beagle and DAGPHASE with scale and shift
parameters equal to 2.0 and 0.1 (method A) resulted in
an average imputation error rate of 1.91% for the six an-
alyzed chromosomes. When scale and shift parameters
were changed to 1.0 and 0.0 respectively (method B), the
imputation error rate decreased to 0.87%. With Beagle
alone (method C), the imputation error rate was 0.67%.
When the information from method C was used in one
final round of DAGPHASE (method D), a slightly higher
imputation error rate (0.71%) was found. Methods A
and C were also applied to dataset 3, which comprised
2200 additional animals with BovineSNP50 genotypes.
This resulted in 0.03-0.04% lower imputation error rates
than obtained without the additional 2200 BovineSNP50
genotypes. Method C was also applied to a dataset con-
sisting of 1229 animals genotyped with the BovineHD
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Table 3 Average allelic imputation error rate (%) for each
of six chromosomes and averaged across chromosomes

BTA Dataset/Method
Dataset 1 Dataset 2 Dataset 3
A B C D C A C

1 182 089 072 076 047 180 070
6 173 081 061 065 038 1.71 0.58
11 2.05 0.89 0.66 0.71 040 1.98 0.61
14 182 076 056 061 036 176 054
20 194 08 068 071 035 188 064
29 241 1.05 0.82 0.84 0.52 2.38 0.78
Average 1.91 0.87 0.67 0.71 041 1.87 0.64

Results are presented for four methods and three datasets: method A is a
combination of Beagle 2.1.3 and DAGPHASE with scale and shift parameters
equal to 2.0 and 0.1; method B is the same as method A, but with scale and
shift parameters equal to 1.0 and 0.0; method C is Beagle version 3.3.0;
method D is DAGPHASE using DAG from method C.

chip (dataset 2). The average imputation error rate in
dataset 2 was 0.41%, which was lower than what was ob-
tained with method C in dataset 1 (0.67%) and in dataset
3 (0.64%).

There were large differences in allelic imputation error
rates between chromosomes (Table 3). The lowest im-
putation error rate was observed for BTA14 in most
dataset-method combinations, except for method A,
where BTA6 had the lowest imputation error rate. In all
analyses, the imputation error rate was highest for
BTA29.

Figure 1 shows the number of validation animals per
class of imputation error rate, for method C and datasets
1 and 2. The distribution was skewed, with the largest
number of animals in the lower imputation error rate
classes.

Figure 2 shows the allelic imputation error rate for
each of 20 classes of allele frequency, for four combina-
tions of method and dataset: method A, B, and C ap-
plied to dataset 1, and method C applied to dataset 2.
For all four alternatives, the highest imputation error
rate was found for alleles with the lowest frequency, ran-
ging from 3.1% for method C applied to dataset 2, to
17.8% for method A applied to dataset 1. For allele fre-
quencies higher than 0.50, the imputation error rate was
less than 1%, except for method A applied to dataset 1,
for which the imputation error rate was less than 1%
only for classes of allele frequency larger than 0.80.
When results are evaluated on a per-locus base, then the
low frequency alleles contribute relatively little to the
overall imputation error rate. The low frequency allele is
always associated with a high frequency allele which has
a low imputation error rate, as shown in Figure 3, in
which results are presented as the imputation error rate
per minor allele frequency class, for the analysis of
method C (Beagle version 3.3.0) on dataset 2 (1289 HD-
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genotyped animals). The highest imputation error rate
was observed for the class of SNPs with a minor allele
frequency between 0.35 and 0.40, and the lowest imput-
ation error rate for SNPs with a minor allele frequency
between 0.00 and 0.05.

Figure 4 shows imputation error rates for each of a
number of traceability classes. Imputation error rates

-

were lower with higher traceability, i.e. when more HD-
genotyped ancestors are present in the dataset. Results
are presented for four combinations of method and
dataset: method A, B, and C applied to dataset 1, and
method C applied to dataset 2. For classes of animals
with traceability above 0.50, there was a clear decrease
in the imputation error rate with increasing traceability.
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Figure 2 Average allelic imputation error rate (%) for each of 20 classes of allele frequency. Results are presented for four combinations of
method (A, B or C) and dataset (1 or 2); method A: combination of Beagle 2.1.3 and DAGPHASE with scale and shift parameters equal to 2.0 and
0.1; method B: same as method A, but with scale and shift parameters equal to 1.0 and 0.0; method C: Beagle version 3.3.0; dataset 1: 548 HD-
genotyped animals; dataset 2: 1289 HD-genotyped animals.




Schrooten et al. Genetics Selection Evolution 2014, 46:10
http://www.gsejournal.org/content/46/1/10

Page 6 of 9

1.20
1.00
2 0.80
8
5
]
£
0.60
8
:
-3
E 0.40
0.20
0.00 - .
0.00-0.05 0.05-0.10 0.10-0.15 0.15-0.20 0.20-0.25 0.25-0.30 0.20-0.35 0.35-0.40 0.40-0.45 0.45-0.50
Minor allele frequency class
Figure 3 Average locus imputation error rate (%) for each of 10 classes of SNPs according to their minor allele frequency. Results are
presented for the combination of method C (Beagle version 3.3.0) and dataset 2 (1289 HD-genotyped animals).

