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Abstract

Background: In national evaluations, direct genomic breeding values can be considered as correlated traits to
those for which phenotypes are available for traditional estimation of breeding values. For this purpose, estimates of
the accuracy of direct genomic breeding values expressed as genetic correlations between traits and their
respective direct genomic breeding values are required.

Methods: We derived direct genomic breeding values for 2239 registered Limousin and 2703 registered Simmental
beef cattle genotyped with either the Illumina BovineSNP50 BeadChip or the Illumina BovineHD BeadChip. For the
264 Simmental animals that were genotyped with the BovineHD BeadChip, genotypes for markers present on the
BovineSNP50 BeadChip were extracted. Deregressed estimated breeding values were used as observations in
weighted analyses that estimated marker effects to derive direct genomic breeding values for each breed. For each
breed, genotyped individuals were clustered into five groups using K-means clustering, with the aim of increasing
within-group and decreasing between-group pedigree relationships. Cross-validation was performed five times for
each breed, using four groups for training and the fifth group for validation. For each trait, we then applied a
weighted bivariate analysis of the direct genomic breeding values of genotyped animals from all five validation sets
and their corresponding deregressed estimated breeding values to estimate variance and covariance components.

Results: After minimizing relationships between training and validation groups, estimated genetic correlations
between each trait and its direct genomic breeding values ranged from 0.39 to 0.76 in Limousin and from 0.29 to
0.65 in Simmental. The efficiency of selection based on direct genomic breeding values relative to selection based
on parent average information ranged from 0.68 to 1.28 in genotyped Limousin and from 0.51 to 1.44 in genotyped
Simmental animals. The efficiencies were higher for 323 non-genotyped young Simmental animals, born after
January 2012, and ranged from 0.60 to 2.04.

Conclusions: Direct genomic breeding values show promise for routine use by Limousin and Simmental breeders
to improve the accuracy of predicted genetic merit of their animals at a young age and increase response to
selection. Benefits from selecting on direct genomic breeding values are greater for breeders who use natural
mating sires in their herds than for those who use artificial insemination sires. Producers with unregistered
commercial Limousin and Simmental cattle could also benefit from being able to identify genetically superior
animals in their herds, an opportunity that has in the past been limited to seed stock animals.
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Table 1 Birth year distribution for the genotyped
Limousin and Simmental animals

Birth year Limousin Simmental

1966 to 1970 5 6

1971 to 1975 7 11

1976 to 1980 28 26

1981 to 1985 109 28

1986 to 1990 245 57

1991 to 1995 837 96

1996 to 2000 824 180

2001 to 2005 93 736

2006 to 2010 91 1563

Total 2239 2703
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Background
A variety of genotyping arrays, such as the Bovi-
neSNP50 BeadChip [1], can now be used to genotype
cattle for at least 50 000 single nucleotide polymorph-
isms (SNP). The resultant SNP marker genotypes can
be used to produce direct genomic breeding values
(DGV) for selection candidates, as proposed by
Meuwissen et al. [2], as soon as DNA can be obtained
and without delaying selection to collect phenotypes.
This allows reduced generation intervals, which might
increase genetic progress [3]. First, SNP marker effects
must be estimated from an analysis of a population with
SNP genotypes and trait phenotypes (training set). The
accuracies of the resulting DGV are key to the success-
ful application of this new technology in genetic im-
provement. MacNeil et al. [4] showed that DGV could
be considered as a correlated trait to that for which
phenotypes are available for traditional estimation of
breeding values. The square of the estimated genetic
correlation represents the proportion of genetic variance
explained by the genomic information and reflects the
accuracy of the DGV. The objective of this study was to
estimate genetic correlations between nationally evalu-
ated traits and DGV in Limousin and Simmental beef
cattle.

