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Abstract

Background: Several molecular and population genetic studies have focused on the native sheep breeds of
Finland. In this work, we investigated their ancestral sheep populations from Iron Age, Medieval and Post-Medieval
periods by sequencing a partial mitochondrial DNA D-loop and the 5-promoter region of the SRY gene. We
compared the maternal (mitochondrial DNA haplotypes) and paternal (SNP oY1) genetic diversity of ancient sheep
in Finland with modern domestic sheep populations in Europe and Asia to study temporal changes in genetic
variation and affinities between ancient and modern populations.

Results: A 523-bp mitochondrial DNA sequence was successfully amplified for 26 of 36 sheep ancient samples i.e.
five, seven and 14 samples representative of Iron Age, Medieval and Post-Medieval sheep, respectively. Genetic
diversity was analyzed within the cohorts. This ancient dataset was compared with present-day data consisting of
94 animals from 10 contemporary European breeds and with GenBank DNA sequence data to carry out a
haplotype sharing analysis. Among the 18 ancient mitochondrial DNA haplotypes identified, 14 were present in the
modern breeds. Ancient haplotypes were assigned to the highly divergent ovine haplogroups A and B, haplogroup
B being the major lineage within the cohorts. Only two haplotypes were detected in the Iron Age samples, while
the genetic diversity of the Medieval and Post-Medieval cohorts was higher. For three of the ancient DNA samples,
Y-chromosome SRY gene sequences were amplified indicating that they originated from rams. The SRY gene of
these three ancient ram samples contained SNP G-oY1, which is frequent in modern north-European sheep breeds.

Conclusions: Our study did not reveal any sign of major population replacement of native sheep in Finland since
the Iron Age. Variations in the availability of archaeological remains may explain differences in genetic diversity
estimates and patterns within the cohorts rather than demographic events that occurred in the past. Our ancient
DNA results fit well with the genetic context of domestic sheep as determined by analyses of modern
north-European sheep breeds.
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Background

Archaeological and molecular genetic evidence suggests
that sheep’s (Ovis aries) wild ancestor was the Asiatic
mouflon (O. orientalis) and that it was domesticated
about 11 000 years ago in the Fertile Crescent region [1].
The genetic history of the domestication of sheep has
been investigated by analysing maternally inherited
mitochondrial DNA (mtDNA) in modern sheep breeds.
To date, five phylogenetically divergent mtDNA hap-
logroups descending probably from several O. orientalis
populations have been identified in domestic sheep [2]
i.e. haplogroups A and B that are present in sheep in
many parts of the world and haplogroups C, D and E
that have a much more restricted geographic range [2,3].
Sheep spread across Europe in separate migration epi-
sodes over time from their domestication site in the
Near East [4]. Chessa et al. [4] have provided evidence
that contemporary sheep breeds and populations of
north-western and northern Europe, e.g. the Finnish na-
tive sheep breeds, Finnsheep, Kainuu Grey and Aland
still share genetic ancestry with the most primitive type
of sheep in Europe descending from the first immigrant
wave [4].

The earliest archeological record for burned sheep
bone in Finland dated by radiocarbon is from the late
Stone Age (3 679 + 33 BP, cal 2150-1950 BC; [5]). How-
ever, such archaeological evidence of animal husbandry
in Finland is scarce and domesticated animals may have
arrived in Finland with the expansion of the Corded
Ware culture from the south via the Baltics, but also
from the west (Scandinavia) and east (Russia). Available
archaeological data indicate that, in Finland, sheep hus-
bandry developed first in fairly limited areas of the
southern and south-western regions. The size of the
sheep population was then probably quite small and the
arrival of any new animals e.g. with immigrants would
have had a significant effect on the population’s gene
pool. During the Iron Age, agriculture developed in east-
ern and central Finland until reaching the northern limit
of permanent cultivation (ca. 62°N latitude) [6].

Population size, demography and morphological charac-
ters of medieval sheep in Finland can be inferred from his-
torical tax registers. For example, in 1620, there were at
least 188 300 sheep in Finland [7]. Foreign “Spanish”
sheep (i.e. ancestors of modern Merino sheep) with finer
wool were imported into Finland at least from the 16th
century onwards to serve the local wool industry [8].
Exotic breeding material was introduced mainly through
imported rams, which means that the admixture may not
have shaped the original mtDNA diversity in the Finnish
native sheep. However, nuclear marker analysis of modern
sheep breeds has shown that imported animals probably
had a limited effect on the gene pool of the Finnish sheep
population [9]. The Finnish Sheep Breeding Organization
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was established in 1918 and breeding of the main native
breed, Finnsheep, depended essentially on animals from
the eastern part of Finland [10].

In recent years, several molecular and population gen-
etic studies have focused on the modern Finnish native
sheep breeds with analyses of within-population diversity
and population structure using mtDNA, Y-chromosome
markers, autosomal microsatellites and whole-genome
SNP [3,9,11-15]. It has been shown that the three native
Finnish sheep breeds, Finnsheep, Kainuu Grey and
Aland and several other North-European native sheep
breeds belong to the Nordic group of short tailed sheep
[13,14]. Two different mtDNA haplogroups, A and B,
segregate in the Finnish native sheep and as in other
European sheep breeds; haplogroup B is much more fre-
quent than haplogroup A [3]. In addition, Meadows et al.
[12] reported that the three different Y-chromosome
haplotypes assigned to two different haplogroups were
present in Finnsheep, Kainuu Grey and Aland breeds.

In this study, we present a new approach to the mo-
lecular and population genetics of the Finnish native
sheep breeds based on the analysis of ancient DNA
(aDNA) from ancestral populations from the Late Iron
Age (800-1200 AD), Medieval (1200-1550 AD) and
Post-Medieval periods (1550-1800 AD). Comparing the
genetic diversity of ancient populations with contem-
porary breeds can reveal temporal genetic changes and
gene pool developments, as exemplified in a cattle Y-
chromosome study [16] and in a mtDNA analysis for in-
ferring the domestication history of European pigs [17].
However, ancient DNA studies can also reveal relatively
minor changes in population diversity patterns. For
example, frequencies of the mtDNA haplogroups A and
B detected in ancient Chinese sheep populations from
the Bronze Age are similar to those in contemporary
Chinese sheep breeds [18,19].

