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Abstract

Background: Efficient, robust, and accurate genotype imputation algorithms make large-scale application of
genomic selection cost effective. An algorithm that imputes alleles or allele probabilities for all animals in the
pedigree and for all genotyped single nucleotide polymorphisms (SNP) provides a framework to combine all
pedigree, genomic, and phenotypic information into a single-stage genomic evaluation.

Methods: An algorithm was developed for imputation of genotypes in pedigreed populations that allows
imputation for completely ungenotyped animals and for low-density genotyped animals, accommodates a wide
variety of pedigree structures for genotyped animals, imputes unmapped SNP, and works for large datasets. The
method involves simple phasing rules, long-range phasing and haplotype library imputation and segregation
analysis.

Results: Imputation accuracy was high and computational cost was feasible for datasets with pedigrees of up to 25
000 animals. The resulting single-stage genomic evaluation increased the accuracy of estimated genomic breeding
values compared to a scenario in which phenotypes on relatives that were not genotyped were ignored.

Conclusions: The developed imputation algorithm and software and the resulting single-stage genomic evaluation
method provide powerful new ways to exploit imputation and to obtain more accurate genetic evaluations.
Background
Genome-wide association studies and genetic evaluation
systems using genomic information require large numbers
of individuals that are both intensively phenotyped and
densely genotyped for SNP across the genome to give reli-
able results. Dense SNP genotyping of the required num-
ber of individuals is still expensive. Therefore, research
effort has focused on developing methods and strategies to
impute genotypes from low-density platforms that are
cheaper and easier to obtain. These imputation methods
can be divided into two main categories, those that use
linkage disequilibrium information (e.g. fastPHASE [1];
MaCH [2]; Beagle [3]; IMPUTE2 [4]) and those that use
pedigree and linkage information e.g. [5-8]. Methods
that use linkage disequilibrium information are subopti-
mal because they require at least some genotypes on
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each individual for which imputation is to be carried
out. Some of the methods that use pedigree and linkage
information are also less than optimal because they re-
quire all immediate ancestors to be densely genotyped.
An optimal imputation strategy for practical application
in breeding programs must (i) allow both ungenotyped
and low-density genotyped animals to be imputed, (ii)
be flexible with regard to which animals within the pedi-
gree have high-density genotypes, (iii) use information
from close and distant relatives and from close and dis-
tant SNP loci, (iv) function well in small and large data-
sets of moderately related individuals and (v) accurately
impute genotypes for all animals in the pedigree for all
SNP, including unmapped SNP.
Single-stage genomic evaluations use all available pedi-

gree, genomic, and phenotypic information in a single ana-
lysis to estimate breeding values. This can be achieved by
using a relationship matrix that combines both pedigree
and genomic information (SSMi) Misztal et al. [9]). From
an imputation perspective, SSMi has at least three potential
Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:john.hickey@une.edu.au


Hickey et al. Genetics Selection Evolution 2012, 44:9 Page 2 of 11
http://www.gsejournal.org/content/44/1/9
problems. First, in its original definition, it combines two
relationship matrices (pedigree and genomic) that have two
different base populations definitions, although solutions
for this have been proposed recently [10,11]. Second, it can
be thought of as a linear imputation method e.g. [12] that
ignores the particulate nature of allelic inheritance. Third,
while it can give different SNP different weights in the pre-
diction equation [13], the implementation is usually by
‘GBLUP’ - genomic best linear unbiased prediction [14],
which does not use variable selection (of SNP effects), such
as method BayesB [15]. An imputation method that
imputes genotypes for all animals in the pedigree for all
SNP provides an alternative framework for single-stage
genomic evaluations that avoids these problems.
The first objective of this study was to develop a robust

imputation method for pedigreed populations. The method
involves simple phasing and imputation rules, long-range
phasing and haplotype library imputation [16,17] as imple-
mented in AlphaPhase1.1 [17], and segregation analysis
[18]. It uses information from close and distant relatives
and from close and distant SNP loci to impute genotypes
for individuals for which genotype information may or may
not be available, and for individuals which have close or dis-
tant relatives densely genotyped. A software package called
AlphaImpute that implements the method has been made
available. The second objective was to develop a single-stage
genomic evaluation method (SSAI, standing for single-stage
AlphaImpute) that is based on using the imputation
method presented here to combine all pedigree, genomic,
and phenotypic information and compare it to a method
that ignores phenotypes for ungenotyped animals and to
SSMi.
The performance of AlphaImpute in terms of both ac-

curacy and speed was evaluated using a dataset consisting
of closely related pigs from a commercial breeding line
and a multiple breed dairy cattle dataset and compared to
IMPUTE2 [4], a widely used software package. The per-
formance of SSAI was evaluated within the pig dataset
using the empirical accuracy of the resulting estimated
breeding values. It was compared to SSMi for the complete
data, and with an analysis that did not use phenotypes on
ungenotyped animals.
Methods
Segregation analysis, long-range phasing, and haplotype
library imputation
AlphaImpute combines simple phasing and imputation
rules, long-range phasing, haplotype libraries, and segrega-
tion analysis to impute genotypes of all animals in a pedi-
gree for all genotyped SNP. The program imputes alleles,
when it has information to do this, and probabilities based
on the algorithm of Kerr and Kinghorn [18], when the in-
formation is incomplete using single locus information.
Imputed genotypes are constructed as the sum of the
alleles or allele probabilities.
AlphaImpute proceeds by first separating out a set of