Methods
Genotype and phenotype data
A total of 2239 registered Limousin and 2703 registered
Simmental animals were genotyped either at the
University of Missouri (Columbia, MO) or by GeneSeek
(Lincoln, NE). Most animals were genotyped with the
BovineSNP50 BeadChip (Illumina, San Diego, CA) but
264 Simmental animals were genotyped with the Bovi-
neHD BeadChip (Illumina, San Diego, CA). The DNA
for each animal was obtained from cryopreserved semen
or hair samples provided by artificial insemination (AI)
organizations or by numerous breeders of respective
registered Limousin or Simmental cattle. For Limousin
cattle, DNA was also available from samples sent to the
University of Missouri for genetic testing for a mutation
responsible for protoporphyria [5]. Birth year distribu-
tions for the genotyped animals within each breed are
provided in Table 1.
There are currently two versions of the BovineSNP50

BeadChip, referred to as B and C, which correspond to
the initial product release and its re-synthesis, respect-
ively. In this study, Simmental animals were genotyped
with either version of the BovineSNP50 BeadChip or
with the BovineHD BeadChip. All Limousin animals
were genotyped with version B of the BovineSNP50
BeadChip. For animals that were genotyped with the
BovineHD BeadChip, genotypes for markers that were
common to versions B and C of the BovineSNP50
BeadChip were extracted. Since we assembled genotypes
from different array versions for different breeds, which
included monomorphic loci, the final genotype files
included 56 794 markers for Limousin and 57 039 markers
for Simmental. Only markers that passed quality control
(call rate ≥ 0.95, minor allele frequency ≥ 0.005 and Hardy-
Weinberg equilibrium test p-value > 1e-30) were used for
further analyses. The genotype data were gathered from
various sources (respective breed associations and various
research projects) and some data was provided without
call rate information. Consequently, the marker quality
control tests were performed based on data from the 2896
Limousin or Limousin-Angus animals and the 1706 Sim-
mental animals that were in the University of Missouri
database at the time of analysis. The number of markers
that passed all quality control tests and were used for ana-
lysis were 45 147 for Limousin and 47 364 for Simmental
animals. Any missing genotypes (0.02% and 2.77% of all
genotypes for the Limousin and Simmental animals, re-
spectively) were replaced with the average value (on a 0–2
scale) for each SNP in that particular breed.
Deregressed estimated breeding values (DEBV),

derived following Garrick et al. [6], were used as re-
sponse variables to estimate SNP effects and their accur-
acies were used as weighting factors. This method results
in DEBV that are free of parent average effects and the
weights can be used to appropriately account for hetero-
geneous variance due to differences in reliabilities of in-
dividual and parent average EBV and therefore of
corresponding DEBV. Ostersen et al. [7] confirmed in
purebred pigs that using DEBV as the response variable
yielded more accurate DGV than did using EBV. Expected
progeny differences (EPD) and their Beef Improvement
Federation (BIF) accuracies were obtained from each
Breed Association for all of the genotyped animals, their
sires and dams. The EPD were transformed to EBV by
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multiplying by 2 and the corresponding reliabilities (R2)
were obtained as:

R2 ¼ 1� 1� BIF Accuracyð Þ2:

To derive the weighting factors, the proportion of
genetic variance not explained by markers (parameter
c of [6]) was assumed to be 0.40 and heritabilities
that were used are in Table 2. In total, 15 traits were
analyzed (some traits were recorded in only one
breed, Table 2). The number of genotyped animals
with DEBV varied among traits because some animals
had no individual or offspring information contribut-
ing to their EPD. This occurred in some older ani-
mals born before the traits were introduced, and in
some young genotyped animals. The number of geno-
typed animals with DEBV and the average DEBV reli-
abilities for the studied traits for each breed are in
Table 2.
Statistical model
Method “BayesC” [8] was used to estimate marker effects
for genomic prediction. This method assumes that non-
zero SNP effects are drawn from a distribution with con-
stant variance but that some known fraction of markers
(π) have zero effect. Habier et al. [9] showed that BayesC
is less sensitive to prior assumptions than BayesB. For
Table 2 Heritability, number of genotyped animals with
DEBV and mean reliabilities of DEBV for studied traits