We investigated the genetic diversity of ancient sheep
remains in Finland by sequencing a 523-bp mtDNA D-
loop sequence and a 130-bp segment in the 5’-promoter
region of the ovine sex determining region Y (SRY) gene
to detect a biallelic Y-chromosome SNP marker 0Y1. We
compared mtDNA and Y-chromosome marker data
from ancient and modern domestic sheep populations in
Finland and other parts of Europe and Asia and studied
temporal changes in maternal and paternal genetic di-
versity and mtDNA diversity patterns. For the mtDNA
study, two modern datasets were used: (1) 10 modern
European sheep breeds were sequenced and (2) add-
itional mtDNA sequences were collected from GenBank
that spanned the same mtDNA D-loop nucleotide sites
as those present in the ancient mtDNA sequences. To
our knowledge, this is the first time that mtDNA and Y-
chromosome genetic diversities of ancient sheep popula-
tions are investigated in the same study.
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Materials and methods

Ancient sheep bone material

For the aDNA analysis, 36 sheep bones were selected from
14 different locations and 18 different archaeological exca-
vations across Finland and one site in northern Norway
(Table 1, Additional file 1: Figure S1). As a rule, unburned
bone from time periods prior to the Late Iron Age is not
preserved in the Finnish acid soil; thus earlier bone mater-
ial consists of small burned fragments that are not useful
for aDNA analyses [20]. The earliest unburned bones
available for this study derive from the Late Iron Age
(800-1200 AD).

When possible, metacarpal or metatarsal bones were
selected for two reasons: (1) these bones are easy to
distinguish between sheep and goats and (2) they are
often found in a complete or semi-complete state in
the excavations because since they are nutritionally
poor they were not usually butchered for cooking.
However, other bone elements were also sampled, e.g.
when metapodials were not present in the sample, or
were badly preserved or fragmented, or if they did not
form the highest Minimum Number of Individuals
(MNI) within the excavation or phase. In some cases,
only bones that are directly identifiable as from sheep
or goat (e.g. teeth) were selected because it is possible
to identify a species from analyses of the mtDNA D-
loop region. Care was taken not to sample the same
individual twice i.e. within one site and phase, elements
located on the same side were selected for a given
sample, otherwise age and size of the animal were used
to separate different individuals. All samples that based
on the archaeological context were assumed to origin-
ate from the Iron Age or Medieval period were radio-
carbon-dated. In addition, Post-Medieval samples for
which dating was uncertain from the archaeological
context, were also radiocarbon-dated. Nineteen sheep
bones or teeth were radiocarbon-dated in the Labora-
tory of Chronology of the Finnish Museum of Natural
History, University of Helsinki (Table 1).

Iron age

Eleven samples excavated at four different sites from the
Iron Age were included in this study (Table 1, Additional
file 1: Figure S1). The aDNA samples (sample ID:
OaM1-5) belong to the Viking Age phase of the Mulli
site (1090—930 BP, Table 1). The animal bone assemblage
from this site is mainly composed of domestic animals,
but also contains a variety of wild mammals. Eastern
Finland Viking Age sites were sampled (OaSysl and
OaMik1) and samples from two Iron Age cemetery sites
in south-west and southern Finland (OaLuil-2 and
OaKirl) were collected. The sample from Brodtkorbne-
set, Pasvik (Norway) (OaPasl) derives from a rectangular
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hearth of Sami origin and also dates to the late Iron Age
(984 + 31 BP, Table 1).

Medieval period

Eleven samples from western and eastern Finland from
the Medieval period were analysed (Table 1, Additional
file 1: Figure S1) among which eight originated from
the town of Turku (OaAA3-6, OaVetl-4), the largest
Medieval town in Finland that is situated on the south-
west coast by the river Aura, one from Bridgettine
Abbey of Naantali (OaNaal) situated in south-west
Finland ca. 18 km from Turku, one from Kokar monas-
tery, a medieval Franciscan monastery situated in the
Aland archipelago (OaKokl), and one from eastern
Finnish Karelia i.e. a deserted Greek Orthodox village
in Papinniemi in Uukuniemi (OaUuk2).

Post-Medieval period

Fourteen samples from the Post-Medieval period were
analysed (Table 1, Additional file 1: Figure S1) among
which six were collected from the shores of the Gulf of
Bothnia, from Pietarsaari (OaPiel), Tornio (OaTorl-2)
and Oulu (OaOull-3), seven from south-west and south-
ern Finland i.e. two from Kokar monastery (OaKok2-4),
two from Turku (OaAAl1-2) and two from Helsinki
(OaHel1-2), both in urban contexts and one from an in-
land region at Pihtipudas (OaPih1).