animals that are genotyped at high-density. These ani-
mals have their SNP phased using long-range phasing
and haplotype library imputation, generating haplotype
libraries in the process [17]. Allele probabilities [18] are
calculated for all SNP for all animals in the pedigree and
alleles are imputed when these probabilities are >0.99.
This can be thought of as single-locus phasing. Once the
single-locus phasing and the long-range phasing are
completed, the haplotypes identified in the long-range
phasing are matched to alleles phased by single-locus
phasing. This matching step begins with parental and
other ancestral haplotypes by processing the data from
the oldest to the youngest individual in the pedigree. The
second part of the matching step involves processing the
haplotype libraries to see if the haplotypes that an animal
carries exist in the library in animals that are not identi-
fied as ancestors within the available pedigree informa-
tion. The haplotype libraries are updated with any new
haplotypes that are identified during this process. These
steps are iterated a number of times (user defined). Fi-
nally, using the updated dataset, which now includes a
large number of imputed SNP, allele probabilities are re-
calculated for all SNP for all animals in the pedigree.
The complete algorithm is outlined in the Appendix.
Test datasets
The performance of AlphaImpute was tested using two
real datasets, a pig and a bovine dataset that had genotype
information spread sparsely across multiple generations. In
these datasets, some animals had multiple generations of
high-density genotyped ancestors available, while for others
only some or none of the ancestors had high-density geno-
types. The pig dataset (courtesy of PIC) involved a pedigree
comprising 6 473 individuals, of which 3 534 were geno-
typed on the Illumina PorcineSNP60 BeadChip. Genotype
information for chromosome 1 was used and after routine
editing of the genotype data, 4 221 SNP with known gen-
ome locations remained. This population came from a sin-
gle PIC breeding line and consequently the individuals
were moderately to highly related to each other. The dairy
cattle dataset (courtesy of LIC) involved a pedigree com-
prising 24 017 individuals, of which 5 057 were genotyped
on the Illumina BovineSNP50 BeadChip. Genotype infor-
mation for chromosome 1 was used and after routine edit-
ing of the genotype data, 2 297 SNP with known genome
locations remained. This population was multiple-breed in
nature, containing Holsteins, Jerseys, and crossbreds. In
the pig dataset, most female and male ancestors were geno-
typed at high-density while in the cattle dataset only male
ancestors were genotyped at high-density in most cases. In
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both datasets no other genotyping was used other than the
low-density genotyping of the testing individuals.
The genotyped animals were divided into training and

testing sets. The training set was genotyped at high-
density (for all SNP), while the testing sets had different
proportions of their SNP masked and then imputed. In
the pig dataset, the masked proportions were 99%
(Pig99), 95% (Pig95), 90% (Pig90), and 85% (Pig85). In
the cattle dataset, the masked proportions were 99%
(Cat99), 95% (Cat95), 90% (Cat 90), and 85% (Cat85).
These densities were roughly equivalent to 500, 2 500, 5
000 and 7 500 genome-wide low-density SNP arrays.
The SNP on the low-density platforms were chosen by
identifying evenly spaced 5 SNP windows across the
chromosome and then choosing the SNP with the high-
est minor allele frequency from each window. For the
pig data, the testing set comprised the 509 most recently
born animals that were genotyped, which reflects a sce-
nario where candidates for selection are genotyped at
low density. For the cattle data, the testing set comprised
626 randomly selected individuals across generations
that had both parents known in the pedigree but not ne-
cessarily genotyped.
The accuracy of imputation of unmapped SNP was

tested using the same data structures by running the pro-
gram with a qualifier that does not invoke the long-range
phasing and haplotype imputation steps. Therefore the
only imputation carried out was based on simple single
locus phasing and imputation rules and the segregation
analysis procedures of Kerr and Kinghorn [18].
This study used pre-existing data sets that were