Trait Limousin Simmental

h2 N Reliability N Reliability1

Birth weight 0.42 2185 0.65 2664 0.59

Calving ease direct 0.12 1687 0.61 2443 0.57

Calving ease maternal 0.13 1669 0.59 2441 0.43

Carcass weight 0.40 1459 0.67 2663 0.46

Docility 0.35 1225 0.54 - -

Fat thickness 0.35 - - 2463 0.59

Marbling 0.54 1447 0.61 2439 0.57

Rib eye muscle area 0.46 1449 0.62 2435 0.55

Scrotal circumference 0.43 1294 0.44 - -

Shear force 0.40 - - 1045 0.36

Stayability 0.21 757 0.50 563 0.66

Weaning weight direct 0.30 2150 0.53 2663 0.55

Weaning weight maternal 0.14 1480 0.55 2661 0.41

Yield grade 0.40 1446 0.62 2574 0.45

Yearling weight 0.29 1780 0.43 2663 0.56

Parent average contributions have been removed to calculate DEBV and their
reliabilities. Heritabilities reported by North American Limousin Foundation and
American Simmental Association.
each trait, the following model was fit to the DEBV data
for training:

yi ¼ μþ
Xk
j¼1

zijuj þ ei;

where yi is the DEBV for animal i, μ is the population
mean, k is the number of marker loci in the panel, zij is
allelic state (i.e., number of B alleles from the Illumina
A/B calling system) at marker j in individual i, uj is the
random effect for marker j, with uj ∼N(0, σu

2) (with prob-
ability 1 - π) or uj = 0 (with probability π), and ei is a
residual with heterogeneous variance, depending on the
reliability of the DEBV information for animal i [6].
Parameter π was assumed to be 0.95 for all analyses.
Markov chain Monte Carlo (MCMC) methods with 41
000 iterations were used to provide posterior mean esti-
mates of marker effects and variances, after discarding
the first 1000 samples for burn-in. In preliminary ana-
lyses, all genotyped animals were included in the training
set (for each breed separately) to obtain estimates of gen-
etic and residual variances for constructing priors for
genetic and residual scale parameters.
The DGV for individual i within a validation set was

derived as the sum over all k markers of posterior means
of predicted SNP effects, as estimated in the training set,
multiplied by the number of copies of the B allele:

DGVi ¼
Xk
j¼1

zijûj

where DGVi is the DGV for individual i in the validation
dataset, zij is the marker genotype of individual i for mar-
ker j, and ûj is the posterior mean effect of marker j over
the 40,000 post burn-in samples. All analyses were per-
formed using GenSel software [10].

K-means clustering and cross-validation
The accuracy of DGV was evaluated by pooling estimates
from a 5-fold cross-validation strategy. For each breed,
genotyped animals were first divided into five unequally-
sized mutually exclusive groups. Each training analysis
excluded one group when estimating marker effects,
which were then used to predict DGV of individuals
from the omitted group (validation set). This resulted in
every animal having its predicted DGV obtained without
considering its own DEBV.
K-means clustering was used to partition the geno-

typed animals into five groups within each breed,
whereby relatedness was maximized within each group
and minimized between each of the groups [11]. The
CFC Package [12] was used to construct the numerator
relationship matrix between genotyped animals for each
breed, using pedigree information for genotyped animals



Table 3 The number of individuals and the averages
(± standard deviation)

Limousin

Group 1 2 3 4 5

Number 638 376 695 182 348

amax within 0.43±0.12 0.47±0.10 0.38±0.15 0.48±0.09 0.40±0.13

amax between 0.23±0.11 0.29±0.15 0.28±0.15 0.27±0.16 0.27±0.15

Simmental

Group 1 2 3 4 5

Number 606 876 220 876 125

amax within 0.52±0.08 0.35±0.12 0.28±0.04 0.34±0.13 0.50±0.06

amax between 0.17±0.13 0.22±0.19 0.25±0.18 0.25±0.18 0.24±0.18

The average of the maximum genetic relationship coefficient (amax) within and
between groups for five groups formed by K-means clustering in Limousin and
Simmental animals.
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and all their known ancestors, which comprised 13 790
Limousin and 16 716 Simmental individuals. The Harti-
gan and Wong [13] algorithm, implemented using R
[14], was used for K-means clustering based on a differ-
ence matrix obtained from the numerator relationship
matrix among the genotyped animals. The maximum
genetic relationship coefficient (amax) was calculated be-
tween each animal and all other animals within the same
group, and between each animal and all other animals in
the other four groups, so that each animal had two amax

values (within and between groups). The average amax

values of animals of each group were calculated within
and between groups to quantify the quality of the clus-
tering. Further details are in Saatchi et al. [11].