Modern sheep

The occurrence of ancient sheep mtDNA sequences in
modern sheep breeds was investigated with two data-
sets: (1) our own dataset of 94 unrelated animals from
10 sheep breeds or local varieties [see Additional file 1:
Figure S1] and (2) a dataset composed of GenBank se-
quence data of 50 European and Asian sheep breeds
previously published. Our own dataset was also used for
the comparison between ancient and modern DNA.
Previously described in [3,14], breeds included in our
own dataset are the following: the Finnish native sheep
breeds Finnsheep, Kainuu Grey and Aland, the Viena
sheep from Russian Karelia, Bozakh sheep from the
Caucasus, Romanov and Oparino sheep from central
Russia, Olkuska sheep from Poland, the morphological
type of Vlashko Vitoroga—Pramenka sheep from Serbia
and Oxford Down sheep from the UK. All sheep breeds
were locally developed breeds except for Oxford Down,
which is a synthetic commercial English breed [40].
Kainuu Grey, Aland, Oparino, Olkuska and Vlashko
Vitoroga-Pramenka sheep have undergone a reduction
in population size during the last 10 years and are rare
or endangered breeds. Results from a Y-chromosome
SNP oY1 analysis in ancient sheep were compared with
those of a global sheep Y-chromosome study including
Finnsheep, Kainuu Grey and Aland sheep [12].
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Table 1 Summary of ancient samples studied in this article
Sample Dating aDNA
Sample ID Location Site Bone type *BP (+ 10) **Period mtDNA SRY gene
OaMik1 Mikkeli Moisio Latokartano [21] Mandible 865+ 33 Iron Age No
OaM1 Raisio Mulli [22] Metacarpal 965 + 30 Iron Age Yes unreadable
OaM2 Raisio Mulli [22] Metacarpal 1040 + 31 Iron Age Yes No
OaM3 Raisio Mulli [22] Metacarpal 955+30 Iron Age Yes unreadable
OaM4 Raisio Mulli [22] Metacarpal 995 + 30 Iron Age Yes unreadable
OaM5 Raisio Mulli [22] Metacarpal 1081 + 32 Iron Age Yes unreadable
OaSys1 Sysma lhananiemi [23] Tooth (Molar) 1093 £ 31 Iron Age No
QaKirl Turku Kirkkoméki [24] Tooth fragments NA Iron Age No
Oaluil Eura Luistari [25,26] Tooth fragments NA Iron Age No
Oalui2 Eura Luistari [25,26] Tooth fragments NA Iron Age No
QaPas1 Pasvik (Norway) Brodtkorbneset [27] Metatarsal 984 + 31 Iron Age Partial No
OaNaal Naantali Luostari [28] Metacarpal 452 +30 Medieval Yes Yes
0Oaluk2 Uukuniemi Papinniemi [29] Metatarsal 410+30 Medieval Yes No
0aAA3 Turku Abo Akademi [30] Metacarpal 506 + 32 Medieval Yes No
OahA4 Turku Abo Akademi [30] Metacarpal 581 +31 Medieval Yes No
0aAA5 Turku Abo Akademi [30] Metacarpal 722432 Medieval Yes No
0ahA6 Turku Abo Akademi [30] Metacarpal 737 +£32 Medieval Yes No
OaVetl Turku Aboa Vetus [28,31] Horncore 487 +30 Medieval No
QaVet2 Turku Aboa Vetus [28,31] Maxilla DBC Medieval No
QaVet3 Turku Aboa Vetus [28,31] Axis 550 + 30 Medieval No
OaVet4 Turku Aboa Vetus [28,31] Lower jaw DBC Medieval No
OaKok1 Kokar Kloster [32] Metacarpal 489+ 30 Medieval Yes No
QOaHell Helsinki Snellmaninkatu [33] Metatarsal DBC Post-Med Yes No
OaHel2 Helsinki Snellmaninkatu [33] Metatarsal DBC Post-Med Yes No
0alul Oulu Kajaaninkatu [34] Radius DBC Post-Med Yes No
0alOul2 Oulu Lyseo [35] Radius DBC Post-Med Yes No
0alul3 Oulu Pikisaari [36] Radius DBC Post-Med Yes No
OaPiel Pietarsaari Lassfolk [37] Metacarpal DBC Post-Med Yes No
OaTorl Tornio Keskikatu [38] Metacarpal DBC Post-Med Yes Yes
QaTor2 Tornio Keskikatu [38] Metacarpal DBC Post-Med Yes No
0aAA1 Turku Abo Akademi [30] Metacarpal DBC Post-Med Yes unreadable
0ahA2 Turku Abo Akademi [30] Metacarpal DBC Post-Med Yes No
QaPih1 Pihtipudas Hameensaari [39] Tibia 342 +30 Post-Med Yes No
OaKok2 Kokar Kloster [32] Metacarpal 305+30 Post-Med Yes Yes
Oakok3 Kokar Kloster [32] Metacarpal DBC Post-Med Yes No
OaKok4 Kokar Kloster [32] Metacarpal DBC Post-Med Yes No

Identity of samples include: sample ID, location i.e. town where samples were excavated, archaeological site, and type of bone (museums ID available upon
request); dating of samples include radiocarbon-dates (*BP (+ 10)) or dates estimated by the context (DBC) and corresponding historical **periods (Post-Med =
Post-Medieval); results of mtDNA D-loop and Y-chromosomal SRY gene sequence analysis are indicated for each sample; only the samples yielding mtDNA were
analysed for the SRY gene.

DNA extraction and laboratory methods

Laboratory environment and DNA extraction of ancient

sheep samples

Bone samples were prepared by removing the outer layer
of the bones and collecting 50 to 200 mg of bone

powder with a drill. DNA extraction was carried out in
an air-controlled sterile laboratory and in a laminar flow
hood (EU-14 HEPA filtered air under positive air pres-

sure isolation). Separate laboratories were used for sam-
ple preparation, DNA extraction and PCR amplification.
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The laboratories and equipment were UV-treated and
bleach was used to clean the laminar and laboratory regu-
larly. Protective whole body suits, double gloves and masks
were used inside the aDNA laboratory. Two aDNA labora-
tories participated in aDNA analyses (MTT Agrifood Re-
search Finland and Stockholm University, Sweden).

DNA extraction was carried out as described in [41].
The bone powder was digested in 900 puL 0.5 M EDTA,
100 uL 10 M urea and 5 pL proteinase K (20 mg/ml)
with constant stirring at 55°C overnight. After centrifu-
gation (2000 rpm for 5 min), the supernatant was con-
centrated and DNA was extracted with a QIAquick PCR
Purification Kit (Qiagen, Sweden) according to the man-
ufacturer’s instructions.

DNA markers, primer design and PCR

A 523-bp sequence of mtDNA encompassing part of
the mtDNA D-loop from ancient sheep ([GenBank:
NC001941] positions 15,978-16,501) was analysed. A
130-bp sequence in the 5-promoter region of the SRY
gene on ovine Y-chromosome ([GenBank:AY604734]
positions 58-179) was analysed to detect the Y-
chromosome SNP marker (oY1) [GenBank:AY604734.2:
g.67, A>G].

Primers [see Additional file 2: Table S1] for five over-
lapping fragments of mtDNA D-loop sequence and
one Y-chromosome SRY gene fragment were designed
with Primer3 [42] using mtDNA and SRY gene refer-
ence sequences [GenBank:NC001941] and [GenBank:
AF026566.1], respectively.