recorded independently of this study, therefore no ethical
approval was required.
Imputation accuracy
The performance of AlphaImpute was compared to that of
the software IMPUTE2 (Howie et al. [4]; Department of
Statistics, University of Oxford, UK). IMPUTE2 was used
with its default settings, and an effective population size of
1 000 was assumed. IMPUTE2 uses linkage disequilibrium
information to perform imputation, requires each individ-
ual to be imputed to have some SNP genotypes and does
not use pedigree information. Therefore, IMPUTE2 does
not impute genotypes for ungenotyped animals in the
pedigree. IMPUTE2 is a hidden-Markov model based
pedigree-free imputation approach with methodological
similarities to Beagle, MaCH, and fastPHASE, which have
been compared to each other in several studies [4,19,20].
Generally speaking, they give similar results but Marchini
and Howie [20] showed a slight advantage for IMPUTE2.
Accuracy of imputation was measured as the correlation
between true genotype with imputed genotype or genotype
probability for reasons outlined in [21].
AlphaImpute can also impute phased alleles or provide
allele probabilities for animals in the pedigree that have
low-density genotypes or no genotypes. The proportion of
paternal or maternal phased alleles that was called without
ambiguity (i.e. alleles rather than allele probabilities were
called because haplotypes could be resolved unambigu-
ously) was also explored. For this purpose, animals in the
testing set were divided into six categories depending on
their pattern of relationship to their most recent densely
genotyped ancestors. The categories were: both parents
genotyped (BothParents); sire and maternal grandsire (Sir-
eMGS); dam and paternal grandsire (DamPGS); sire only
(Sire); dam only (Dam); and other relatives (Other). The
numbers of animals in each category are given in Table 1
for the pig dataset and Table 2 for the cattle dataset.

Single-stage genomic evaluations
Single-stage genomic evaluations use all available pedigree,
genomic, and phenotypic information in a single analysis
to estimate breeding values [9]. SSAI uses AlphaImpute to
generate imputed or observed genotypes for all animals in
a pedigree for all genotyped SNP. These genotypes can be
fitted in a genomic prediction model via GBLUP [14] or a
Bayesian model such as BayesB [15]. This facilitates the in-
clusion of the phenotypes of all animals in the pedigree in
the breeding value estimation model, including those of
animals that are not genotyped.
The performance of SSAI was evaluated in the pig

dataset using three different growth and composition
traits with heritabilities ranging from 0.38 to 0.62. This
data was from the same pedigree as described previously
but used SNP on all chromosomes rather than just
chromosome 1. After routine editing of SNP, 52 843 SNP
remained, of which 43 949 SNP were mapped to the 18
autosomal chromosomes and 8 894 SNP were un-
mapped. Unlike in the imputation scenarios described in
the previous section, for the testing of SSAI, genotyped
animals were only genotyped at high-density. The data
were divided into a training and a validation set. The val-
idation set comprised the same 509 genotyped animals
from the most recent generation of the pedigree that
were used for testing the imputation accuracy as
described previously. These validation animals also had
progeny test EBV (ptEBV) and accuracies from single-
trait BLUP evaluations. The models for estimating ptEBV
used the full PIC pedigree and all data included in a typ-
ical production run for each trait but no genomic infor-
mation and also the phenotypes on the validation
animals or their progeny were excluded. The mean ac-
curacy of the ptEBV for the validation animals for each
trait is given in Table 3.
Two different training sets were used. In scenario 1

(SC1), only the phenotypes of the 3 025 genotyped ani-
mals that were not part of the validation population were



Table 1 Accuracy of imputation for the pig dataset

Pig99 Pig95 Pig90 Pig85 Unmapped

Category1 Count2 AI3 I24 AI3 I24 AI3 I24 AI3 I24 AI3

BothParents 51 0.98 0.77 0.99 0.92 1.00 0.96 1.00 0.96 0.83

SireMGS 62 0.93 0.80 0.98 0.92 0.99 0.94 0.99 0.96 0.78

DamPGS 47 0.96 0.79 0.98 0.92 0.99 0.95 0.99 0.96 0.82

Sire 45 0.89 0.78 0.97 0.92 0.99 0.95 0.99 0.97 0.78

Dam 13 0.90 0.76 0.96 0.89 0.98 0.93 0.98 0.95 0.73

Other 291 0.86 0.79 0.94 0.91 0.97 0.95 0.97 0.96 0.76
1Animals in the testing set were divided into six categories depending on their pattern of relationship to their most recent densely genotyped ancestors; the
categories were: both parents genotyped (BothParents); sire and maternal grandsire (SireMGS); dam and paternal grandsire (DamPGS); sire only (Sire); dam only
(Dam); and other relatives (Other); 2Count refers to the number of individuals in each category; 3AI = AlphaImpute; I24=IMPUTE2.
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used to train the prediction equation. In scenario 2
(SC2), the phenotypes of the 3 025 genotyped animals
that were not part of the validation population and the
phenotypes of the 2 939 other animals in the pedigree
that were not genotyped were used to train the predic-
tion equation. Not all animals in the training population
had phenotypes for all traits and the numbers of pheno-
types included in the analysis for SC1 and SC2 for each
trait are given in Table 3.
In order to evaluate the performance of SSAI, genomic

estimated breeding values (gEBV) were estimated for SC1
using the Bayesian model BayesBFast [22] implemented in
AlphaBayes [23]. For SC2, gEBV were estimated using
SSAI and SSMi. For SC2, SSAI was applied by first using
AlphaImpute to generate imputed genotypes and gEBV
were then estimated by BayesBFast. AlphaBayes was
chosen because it can include real numbers in its design
matrix for the SNP. This is important because, when there
is insufficient information to fully impute an allele (i.e. call
the allele as a 0 or a 1) in the resulting genotypes, the sum
of the allele probabilities generated by AlphaImpute are
real numbers between 0 and 2, rather than the more usual
0, 1, or 2 integers used for coding genotypes. An alterna-
tive Bayesian genomic selection software package that
rounds probabilities to integers was also tested and did not
perform as well. For SC2, SSMi was implemented as
described by Aguilar et al. [24], using BLUPF90.
Table 2 Accuracy of imputation for the cattle dataset