Table 4 shows the average, minimum and maximum
time needed per imputation method in dataset 1, calcu-
lated across all analyzed chromosomes and replicates.
For this dataset, computation time was lowest for
method D, DAGPHASE using the DAG obtained from
Beagle. Computation time was highest for method B,

DAGPHASE/Beagle with scale and shift parameters
equal to 1.0 and 0.0, respectively.

Discussion
Imputation is a useful tool to obtain high-density geno-
types for animals of interest while genotyping only part
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Figure 4 Average allelic imputation error rate (%) for each of seven traceability classes. Results are presented for four combinations of
method (A, B or C) and dataset (1 or 2). Method A: combination of Beagle 2.1.3 and DAGPHASE with scale and shift parameters equal to 2.0 and
0.1; method B: same as method A, but with scale and shift parameters equal to 1.0 and 0.0; method C: Beagle version 3.3.0; dataset 1: 548 HD-
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Table 4 Average, minimum and maximum computation
time (h) per chromosome for each of four methods
applied to dataset 1

Method
A B C D
Average 1.7 6.9 0.7 03
Minimum 08 30 04 0.2
Maximum 29 11.9 1.1 05

Method A is a combination of Beagle 2.1.3 and DAGPHASE with scale and shift
parameters equal to 2.0 and 0.1; method B is the same as method A, but with
scale and shift parameters equal to 1.0 and 0.0; method C is Beagle version
3.3.0; method D is DAGPHASE using DAG from method C.

of the animals with the high-density chip. The remaining
subset of the animals can be genotyped on lower density
chips. However, there are errors associated with imput-
ation, and some of the factors that influence imputation
error rates were studied. Imputation from a moderate-
density chip (50 k) to a high-density chip (777 k) was an-
alyzed in three different datasets, to study the influence
of both size and composition of the reference population
for imputation on imputation error rates.

Size of the reference population

In datasets 1 and 2, with 488 and 1229 reference animals
respectively, all reference animals were genotyped with
the HD-chip. Beagle 3.3.0 was used to compare results
from these two datasets. The average imputation error
rate decreased from 0.67% for dataset 1 (the smallest
dataset) to 0.41% for dataset 2. This result shows that,
although the imputation error rate was already small in
dataset 1, the imputation error rate could be further de-
creased by adding more animals genotyped on the HD-
chip to the reference set. Although intermediate sizes of
the reference population were not tested, it is expected
that the effect of further increasing the size of the refer-
ence population is limited. This expectation is based on
analysis of subsets of dataset 1; when size of the refer-
ence population was increased from 200 to 300, 400,
and 500, the imputation error rate decreased by 0.17,
0.13 and 0.04%, respectively.

Imputation method parameterization

Datasets 1 and 3 were analyzed with various imputation
software packages. In this study, Beagle performed better
than the combination of Beagle and DAGPHASE (Table 3).
Using DAGPHASE has an advantage when linkage infor-
mation is important, e.g. when both parents are genotyped
or when the dataset contains large families. There is no
advantage to using DAGPHASE when the density of the
lower density chip is already relatively high, as in our
study, because linkage disequilibrium information is more
accurate at higher densities and can be extracted by Beagle
with greater accuracy than by DAGPHASE. This study
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also showed that the parameters used for the DAG-
PHASE/Beagle combination strongly influenced imput-
ation error rates. When scale and shift parameters were
equal to 1.0 and 0.0, respectively, instead of 2.0 and 0.1,
imputation error rates decreased from 1.91 to 0.87%
(Table 3, method A and B), at the expense of longer
computation times (Table 4). It is expected that lower
values for the scale and shift parameters will result in
lower imputation error rates in most datasets, but the
balance between decreasing imputation errors and lon-
ger computation times may lead to different optimal
parameters in different datasets.

Chromosome characteristics

Sun et al. [19] observed that imputation accuracy was
positively associated with chromosome size, although
this was based on an analysis of three chromosomes
covering the range of chromosome sizes. In our study,
chromosomes ranked differently for imputation error
rates across the different datasets and methods studied
(Table 3). In most dataset-method combinations, BTA14
and BTAG6 had the lowest imputation error rates, although
BTA1 was the largest chromosome. In all dataset-method
combinations, BTA29 had the highest imputation error
rate. BTA14 had the highest number of BovineSNP50
markers per cM, and BTA29 had the lowest number of
BovineSNP50 markers per ¢cM (n50k/cM, Table 2). Based
on the characteristics mentioned in Table 2, the number
of BovineSNP50 markers per ¢cM influenced imputation
error rate more than chromosome size.

Allele frequency

Although imputation errors were low on average, they
can be quite high for individual alleles. This is illustrated
in Figure 2: on average, low frequency alleles had rela-
tively high imputation error rates. Because the low fre-
quency alleles are not represented in any reference
haplotype, the imputation program cannot derive the
correct allele. The impact of errors for these alleles on
the total imputation error rate is relatively low, because
of their low frequency (Figure 3). However, if these low
frequency alleles are associated with deleterious alleles,
then errors in imputation may have an impact on results
of association studies for genetic defects, for example.