PCR for ancient DNA was performed in 25 pL mixture
that contained 1x PCR buffer (Qiagen, Sweden), 0.2 uM
of each primer, 0.4 mM dNTP, 2.5 mM MgCl, (Qiagen,
Sweden), 0.25 units (U) of Uracil DNA Glycosylase
(UNG, Sigma-Aldrich), 1.5 U of HotStarTag DNA Poly-
merase (Qiagen, Sweden) and 5-10 pL of DNA extract.
The PCR program consisted in initial steps at 37°C for
10 min and 95°C for 15 min followed by 55 three-step
cycles at 94°C for 30 s, AT°C for 40s and 72°C for 1 min
and a final step at 72°C for 10 min. AT stands for the
annealing temperature specific to each primer set [see
Additional file 2: Table S1].

Authenticity of ancient sheep DNA

Common measures to prevent contamination were used
[43,44], such as separated areas for sample preparation,
ancient DNA analyses and pre-PCR, wearing protective
clothing, using disposable tools and pipettes with aerosol
resistant filter tips and treating equipment and working
surfaces with bleach and ultra-violet irradiation fre-
quently (see DNA extraction and laboratory methods).
Overlapping primers specific to sheep DNA were
designed to prevent possible annealing to human DNA

Page 5 of 14

and were checked by amplification (see DNA extraction
and laboratory methods).

The authenticity of the aDNA analysis was controlled
at various steps of the laboratory work-flow. In general,
when consistent sequences were obtained in three or
more amplifications, the sequence was considered repro-
ducible and accepted as authentic. In the aDNA extrac-
tion step, 13 of the samples (out of the 26 samples which
were successfully amplified for the 523-bp mtDNA D-
loop sequence) (Table 1) were extracted several times, and
at least two PCR-reactions were performed for separate
DNA extractions to amplify and sequence each overlap-
ping mtDNA D-loop fragment at least twice. Applying
these strict extraction and amplification steps aimed at
confirming the reproducibility of our aDNA sequence
protocol and no sequence anomalies were detected. More-
over, five samples (OaM1, OaNaal, OaTor2, OaAA5 and
0aAA6) were extracted, amplified and sequenced in two
different aDNA laboratories (MTT Agrifood Research
Finland and Stockholm University, Sweden) and the
results were identical. At each step of the aDNA extrac-
tion and amplification procedure, negative controls were
performed. In the first extraction of our aDNA trial, a
mammoth sample was used as positive control, which
constitutes a suitable control because a previous study
[45] has shown that it does contain mammoth DNA, it
does not contain modern DNA and its sequence clearly
differs from that of sheep.

Mitochondrial DNA amplification of modern sheep
samples

DNA from 94 modern sheep of 10 European and Asian
breeds [3,14] were analysed. Additional file 2: Table S1
includes primers for the amplification of a 664-bp se-
quence of mtDNA [see Additional file 2: Table S1]. The
same PCR reaction mix was used for these samples than
for the aDNA samples except that UNG was not included.
PCR conditions were as follows: 95°C for 15 min followed
by 32 three-step cycles at 94°C for 30 s, 58°C for 40 s and
72° for 1 min and a final step at 72°C for 10 min. 500 ng
of template DNA were used per reaction. Y-chromosome
marker data were available from a previous study [12].

Sequencing of PCR products

PCR products of modern and ancient DNA samples
were purified using ExoSAP-IT enzyme (GE Healthcare
Life sciences, UK). Sequencing reactions were performed
using DYEnamic ET Terminator Kit (GE Healthcare Life
sciences, UK). The sequencing products were purified by
ethanol precipitation and separated on MegaBACE1000"
(Amersham Biosciences, UK). Both strands of each frag-
ment were sequenced and the same primers were used
for both sequencing and fragment amplification. Se-
quence data were base-called with Cimarron 3.12
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basecaller using a MegaBACE Sequence analyzer v.
3.0.0111.1603 (Amersham Biosciences, UK). Sequences
were analysed with Sequencher 4.6 8 (Gene Codes, Ann
Arbor, MI).

Statistical analyses

Mitochondrial DNA sequences from 94 modern sheep
[GenBank: JX484017-JX484110] and 26 ancient sheep
[GenBank: JX484111-JX484137] were aligned using CLUS-
TALW?2 [46] (penalties for gap opening, gap extension, gap
distances were 10, 0.20 and 5, respectively). When statis-
tical analyses were performed for a subset of sequences,
the CLUSTALW?2 alignment was carried out separately for
each cohort. The size of the aligned mtDNA sequence was
523-bp. One Iron Age sample (OaPasl), for which only
297-bp of the mtDNA D-loop was sequenced, was omitted
from the statistical analyses (Table 1). A corresponding
CLUSTALW?2 alignment was done for the Y-chromosome
130-bp sequences [JX484138- JX484140]. Alignment gaps
were excluded from the statistical analyses.

The appropriate DNA substitution model to analyse
our mtDNA data was the Hasegawa-Kishino-Yano
model ([47]; HKY85)+I' supported both by FindModel
[48] web server (http://www.hiv.lanl.gov/content/sequence/
findmodel/findmodel.html) and MEGA5.05 program [49]
and selected on the basis of the Akaike information criter-
ion (AIC) [48] for different models. The phylogenetic ana-
lysis of the 94 modern and 26 ancient sheep sequences and
one outgroup sequence from urial sheep (Ovis vignei
bochariensis [GenBank:AF039580.1]) was conducted using
two approaches. MEGA5.05 was used to construct the
Neighbor-joining (NJ) tree with 1000 bootstrap replicates.
However, the Tamura-Nei substitution model [50] with a T
distribution parameter value o = 0.05 was used in the ana-
lysis because HKY is not implemented in the MEGA soft-
ware and the Tamura-Nei model was supported by AIC.
The maximum likelihood (ML) analysis was performed
using PhyML v. 3.0 program [51] and the HKY85+I (InL =
-1271.48434, T distribution parameter value o =0.047).
Bootstrap support for a ML tree was calculated using 1000
bootstrap replicates and the tree was drawn with the Tree-
View program v. [52]. In addition, a median-joining net-
work (with e=0 to be most conservative) between the
haplotypes was constructed and mismatch distribution was
performed using NETWORK 4.6.0.0 [53].