Cat99 Cat95

Category1 Count2 AI3 I24 AI3 I24

BothParents 28 0.97 0.64 0.99 0.9

SireMGS 224 0.87 0.60 0.97 0.9

DamPGS 7 0.92 0.63 0.97 0.8

Sire 144 0.86 0.60 0.96 0.9

Dam 4 0.95 0.63 0.98 0.9

Other 219 0.84 0.58 0.94 0.9
1Animals in the testing set were divided into six categories depending on their patt
categories were: both parents genotyped (BothParents); sire and maternal grandsire
(Dam); and other relatives (Other); 2Count refers to the number of individuals in eac
3AlphaI = AlphaImpute.
Results
Performance of AlphaImpute
Accuracy of imputation
Genotypes imputed with AlphaImpute had very high ac-
curacy across all categories of animals in both datasets and
accuracies were greater than with IMPUTE2 (Tables 1 and
2). The higher accuracy of AlphaImpute over IMPUTE2
increased with reducing density of the low-density panels.
For both AlphaImpute and IMPUTE2, the correlation be-
tween true and imputed genotypes increased with increas-
ing relatedness of the animal to be imputed with its most
recent genotyped ancestors and as its genotype density
increased. Animals that had both parents genotyped had
imputation accuracies of 0.98, 0.99, 1.00, 1.00 for Pig99,
Pig95, Pig90, and Pig85 for AlphaImpute, corresponding
to accuracies of 0.77, 0.92, 0.96, and 0.96 for IMPUTE2.
Animals that had both parents genotyped had accuracies
of 0.97, 0.99, 0.99, and 1.00 respectively for Cat99, Cat95,
Cat90, and Cat85 for AlphaImpute and of 0.64, 0.92, 0.94,
and 0.95 for IMPUTE2.
Sires and grandsires play an important role in com-

mercial breeding programs and it may be economically
feasible to use a genotyping strategy that involves geno-
typing these animals at high-density and candidates for
selection at low-density. For the pig population, the Sir-
eMGS category of animals had imputation accuracies of
0.93, 0.98, 0.99, and 0.99 for Pig99, Pig95, Pig90, and
Cat90 Cat85 Unmapped

AI3 I24 AI3 I24 AI3

2 0.99 0.94 1.00 0.95 0.85

1 0.98 0.95 0.99 0.96 0.82

7 0.98 0.91 0.98 0.95 0.84

0 0.98 0.95 0.98 0.96 0.82

0 0.99 0.97 0.99 0.95 0.85

0 0.96 0.95 0.97 0.96 0.82

ern of relationship to their most recent densely genotyped ancestors; the
(SireMGS); dam and paternal grandsire (DamPGS); sire only (Sire); dam only
h category; 3AI=AlphaImpute; I24=IMPUTE2



Table 3 Performance of single-stage genomic evaluation
in the pig dataset

Correlation between
1gEBV and 2ptEBV

3Number of
phenotypes

4Trait h2 5SC1 6,7SC2-SSAI 8SC2-SSMi Average
accuracy of ptEBV

SC1 SC2

1 0.38 0.51 0.51 0.54 0.89 2632 4650

2 0.58 0.33 0.51 0.50 0.94 2643 4784

3 0.62 0.42 0.60 0.55 0.94 2675 4840
1gEBV =genomic estimated breeding value; 2ptEBV =progeny test estimated
breeding value; 3number of phenotypes available, as not all individuals that
were genotyped were phenotyped for all traits; 4the traits were growth and
composition traits of pigs; 5SC1 = only the phenotypes of the 3 025 genotyped
animals that were not part of the validation population were used to train the
prediction equation; 6SC2 = the phenotypes of the 3 025 genotyped animals
that were not part of the validation population and the phenotypes of the 2
939 other animals in the pedigree that were not genotyped were used to train
the prediction equation; 7SSAI = single stage methodology of AlphaImpute;
8SSMi = single stage methodology of Misztal et al. [9].
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Pig85 for AlphaImpute and of 0.80, 0.92, 0.94, and 0.96
for IMPUTE2. For the cattle population, the SireMGS
category of animals had accuracies of imputation of 0.87,
0.97, 0.98, and 0.98 for Cat99, Cat95, Cat90, and Cat85
for AlphaImpute, and 0.60, 0.91, 0.95, and 0.96 for
IMPUTE2.
The distribution of imputation accuracies was skewed,