Marker map

Not only allele frequency, but also errors in the marker
map can cause high imputation error rates for particular
loci. Erbe et al. [20] studied imputation to the HD-chip
and found more than 20% incorrectly imputed genotypes
for each SNP in a subset of 1231 SNPs. When these
SNPs were remapped, imputation error rates were sub-
stantially lower for 601 of the 1231 SNPs. This factor
may play a role in our study, because the map we used
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was the same as that used by Erbe et al. [20]. This means
that imputation error rates could be even lower if a
more accurate map became available.

Relationship between the imputed animal and the
reference population

Figure 4 shows that the imputation error rate depends
on the relationship between the imputed animal and the
reference set used for imputation, as measured by trace-
ability. When constructing a reference population for
imputation to higher density chips or platforms (e.g.
whole-genome sequence), the policy to include the clos-
est ancestors will contribute to a decrease in imputation
errors.

Other studies

A few studies have investigated imputation from 50 k to
HD chips. Larmer et al. (2012, unpublished data) studied
imputation in the Holstein, Guernsey and Ayrshire
breeds. The percentage of incorrect genotypes in the
Holstein breed using 892 reference animals for imput-
ation was 0.70%, which corresponds to an allelic imput-
ation error rate of approximately 0.35%, which is slightly
lower than in our study. Adding the two other breeds to
the reference set did not decrease the error rate. Erbe
et al. [20] reported a genotype imputation error rate of
2.3% when using approximately 450 heifers as reference
to impute 450 other heifers from the 50 k to the HD
chip. When 93 key ancestor bulls were added to the ref-
erence population, the genotype imputation error rate
decreased to 2.0%. In the Jersey breed, with only 93 key
ancestors in the reference set, the genotype imputation
error rate was equal to 4.2%. Allelic imputation error
rates can be considered as equal to half of these values.
Brondum et al. [21] showed that increasing the size of
the reference population used for imputation by adding
animals from other breeds is useful only if the breeds
are related. Their study investigated imputation from
50 k to HD in Nordic Red breeds using different combi-
nations of Nordic Red and Holstein animals in the refer-
ence population. With a reference set of 556 animals,
consisting of animals of three breeds, the allelic imput-
ation error rate was equal to 0.96% for 150 animals.

Implications

This study investigated imputation errors from the 50 k
to the HD chip. However, many animals are and will be
genotyped with lower density panels, especially the Illu-
mina BovineLD panel (6.9 k). As shown by Larmer et al.
(2012, unpublished data), imputation error rates when
using FImpute [6] were lower when imputation was first
from the BovineLD to the 50 k chip and subsequently
from the 50 k to the HD chip, rather than imputing dir-
ectly from the BovineLD to the BovineHD chip. This
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may influence the implementation of imputation from
various lower density chips to HD chips in routine
operations.

Mulder et al. [15] analyzed the impact of imputation
errors on the reliability of GEBV. The average imput-
ation error rate was 3.8% for imputation from a 3 k in
silico chip to a 50 k chip. Reliability of GEBV based on
imputed genotypes was 2.1% lower than the reliability of
GEBYV based on real genotypes, averaged across 10 traits.
For imputation from a 6 k in silico chip to a 50 k chip,
the average imputation error rate was 2.6%. Reliability of
GEBYV based on imputed genotypes was 1.2% lower than
the reliability of GEBV based on real genotypes. In
French and Nordic data, the reliability of GEBV with im-
puted genotypes was 2 to 6% lower than the reliability of
GEBV with real genotypes, for imputation from the 3 k
to the 50 k chip [14]. In our study, we investigated the
error rate for imputation from 50 k to HD chips. The
impact of imputation error rate on the reliability of
GEBV is expected to be relatively small, because the im-
putation error rate was small (0.41%).

When imputation from lower density chips to HD
chips is part of a weekly or monthly procedure for rou-
tinely processing genotypes, computing time may be an
important factor in the choice of the imputation
method. In this study, using Beagle only (method C)
gave the lowest imputation error rates, and was relatively
fast. However, computing time using Beagle increased
relatively quickly when the number of animals geno-
typed with a moderate-density chip increased, compared
to using a combination of DAGPHASE and Beagle
(methods A and B), or with DAGPHASE using the DAG
obtained from Beagle (method D) (results not shown).
Because imputation error rates with method D were only
slightly higher than imputation error rates with method
C, method D is an attractive alternative for routine pro-
cedures, once the DAG from method C is obtained.

Conclusions

The allelic imputation error rate for imputation from
the Illumina BovineSNP50 to the Illumina BovineHD
chip was equal to 0.67% when a reference set of 488 ani-
mals was used. This imputation error rate was reduced
to 0.41% when the reference set was increased to 1229
animals. In both situations, Beagle 3.3.0 was used. Re-
sults were slightly improved by adding animals geno-
typed with the 50 k chip to the dataset. Application of
DAGPHASE using information from Beagle gave slightly
poorer results but is an interesting alternative in applica-
tions where computing time is a limiting factor.
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