The following parameters were calculated to estimate
the genetic diversity of the mtDNA data in the different
cohorts (i.e., in the ancient populations and modern
breeds): number of haplotypes (h), number of segregat-
ing sites (S), haplotype diversity (Hd = probability that
two mtDNA sequences chosen randomly from the sam-
ple are different), nucleotide diversity (1t = number of nu-
cleotide differences between randomly chosen pairs of
sequences), and average number of nucleotide differences
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(K) (DnaSP v.5 [54]). Theta-estimates (‘theta’ 6= N,
where N, is the effective population size in the case of a
haploid locus and p is the overall mutation rate at the
haplotype level) were computed using ARLEQUIN v. 3.5
[55]: the expected level of diversity, 85 was derived from
the observed number of segregating sites S and 0, from
the observed mean number of pairwise nucleotide differ-
ences 1. Furthermore, Tajima’s D test statistic was com-
puted using DnaSP.

We investigated the distribution of the ancient
mtDNA sequences present among the 94 sequences of
the modern sheep samples sequenced here and searched
for shared identical sequences in the GenBank DNA
database (NCBI/BLAST, http://blast.ncbinlm.nih.gov/
Blast.cgi). The haplotypes were determined using DnaSP
[see Additional file 3: Table S2].

The ancient Y-chromosome SNP oY1 data were com-
pared with modern data [9,12] and geographic frequency
distributions of oY1 alleles. The modern Y-chromosome
SNP data [9,12] on the frequencies of oY1 alleles are
presented in Additional file 4: Table S3.

Results

Radiocarbon dating

Nineteen samples were successfully radiocarbon-dated,
while for three samples, the quantity of collagen in the
enamel was not sufficient for this technique (Table 1).
The radiocarbon dating indicated that two samples,
(OaPihl, OaKok2), were younger and one (OaUuk2) was
older than inferred from the archaeological records from
the same sites (Table 1). The dating results indicated
that the oldest samples successfully analyzed for mtDNA
were approximately 1000 years old.

Success rate of aDNA analyses

Mitochondrial DNA analysis was carried out on 36 an-
cient sheep samples and mtDNA amplification was
successful for 27 samples, including the partial mtDNA
sequence of the OaPasl sample (Table 1). Most of these
27 samples required several amplifications per fragment
in order to obtain at least three good-quality sequences
from at least two PCR reactions. Excluding the samples
for which no mtDNA amplification was obtained and
considering all separate amplifications for the five mtDNA
D-loop fragments, the amplification success rate was 46%,
56% and 68% for sheep samples from the Iron Age,
Medieval and Post-Medieval periods, respectively. Average
amplification success rates and fragment lengths for the
mtDNA D-loop sequence are summarised in [Additional
file 2: Table S1]. As expected, with aDNA samples, the
highest success rate was obtained when the amplified frag-
ments of mtDNA D-loop were shortest. In addition,
among the aDNA samples from different periods, those
from the Post-Medieval period had the highest success
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rate, which is explained by the fact that Post-Medieval ma-
terial is abundant allowing a more critical prior-selection
of bones than for older materials. Reproducible sequences
were obtained for seven of the 11 Medieval samples and
for five (plus one partial) of the 11 Iron Age samples
(Table 1).

Amplification of a 130-bp sequence of Y-chromosome
5" promoter region in the SRY gene was tested in aDNA
samples that were successfully amplified for mtDNA and
three contained the SRY gene sequence. As expected,
among the different aDNA analyses, amplification suc-
cess rate was lowest (12%) for the fragment containing
the SRY gene.

Mitochondrial DNA haplotypes

Alignment between the 94 modern and 26 ancient DNA
sequences (OaPasl containing a partial mtDNA se-
quence was excluded) revealed 47 SNP (46 transitions
and one transversion) and three insertion-deletions [see
Additional file 5: Figure S2]. When considering the
alignment of the aDNA samples only, 27 transitions and
no transversion were found. Fifty-six haplotypes (18 in
the ancient and 46 in the modern DNA sequences) were
identified among the 121 modern and ancient sheep
samples (Figure 1, Tables 2 and 3). More than half of
these haplotypes (30 of 56) were private to one individ-
ual and thus to one modern sheep breed or ancient
sheep population indicating high variation in the ana-
lysed D-loop region.

The NJ and ML analyses gave similar phylogenetic
topologies thus only the ML tree is presented in Figure 1.
Two highly divergent domestic sheep lineages, ovine
mtDNA haplogroups A and B, were detected with rela-
tively high statistical support. As expected, comparisons
with reference sequences [GenBank: AF039577.1] and
[GenBank: AF039578.1], haplogroups B and A were re-
spectively the major and minor haplogroups. Frequen-
cies of haplogroups A and B were 0% and 100% for the
Iron Age, 28.6% and 71.4% for the Medieval and 14.3%
and 85.7% for the Post-Medieval sheep cohorts, respect-
ively and 21.9% and 78.1% for the Finnish modern sheep
breeds. In addition, the Network analysis and mismatch
distribution supported the existence of these two diver-
gent haplogroups in the modern sheep breed data pre-
sented in Figures S3 and S4 [see Additional file 6:
Figures S3 and S4]. These analyses reproduced the well-
established observations with a star-shaped pattern in the
ovine mtDNA haplotype network and a smooth shape of
mismatch distribution indicating a population expansion
in the history of the species. Similar patterns were
observed in the Medieval-Iron Age and Post-Medieval
cohorts when analysed separately (results not shown).

We analysed the distribution of the 18 ancient Finnish
sheep mtDNA haplotypes in the modern sheep breeds
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by sequencing samples of 10 Eurasian sheep breeds and
by searching for shared sequences in the GenBank DNA
database. The shared haplotype analysis showed that 14
of the 18 ancient haplotypes were present in the mod-
ern sheep breeds and in the GenBank DNA database
(Figure 1) and [Additional file 3: Table S2]. In the mod-
ern sheep populations, frequencies of ancient haplo-
types were highest in the native Finnish sheep breeds,
Finnsheep (0.38) and Kainuu Grey (0.53) with six an-
cient haplotypes i.e. H11 in haplogroup A and H22,
H32, H40, H42, H44 in haplogroup B. The two ancient
haplotypes, HO5 in haplogroup A and H32 in hap-
logroup B are common haplotypes while other rarer
ancient haplotypes exist e.g. in contemporary native
breeds from the Caucasus, Russia and Serbia [see
Additional file 3: Table S2]. The four ancient haplotypes
HO06, H30, H43 and H50 were absent both in our own
modern dataset and in the GenBank DNA database [see
Additional file 3: Table S2].