with most animals having very high accuracy and a small
number of individuals with much lower accuracy. The
distribution of imputation accuracy is shown in Figure 1
for the Pig99 and Pig95 scenarios. For Pig99, 14% of the
animals had an imputation accuracy lower than 0.80 but
it was never lower than 0.60. Imputation accuracy was
very high for all animals that had both parents genotyped
(Figure 2). Problems tended to arise for animals with no
close ancestors genotyped (i.e. “Other”), especially for
Pig99 (Figure 2).
The relationship between imputation accuracy and the

minimum % paternal or maternal alleles called without
ambiguity is shown in Figure 3. Animals with less than
90% of their alleles called without ambiguity tended to
have a lower accuracy, suggesting that a threshold could
be used to give a warning about the quality of imput-
ation for animals that are likely to have large numbers of
errors or that have low relationships to animals with
high-density genotypes and, hence, little information for
20
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N

0.60 0.70 0.80 0.90 1.00 0

Corr. imputed and true genotypes 

a

Figure 1 Distribution of the correlations between true and imputed gen
imputation. Figures 4 and 5 show the distribution of the
% alleles called without ambiguity. This % was in line
with expectations given the category that an animal
belonged to. For example, for individuals for which only
dams were genotyped (category Dam), the % of maternal
alleles imputed was high.
Imputation accuracy for unmapped SNP was lower

than for mapped SNP, with accuracies ranging from 0.73
to 0.83 for the pig dataset (Table 1) and 0.82 to 0.85 for
the dairy cattle dataset (Table 2). Within each dataset,
the trend for increasing imputation accuracy with in-
creasing levels of genotyping of immediate ancestors (i.e.
parents and grandparents) that was observed for mapped
SNP, was also observed for unmapped SNP. Imputation
of unmapped SNP is based on single-locus phasing and
imputation and segregation analysis and therefore gives
an indication as to the power of this component for the
purposes of imputation in comparison to the other com-
ponents, which make explicit use of haplotypes.

Computation time
AlphaImpute has a number of options to increase its
computational efficiency. When using the basic option,
which performs long-range phasing and then does the
imputation, it took 18 hours to carry out the imputation
for the whole genome (i.e. the genotyped SNP on all 18
autosomes and the unmapped SNP) for the pig dataset
on a Linux server with 16 processors and 96 GB of RAM
(the RAM was not needed because memory require-
ments are not large). Applying the update option that
uses previously phased data and therefore does not re-
quire the long-range phasing step to be re-run, decreased
the computation time to six hours.

Performance of SSAI
The use of additional phenotype information on ungeno-
typed relatives in the pedigree resulted in gEBV with
higher accuracy than ignoring this information (Table 3).
For trait 2 and trait 3, the accuracy of SC2-SSAI was
0.51 and 0.60, while for SC1 it was 0.39. For trait 1, there
was no difference in the accuracy of gEBV. However, the
accuracy was already high (0.51) for this trait. There was
little overall difference in the accuracy of gEBV estimated
20
40
60
80

N

.60 0.70 0.80 0.90 1.00

b

Corr. imputed and true genotypes 

otypes for the test animals for the (a) Pig99 and (b) Pig95 scenarios.



Both

SireMGS

DamPGS

Sire

Dam

Other

0.60 0.70 0.80 0.90 1.00

Both

SireMGS

DamPGS

Sire

Dam

Other

0.60 0.70 0.80 0.90 1.00

Corr. true and imputed genotypes Corr. true and imputed genotypes 

ba

Figure 2 1Correlations between true and imputed genotypes for the test animals for the (a) Pig99 and (b) Pig95 scenarios, separated
by category of animals. 1Animals in the testing set were divided into six categories depending on their pattern of relationship to their most
recent densely genotyped ancestors; the categories were: both parents genotyped (BothParents); sire and maternal grandsire (SireMGS); dam and
paternal grandsire (DamPGS); sire only (Sire); dam only (Dam); and other relatives (Other).
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from SC2-SSAI and SC2-SSMi. The computational time
required for SSAI was greater than for SSMi because
SSMi did not require AlphaImpute to be run.