Analysis of population diversity

The statistics summarising the level of mtDNA variation
in the Finnish ancient populations and modern sheep
breeds and in seven other modern Eurasian breeds are
presented in Tables 2 and 3, respectively. Additional file 1:
Figure S1 shows the sites from which the Finnish archaeo-
logical samples were collected and for which mtDNA was
successfully amplified. The Iron Age cohort comprising
only five samples and excavated at a single archaeological
site on the prehistorical farm Mulli displayed the lowest
values for all diversity estimates (s, h, Hd, K, and m).
Haplotype diversity was higher in ancient sheep samples
from the Medieval and Post-Medieval periods (Hd = 1.0
and 0.98, respectively) than in any of the modern popula-
tions. The Post-Medieval samples originated from several
archaeological sites, while the Medieval samples were
excavated mainly in Turku. Among the modern sheep
breeds analysed, Bozakh, Finnsheep and Pramenka
showed the highest haplotype diversity (Hd > 0.90; Tables 2
and 3) while Olkuska and Aland had the lowest haplotype
diversity (Hd = 0.75; Tables 2 and 3). The Finnsheep sam-
ples were collected in several sheep flocks from different
parts of Finland. The measures taking in account the mo-
lecular nature of the data showed highest variation in the
populations and breeds in which both haplogroups A and
B were segregating. Nucleotide diversity varied among
cohorts and was highest (m=15.51 * 10”) in Pramenka
sheep, originating from the Balkan region, which was one
of the main dispersal routes for Near Eastern domesti-
cated sheep entering Europe.

The diversity estimate Os is influenced by genetic bottle-
necks, whereas 0 is relatively insensitive. Consequently,
Om-0s will be negative in stable populations under an
infinite-sites model of mutation-drift equilibrium and
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Figure 1 Maximum Likelihood tree of mtDNA haplotype sequences found within modern (black) and ancient (red) sheep. Branch
topography supported by bootstrap values greater than 50% is indicated; the number of samples sharing haplotypes is given in brackets; breed
names are abbreviated as Oxford Down (Oxf), Olkuska (OL), Pramenka (Pra), Bozakh (Boz), Oparino (Opa), Romanov (Ro), Viena (Vie), Kainuu Grey
Sheep (Kai), Aland (ALD) and Finnsheep (Fin); ancient Finnish sheep samples are divided into three periods: Iron Age (Iron), Medieval (Med) and
Post-Medieval (Post) according to radiocarbon or context dating (see Table 1); the tree is rooted with a sequence from urial sheep (Ovis vignei
bochariensis) [GenBank: AF039580.1].
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Table 2 Summary statistics of ancient Finnish sheep populations from three periods and modern Finnish sheep breeds

Statistics Ancient Finnish sheep Modern Finnish sheep breeds
Post-Medieval Medieval Iron Age Aland Finnsheep Kainuu Grey
N 14 7 5 9 15 8
S 25 18 2 17 14 15
h 12 7 2 4 10 4
Hd 0.98 1.00 040 0.75 093 0.82
K 6.13 781 0.80 7.94 261 8.11
11.72 14.93 153 15.19 4.99 15.50
D -0934 0352 -0973 1315 -1.562 2.054%
0s 7.861 7.347 0.960 6.255 4.306 5.785
on 6.396 8.095 0.800 7.944 2.743 8.107
6m-0s —1.465 0.748 -0.16 1.689 —-1.563 2.322

N, number of sampled individuals; S, number of segregating sites (excluding indels); h, number of haplotypes; Hd, haplotype diversity; K, average number of
differences; m, nucleotide diversity*10°; D, Tajima’s D statistic value where statistically significances P < 0.05 are marked with *; 8s, ‘Theta’ derived from the
observed number of segregating sites (S) and 6, from the observed mean number of pairwise nucleotide differences (m).

positive as a result of a reduction in the number of segre-
gating sites. In our data, Om-Os estimates were negative
ie. -1465 and -1.563 for Post Medieval and modern
Finnsheep, respectively (Table 2), whereas they were posi-
tive for Aland, Kainuu Grey, Olkuska, and Pramenka
sheep, and slightly positive for the Pramenka breed and the
Medieval population (Tables 2 and 3). Statistically signifi-
cant Tajima’s D-values were positive for Kainuu Grey and
Olkuska sheep, indicating a reduction of mtDNA diversity.

Y-chromosome analysis

For three of the 27 ancient sheep samples, Y-chromosome
SRY sequences were amplified and were thus genetically
identified as rams (Table 1) with one ram sample from the
Medieval period and two from the Post-Medieval period
(Table 1). All three ancient Finnish sheep had SNP G-oY1
in the SRY gene. In the modern Finnish breeds, the

frequency of G-0Y1 was 77%, 57%, and 60% in Finnsheep,
Kainuu Grey, and Aland, respectively [see Additional file
4: Table S3], indicating that SNP G-o0Y1 is frequent in the
modern north-European breeds (Figure 2).

Discussion

We successfully analysed mtDNA and Y-chromosome
diversity in ancient sheep remains from Finland and
found that Finnish sheep genetic diversity has been quite
constant over the last 1000 years. Our aDNA results fit
well with the genetic context of the modern north-
European domestic sheep breeds analysed either previ-
ously [3,12] or in the present study. Both ovine hap-
logroups A and B have been present in the Finnish
sheep population for at least more than 700 years and
no remarkable temporal changes in their frequencies
have occurred. Four of the 26 ancient mtDNA sequences

Table 3 Summary statistics of modern Polish, Russian and UK breeds

Statistics Modern sheep breeds
Bozakh Olkuska Oparino Oxford Down Pramenka Romanov Viena
N 9 9 9 9 9 8 9
S 21 14 16 9 19 16 "
h 8 4 5 5 7 5 6
Hd 097 0.75 0.86 081 0.94 0.89 0.89
K 744 7.39 5.89 2.83 8.11 6.96 4.39
14.23 14.13 11.26 542 15.51 13.32 839
D -0.180 2.085% 0.002 —-0.664 0.786 0661 0397
Bs 7.727 5.151 5.887 3311 6.991 6.171 4.047
on 7667 7.389 5.889 2833 8333 6.964 4389
On-6s -0.06 2238 0.002 —-0478 1342 0.793 0342

N, number of individuals sampled; S, number of segregating sites (excluding indels); h, number of haplotypes; Hd, haplotype diversity; K, average number of
differences; m, nucleotide diversity*10°; D, Tajima’s D statistic value where statistically significances P < 0.05 are marked with *; 8s, ‘Theta’ derived from the
observed number of segregating sites S and 6, from the observed mean number of pairwise nucleotide differences m.
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Distribution of SNP oY1
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Figure 2 Distribution of Y-chromosomal SNP G- and A-oY1 in modern sheep breeds in Europe, Asia and Africa and in ancient Finnish
sheep. Ancient sheep are indicated by a smaller circle over Finland at the northern most location on the map; the remaining circles on the map
indicate modern sheep breeds from [9,12] listed in [Additional file 4: Table S3J; the proportions of G-oY1 and A-oY1 haplotypes are indicated in

red and green, respectively; the size of the circles is proportional to sample size in each location.

J

obtained here were assigned to haplogroup A (the fre-
quency in different ancient cohorts varied from 0 to
28.6%) and 22 sequences to haplogroup B (frequency
ranging between 71.4 and 100%). The respective hap-
logroup A and B frequencies in the present sample set
of three Finnish native breeds are 21.9% and 78.1%
according to our analysis and 16.7% and 83.3% according
to [3]. Four of the 18 ancient mtDNA haplotypes were
present in the modern Finnish native breeds and 14 in
the set of 10 Eurasian breeds analysed here. The affinity
between modern mtDNA haplotypes and the ancient
mtDNA haplotypes not found in the modern breeds is
also attested by their proximity within the phylogeny
and haplotype network in Figure 1 and Figure S3 [see
Additional file 6: Figure S3], respectively. According to
historical written records, foreign breeding animals,
which were obviously ancestors of the modern Merino
sheep, were imported into Finland during the 16th,
17th and 18th centuries [8,56]. However, most of the
imported individuals being rams, they did not have a
major impact on the mtDNA diversity in the Finnish
native sheep.

In addition, results of the Y-chromosome analysis on
aDNA agree well with those on DNA from modern
Finnish indigenous sheep breeds. SNP G-0Y1 in the 5'-
promoter region of the SRY gene on sheep Y-chromosome
was detected in the three ancient ram samples. Since these
ancient ram samples (OaNaal, OaTorl, OaKok2, Table 1)
were collected from different excavation sites and from
two different time periods (Medieval and Post-Medieval),
it is unlikely that they were close relatives. However, the

number of available ancient ram samples is not sufficient
to draw detailed conclusions on the temporal changes in
the frequencies of G-0Y1 and A-oY1. In the contemporary
native Finnish breeds, the frequency of SNP G-0Y1 ranges
from 57 to 77% [see Additional file 4: Table S3] and the
frequency of SNP G-0Y1 is highest in north European,
British Islands and central Russian populations [12],
[see Figure 2 and Additional file 4: Table S3]. SNP G-
oY1 is less frequent in southern and central European
sheep (25% and 32%, respectively) and very low for the
remaining breeds analysed to date (< 8%) [see Figure 2
and Additional file 4: Table S3]. The presence of SNP
G-0Y1 in modern sheep populations often reflects intro-
gression of English breeds [12]. However, this cannot be
the case for ancient Finnish sheep. Consequently, our
finding that SNP G-0Y1 is present in sheep aDNA sug-
gests that (at least in Finland) this paternal line predates
the arrival of sheep in northern Europe.

Our results on radiocarbon-dating of 19 sheep remains
excavated from archaeologically important sites in
Finland provide essential information for Finnish arch-
aeological research. Our research on ancient sheep
material shows that previous attempts to determine the
age of remains based on archeological context are fairly
accurate, since only in three cases, did the dating results
differ from those expected (OaPihl, OaKok2 and
OaUuk2, Table 1). The oldest samples analysed here ori-
ginate from the Late Iron Age from the excavation site
Mulli in Raisio and from Pasvik in northern Norway. In
Finnish archaeology, age determination of specimens is
usually based on archaeological context. However, this
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can be misleading because, in Finland, cultural layers are
thin and younger bone and other animal materials may
have sunk to earlier cultural layers and thus, the dating of
a single bone might differ from the general dating of a site
[20]. Therefore, the dating of archaeological materials by
radiocarbon methods is recommended.

Here, we investigated the genetic affinities between the
ancient Finnish sheep populations and the modern sheep
breeds by searching for identical matches in the GenBank
DNA database with the ancient haplotype sequences.
Comparison of our ancient mtDNA data with those of the
contemporary breeds appears to be relatively uninforma-
tive in terms of unfolding geographic origin or origins of
native sheep in Finland or the dispersal of sheep hus-
bandry to Finland. Our results confirm that the domestic
sheep populations share their origins with O. orientalis
populations domesticated in the Near Eastern region,
from where the sheep spread around the World, and that
whereas haplogroup B is common in Europe, haplogroup
A is much rarer [1-3]. Ancient mtDNA haplotypes can be
found in modern sheep breeds originating from geograph-
ically distant regions. Ancient Finnish sheep show a ma-
ternal genetic affinity to western and southern European
breeds, but also to eastern European breeds. For example,
haplotype HO5 detected in the Post-Medieval sheep is also
present in the two Russian (Figure 1) and the Iberian
sheep breeds [see Additional file 3: Table S2] and several
haplotypes of the haplogroup B detected in the Finnish
ancient sheep are present in eastern, western and southern
European breeds. However, four mtDNA haplotypes
present in the ancient sheep samples are absent in the
contemporary sheep breeds suggesting a possible loss of
these haplotypes. Our results agree with a previous
analysis of mtDNA D-loop polymorphisms on modern
Eurasian sheep breeds in which a genetic historical influ-
ence of Russian sheep breeds in northern European sheep
breeds was detected [3].