Discussion
AlphaImpute is a flexible tool that imputes genotypes
and alleles accurately and quickly for datasets with large
pedigrees and large numbers of genotyped markers.
When pedigree information is available, it is more robust
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Figure 3 Scatter plots of the correlation between true and imputed g
maternal alleles called without ambiguity. (a) Paternal Pig99, (b) Matern
to data structure in terms of density of the low-density
genotyping platform and relationships among animals
than the widely used software IMPUTE2. The perform-
ance of IMPUTE2 dramatically dropped off as the com-
plexity of imputation increased (i.e. lower relationships
to high density animals, lower density genotyping). In
this study, imputation by AlphaImpute was very accurate
for two datasets that had very different features. The pig
dataset comprised a group of highly related animals from
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Figure 4 Distribution of the percentage of paternal or maternal alleles called without ambiguity for the test animals for the Pig99 and
Pig95 scenarios. (a) Paternal Pig99, (b) Maternal Pig99, (c) Paternal Pig95, (d) Maternal Pig95.
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a single line, whereas the cattle dataset was multiple-
breed in nature but with groups of highly related animals
within each breed. The pig dataset had many more
females than males genotyped, while in the cattle dataset,
most of the genotyped animals were male. In the pig
dataset, the animals to be imputed came from the most
recent generation but in the cattle dataset they were
selected at random from across the pedigree. AlphaIm-
pute has also been used in several commercial datasets
in multiple species (data not shown). Almost without ex-
ception it gives results that are at least as good as the
results presented in this study. The computational time
required for some of these other datasets illustrates the
computational cost for a wide variety of scenarios. Imput-
ing a whole genome in a poultry pedigree of 18 000 birds
took similar amounts of time (Andreas Kranis, personal
communication) to that required for the pig dataset in this
study (circa 18 hours for the full algorithm). Imputing
using the full algorithm on a small dataset of 1500 animals
took two hours, while the update option reduced this to
15 minutes. Imputing one chromosome for a pedigree of
300 000 animals was not feasible (Jarmilla Johnston, per-
sonal communication) and may require parallelizing the
imputation steps. The numbers of animals, the depth of
the pedigree, and the relationships between genotyped ani-
mals affect computation time.
Most imputation methods include two steps, a phasing

step that involves resolving the haplotypes of high-density
genotyped animals, and an imputation step that involves
identifying which combination of these haplotypes match
the low-density genotyped animals or ungenotyped ani-
mals that have allele probabilities. The phasing step is the
most difficult component. AlphaImpute uses the long-
range phasing and haplotype library imputation capacity of
AlphaPhase1.1 [17] to phase genotypes. This approach
allows great flexibility in the pedigree structure among
high-density genotyped animals. Multiple generations of
high-density genotyped animals within constrained pedi-
gree structures, such as having both parents being geno-
typed and large half sib family groups e.g. [6], are not
needed. The high-density genotyped animals can be scat-
tered across a pedigree, or all be from the same generation
or have no recent pedigree links. Unmapped SNP are
imputed using the algorithm of Kerr and Kinghorn [18] on
a single-locus basis without using haplotype information.
To tackle the problem of imputation, AlphaImpute com-

bines long-range phasing, haplotype library imputation,
simple phasing and imputation rules, and segregation ana-
lysis. It accesses and updates all this information by iterat-
ing across each gamete by accessing haplotypes of varying
length and varying starting and ending positions, and
passes down the pedigree, and through the haplotype li-
braries, eliminating ancestral or other haplotypes to accu-
mulate evidence about the alleles that an individual carries
at each SNP. It iterates this whole process a number of
times before finally using segregation analysis [18] to re-
calculate probabilities for alleles that are still missing. In a
previous attempt at imputation [25,26], all genotype prob-
abilities (i.e. without a truncation at >0.99) were used to
give a score for the match of each pair of haplotypes to the
single-locus phasing information. This approach was
impaired by the large number of haplotype pairs available
and the resulting very high selection intensity for choosing
the best-fitting haplotype pair with many haplotype combi-
nations that have similar scores by random chance. Hence
this approach was not used here.
AlphaImpute provides phased alleles or allele probabil-

ities for all genotyped SNP for all animals in the pedigree
and resolves parent of origin of all alleles along each
chromosome. Therefore, it can be used as an accurate
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haplotyping program when pedigree information is avail-
able. This allows interesting applications, such as modeling
identity by descent probabilities for estimation of gEBV
and QTL detection, or models where parent of origin is
relevant, such as models with imprinting or crossbreeding
effects [27].

Strategy for routine use of AlphaImpute
AlphaImpute was designed for routine use in commer-
cial breeding programs that carry out imputation as
often as weekly. In these circumstances, the data flow
may be such that large numbers of new low-density gen-
otyped animals are added weekly while new high-density
genotyped animals may only be added every few weeks
or months. The program has an update option for such a
situation. This update option involves only phasing the
high-density animals whenever significant numbers of
new high-density genotyped animals are added. This dra-
matically reduces the computation time for the weekly
imputation runs. Further options to increase flexibility of
use include an ability to read in phased alleles from other
haplotyping software (e.g. half-sib family haplotyping
software [28]) under the condition that the parental ori-
gin of each phased allele is known, and to select a subset
of the high-density genotyped individuals to have their
haplotypes resolved by long-range phasing and haplotype
library imputation. For example, this subset could be the
key sires in a pedigree or it could be a subset of animals
that could not have their phase resolved by half-sib fam-
ily haplotype phasing.

SSAI and increasing the accuracy of genomic selection
Single-stage genomic evaluations [9] are appealing because
they use all available pedigree, genomic, and phenotypic
data, and may avoid bias that could be introduced by two-
stage genomic selection strategies [29]. Both SSAI and
SSMi increased the accuracy of the gEBV compared to the
base scenario SC1 but SSAI did not outperform SSMi.
SSAI uses a single base for all animals in the pedigree,
which is determined by the allele frequencies in the data.
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In contrast, with SSMi the base is not necessarily the same
for genotyped and pedigreed animals (although alternatives
have been proposed [10,11] based on ideas of Powell et al.
[30]). For the data analyzed here, the differences between
these base populations may not have been large enough to
result in dramatic differences in performance. The other
difference between the methods was that SSMi used
GBLUP, assuming equal variance at all SNP, whereas SSAI
used a Bayesian method (BayesB) that allows for unequal
variances for each SNP. BayesB has shown little benefit
over GBLUP models if the traits are more polygenic in na-
ture e.g. [31]. Finally, with millions of genotyped animals,
SSMi may become computationally infeasible because it
requires full inversion of two very dense matrices for the
genotyped animals. SSAI does not require explicit inver-
sion of any matrices and use of parallelized computation
may make it a feasible method for datasets with millions of
genotyped or imputed animals. Other solutions for single-
stage methodology avoid the need for inversion are under
development e.g. [Legarra A, Ducrocq V: Computational
strategies for national integration of phenotypic, genomic
and pedigree data in a single-step BLUP, submitted].
One weakness of SSAI may be that the genotypes

imputed will not be very different from two times the al-
lele frequency (i.e. no information for imputation) for
animals that are very distantly related to animals that are
genotyped, or when only a small proportion of the ani-
mals in a dataset have genotype information. Given the
prevalence of genotyping candidates for selection in
breeding programs incorporating genomics, these dis-
tantly related and ungenotyped animals would contribute
little information to the estimated breeding value of can-
didates for selection. However, if their phenotypes are
useful to increase contemporary group sizes or provide
contrasts with which breeding values can be estimated,
an optimal solution may be to use a joint SSAI/SSMi ap-
proach. The SSMi approach automatically accounts for
the uncertainty in imputation, which increases with de-
creasing relationship between genotyped individuals and
individuals that are to be imputed [32,33]. Thus, there is
a trade off between the more accurate imputation with
SSAI and the more appropriate way of accounting for
imputation error in SSMi.

Availability
Both AlphaImpute and AlphaBayes were written in For-
tran 95 and are available for research purposes from
http://sites.google.com/site/hickeyjohn.

Conclusion
A method and software package for phasing and imput-
ation was developed for pedigreed populations and
resulted in much better accuracies of imputed genotypes
than IMPUTE2. The proposed method is fast, accurate, is
robust to the pedigree structure of the genotyped animals,
and can scale to large datasets. The data produced by the
algorithm can be used directly in a single-stage genomic
evaluation that combines all pedigree, genotypes and phe-
notypes in a single analysis.
Appendix A - Description of the AlphaImpute
algorithm
There are three primary steps in AlphaImpute, (1) segrega-
tion analysis to calculate allele probabilities for each locus
of each animal in the pedigree, (2) long-range phasing and
haplotype library imputation to phase all high-density gen-
otyped individuals and create a haplotype library for each
genomic region for the dataset, and, (3) impute missing
alleles by matching the allelic probabilities to haplotypes in
the haplotype library.
This algorithm is designed to work for biallelic SNP. SNP
genotypes are coded as 0, 1, 2, or 3, where 0 is a homozy-
gote, 1 heterozygote, 2 the alternative homozygote, and 3
is a missing genotype. SNP alleles are coded as 0 or 1.
Step 1. Using the algorithm of Kerr and Kinghorn (1996),
calculate allele probabilities for each locus of each individ-
ual in the pedigree, using all pedigree and genotype infor-
mation (both high and low density).
Step 2. Using the LRPHLI algorithm of Hickey et al.
(2011) as implemented in AlphaPhase1.1, phase the indivi-
duals genotyped at high density a number of times and
place the identified haplotypes in a library. LRPHLI divides
chromosomes into cores of specified length (e.g. 100 SNP).
By running LRPHLI a number of times, overlaps between
cores are created and each locus is phased as part of differ-
ent cores. This facilitates the identification of phasing
error.
Step 3. Impute missing alleles by matching alleles
imputed at Step 1 to haplotypes phased at Step 2. This
involves several sub-steps. These can be divided into major
and minor sub-steps. Each sub-step is sequentially passed
through; after each major sub-step, each minor sub-step is
sequentially passed through. The description of Step 3 will
begin with a description of the minor sub-steps, followed
by a description of the major sub-steps.
Minor sub-step 1. Parent homozygous fill in. Fill in the
allele of an offspring of a parent that has both its alleles
filled in and has a resulting genotype that is homozygous.
Minor sub-step 2. Phase complement. If the genotype at
a locus for an individual is known and one of its alleles has
been determined, then impute the missing allele as the
complement of the genotype and the known phased allele.
Minor sub-step 3. Impute parents from progeny comple-
ment. If one of the parental alleles is known and the
other missing, then fill in the missing allele in the parent
if at least one of its offspring is known to carry an allele
that does not match the known allele in the parent. (e.g.