We assume that the fluctuations in mtDNA genetic
diversity estimates obtained for the different cohorts
(Tables 2 and 3) may be stochastic in nature as a result
of genetic drift and sampling. Assuming neutrality for
the mtDNA D-loop region, the high positive values for
(6m-0s) indicate a loss of genetic variability in terms of
number of segregating nucleotide sites, occurring in the
modern populations of Aland, Kainuu Grey, Olkuska
sheep and the Serbian Pramenka population of Vlashko
Vitoroga. These breeds experienced a genetic bottleneck
during the 20th century and are classified as endangered
sheep breeds [14]. In addition, their positive Tajima’s D-
values — statistically significantly different from zero for
Kainuu Grey and Olkuska sheep — point towards an ef-
fect of a decline of population size on mtDNA diversity.
In contrast, our within-population diversity estimates for
Finnsheep, which is a large, major sheep population in
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Finland and having descended during the 20th century
from a broad founder population, do not indicate loss of
mtDNA diversity in haplogroup B. However, our Finn-
sheep data can be considered slightly biased because we
could not detect haplogroup A in our sample set [3].
When the diversity estimates of the ancient samples are
compared with those of the modern breeds, values for
(6m-6s) and Tajima’s D in the Medieval sheep population
are similar to estimates that could be obtained for an
endangered modern breed having experienced a reduc-
tion in population size. In contrast, the estimates for the
Post-Medieval cohort are similar to those of a modern
large sheep breed with a growing population size. How-
ever, the origin and availability of archaeological materi-
als could explain these differences in estimates rather
than demographic events that occurred in the past. The
Medieval samples are mainly from one region, the
Turku region, while Post-Medieval samples are from a
wider geographic region, from southern, northern, west-
ern and central parts of Finland. The present Iron Age
samples displaying a lower level of mtDNA diversity are
from the Mulli farm from Raisio and four of the samples
share the same maternal ancestry. Interestingly, it
appears that the same sheep ‘dam-lineage’ was raised in
Mulli for a long period and no new ewes were intro-
duced into the flock.

This aDNA study focusing on sheep biodiversity in
Finland shows that population genetic analysis of ancient
domestic animal populations and studies investigating
changes in genetic diversity across different eras are
challenging. The availability of ancient materials and the
success rate of ancient DNA analysis have a decisive im-
pact on how comprehensively a sample set represents
the genetic variation of ancient animal populations. In
the Finnish context, survival of unburned bones from
time periods prior to the Late Iron Age is infrequent
due to the acid character of soils. In addition, in our
study, the Medieval and Post-Medieval samples are not
from the same temporal population as the samples of
the modern breeds, but mainly from temporally distant
generations. For example, the age difference between the
oldest and youngest Medieval samples is approximately
300 years, corresponding to a time span of 100 genera-
tions. The population structures of ancient and modern
cohorts are different, interfering with conclusions on
temporal changes between ancient and modern popula-
tions. Moreover, the 300 years long Medieval period or
Iron Age period were not socially or culturally static and
our research area can be roughly divided into western,
eastern and northern cultural regions with their own
cultural and trade networks possibly influencing the gen-
etic variation and structure of ancient animal popula-
tions. More ancient materials are needed to examine the
archaeological questions in more detail.
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Conclusions

To date, mitochondrial DNA has been the most popular
genetic marker to characterize ancient farm animal
populations, to trace their ancestor and reconstitute the
number of domestication events. Less is known about Y-
chromosome polymorphisms in ancient domestic ani-
mals partly due to challenges in Y-chromosome marker
typing and partly due to the lack of polymorphic mar-
kers currently available for characterization. Here we
have published one of the most comprehensive mtDNA
analysis in ancient sheep populations to date and simul-
taneously successfully typed the Y-chromosome SNP
marker oY1 in three ancient sheep samples. Our aDNA
results are in agreement with the previous international
studies on mtDNA and Y-chromosome diversity of do-
mestic sheep. However, for more detailed archaeological
and archaeozoological studies, such as regional historical
dispersal of animal populations, and origins and related-
ness of ancient animals found in a same excavation site
or different sites, the resolving power of mtDNA can be
too low. Our mtDNA study indicates that the same an-
cient and modern ovine mtDNA haplotypes can be
detected in geographically distant regions. As indicated
by the analysis of modern sheep breeds e.g. [9,14], auto-
somal nuclear markers, such as microsatellites, sequence
data and SNP are powerful population genetic markers.
Further studies with these autosomal nuclear markers
will offer an opportunity to study archaeological samples
in more detail and provide more information about an-
cient genetic population structure than uniparentally
inherited markers.

Additional files

Additional file 1: Figure S1. Title: Sample sites for ancient and
modern sheep. Description: This figure presents excavation sites of
ancient sheep samples included in statistical analysis.

Additional file 2: Table S1. Title: Primers used in this study.
Description: This table presents primer pairs, annealing temperatures (AT),
fragment length, nucleotide position of initiation of the amplification and
average amplification success rates for aDNA and modern samples.

Additional file 3: Table S2. Title: Distribution of haplotypes identified
in the present study and in data available from GenBank. Description: The
table provides distribution of haplotypes found in this study among
previously studied contemporary sheep populations [2,57-63] available in
GenBank.

Additional file 4: Table S3. Title: Global distribution of Y chromosomal
SNPs A- oY7 and G-oY1. Description: The table provides distribution of
oY1 SNPs in modern sheep breeds according to [9,12]. Three ancient
Finnish sheep analysed in this study are added to the data.

Additional file 5: Figure S2. Title: Mitochondrial DNA haplotypes (H)
identified in 26 ancient and 94 modern sheep. Description: The data
provided represent alignment of 26 ancient and 94 modern sheep
analysed in this study. SNP positions given are relative to the reference
sequence [GenBank:NC001941].

Additional file 6: Figure S3 and S4. Title: Median-joining network
and mismatch distribution of the 56 mitochondrial haplotypes.
Description: Figure S3 shows the median-joining network (e = 0) with

Page 12 of 14

molecular relationships between 56 haplotypes which cluster into two
major ovine haplogroups: haplogroup A (HO1-H14, on the left) and
haplogroup B (H15-H56, on the right). Figure S4 presents the mismatch
distribution of 120 modern and ancient domestic sheep indicating the
existence of two divergent haplogroups in the data.
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