http://sites.google.com/site/hickeyjohn
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if a sire has a 0 as one of its alleles and the other allele is
missing but one of its offspring carries a 1 in the gamete
received from the sire, then we can determine that the
sire’s missing allele is 1).
Minor sub-step 4. Make genotype. Any individual that
has a missing genotype but has both alleles known, has
its genotype filled in as the sum of the two alleles.
Major sub-step 1. Convert allele probabilities to phase.
Alleles with probabilities greater than 0.99 of being 0 or
1 are imputed.
Major sub-step 2. Fill in base animals. If a base animal
has high-density genotype information, it is filled in by
arbitrarily assigning one of its haplotypes for one of its
cores as coming from its paternal gamete and the other
haplotype as coming from its maternal gamete. Haplo-
types at other cores are appended to the central haplo-
types where overlapping information can be used to
determine which haplotype at an adjacent partially over-
lapping core matches the arbitrarily labeled paternal
(maternal) haplotype.
Major sub-step 3. Candidate haplotype library imput-
ation of alleles. For each core of each round of the
LRPHLI algorithm, all haplotypes that have been found
and stored in the haplotype library are initially consid-
ered to be candidates for the true haplotype that an indi-
vidual carries on its gametes. Within the core, all alleles
that are known are compared to corresponding alleles in
each of the haplotypes in the library. Haplotypes that
have a number of disagreements greater than a small
error threshold have their candidacy rejected. At the end
of this loop, the surviving candidate haplotypes are
checked for locations that have unanimous agreement
about a particular allele. For alleles with complete agree-
ment, a count of the suggested allele is incremented.
Alleles are imputed if, at the end of passing across each
core and each round of the LRPHLI algorithm, the count
of whether the alleles are 0 or 1 is above a threshold in
one direction and below a threshold in the other. This
helps to prevent the use of phasing errors that originate
from LRPHLI.
Major sub-step 4. Imputation based on parental phase.
This is similar to Major sub-step 3, with the exception
that the process is restricted to individuals that have par-
ents with high-density genotype information and the
candidate haplotypes for each individual’s gametes are
restricted to the two haplotypes that have been identified
for each of its parents by the LRPHLI algorithm. Errors
in phasing are accounted for in the same way as in
Major sub-step 3.
Major sub-step 5. Individual phase imputation. This is
similar to Major sub-step 3, with the exception that the
process is restricted to individuals that have high-density
genotype information and the candidate haplotypes are
restricted to the two haplotypes that have been identified
for the individual by the LRPHLI algorithm. Effectively,
it determines the parental origin of each of these haplo-
types. Errors in phasing are accounted for in the same
way as in Major sub-step 3.
Major sub-step 6. Internal candidate haplotype library
imputation of alleles. This step is similar to Major sub-
step 3, with the exception that haplotype libraries are in-
ternally built using the information that has been previ-
ously imputed. Several different core lengths are used to
define the length of the haplotypes and to ensure that
errors can be accounted for in the same way as in Major
sub-step 3.
Major sub-step 7. Internal imputation based on paren-
tal phase. This step is similar to Major sub-set 4, with
the exception that it is attempted for all animals in the
pedigree on the basis that their parents may now have
imputed high-density information. In the same way as
Major sub-step 6, several core lengths are used to define
the length of the haplotypes and to ensure that errors
can be accounted for in the same way as in Major sub-
step 3.
Major sub-step 8. Imputation based on identifying
where recombination occurs during inheritance from par-
ent to offspring. Each gamete of an individual is exam-
ined from the beginning to the end and from the end to
the beginning of the chromosome. In each direction, at
loci where both the individual and its parent are hetero-
zygous and have phase information resolved, this infor-
mation is used to determine which of the parental
gametes the individual received. Loci for which this can-
not be determined but which are between two loci that
(a) can be determined and (b) come from the same par-
ental gamete, are assumed to come from this gamete (i.e.
no double recombination event in between). Alleles are
imputed in the individual when analysis in both direc-
tions of the chromosome has identified the same inher-
ited gamete and when the parent is phased for this locus
in the suggested gamete, subject to the restrictions that
the number of recombination events for the individuals
is less than a threshold and that the region in which two
recombination events occurred exceeds a threshold
length. Major sub-step 8 is iterated a number of times
with increasingly relaxed restrictions. After each iter-
ation, the minor sub-steps are also carried out.
Major sub-step 9. Recalculate genotype probabilities.
Using the imputed genotype information, the allele prob-
abilities and genotype probabilities are recalculated as in
Step 1. Alleles that are still missing are imputed as
the recalculated allele probability. Missing genotypes
are imputed from the allelic probabilities when both
alleles are still missing, in advance of the recalcu-
lation of allele probabilities, or from the imputed al-
lele and the allele probability when only one allele
was not imputed.
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Other miscellaneous steps
Steps are also included to divide the data into the high
and low density sets of animals, to edit the SNP data,
check for Mendelian inconsistencies, and identify base
parents.
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