Genetic correlations between trait and its DGV
We applied a weighted bivariate animal model using the
DGV, computed as described above for each genotyped
animal, and their DEBV to estimate variance and covari-
ance components for each of the studied traits in each
breed. The purpose of fitting this model was to estimate
the genetic correlation between the trait (T) and its
respective DGV (rg(T,DGV)). This trait-DGV genetic cor-
relation is required to pool DGV and traditional EBV in
national genetic evaluation [4]. The model was:

DEBV
DGV

� �
¼ X1 0

0 X2

� �
β1
β2

� �
þ Z1 0

0 Z2

� �
α1

α2

� �

þ e1
e2

� �
;

where β1 and β2, are vectors of fixed effects (only the
trait mean for β1 but class effects of the five groups for
β2); α1 and α2, are vectors of random additive genetic
effects for the trait and its DGV, respectively, where
Var α1ð Þ ¼ Gσ2

α1
, Var α2ð Þ ¼ Gσ2α2 and Cov α1;α2ð Þ ¼

Gσα1α2 , where σ2
α1

is the additive genetic variance of trait,

σ2
α2

is the additive genetic variance of DGV ( σ2α2=σ
2
α1

represents the proportion of additive genetic variance of
a trait explained by markers) and σα1α2 is the genetic co-
variance between trait and its DGV; G consists of non-
zero elements of A, the usual pedigree-based numerator
relationship matrix among individuals in the same group,
but with covariances between individuals in different
groups zeroed out as follows:

G ¼

A11 0 0 0 0
0 A22 0 0 0
0 0 A33 0 0
0 0 0 A44 0
0 0 0 0 A55

2
66664

3
77775:

This approach effectively pools information across all
five groups to estimate the genetic parameters. The
remaining effects e1 and e2 are vectors of mutually
uncorrelated random residual effects for the two traits,
Var e1ð Þ ¼ Iσ2e1 and Var e2ð Þ ¼ Wσ2e2 , cov(e1, e2) = 0,
where I is an identity matrix and W is a diagonal matrix
containing weights (the same weights as used in the esti-
mation of SNP effects) based on the reliability of the cor-
responding DEBV [6]; Xi and Zi are known design
matrices for fixed effects and random additive genetic
effects, respectively. Variance components were esti-
mated by restricted maximum likelihood (REML) using
the ASReml v3.0 software package [15].
To evaluate the efficiency of selection based on DGV

in relation to selection based on parent average informa-
tion, relative selection responses were computed for each
trait as the ratio of two accuracies [16]:

Efficiency ¼ Accuracy of DGV
Accuracy of PA

¼ rg T ;DGVð Þffiffiffiffiffiffiffiffi
R2
PA

p

where rg(T,DGV) is the genetic correlation between the
trait and its DGV, and RPA

2 is the reliability of parent
average information. The available parental information
in our dataset represents more than that available on the
parents of the genotyped bulls at the time of their birth
because they include information on progeny and grand-
progeny that would not normally exist at the time of se-
lection. In this efficiency formula, the selection intensity
and generation interval were assumed identical for the
two selection strategies, which is true when DGV infor-
mation is available at the same time as parent average
information.
The efficiency of selection on DGV versus parent aver-

age was also computed for the most recent crop of calves
- those non-genotyped purebred Simmental animals that
were born after January 2012 (overall 323 animals). EPD
and BIF accuracies of their sires and dams were obtained
from the American Simmental Association evaluation in
October 2012.



Table 5 Estimates of heritability of DGV and of genetic
correlations between trait and its DGV

Trait Limousin Simmental

hDGV
2 rg(T,DGV) hDGV

2 rg(T,DGV)

Birth weight 1.00±0.00 0.58±0.04 1.00±0.00 0.65±0.03

Calving ease direct 1.00±0.00 0.52±0.05 1.00±0.00 0.45±0.02

Calving ease maternal 1.00±0.00 0.51±0.03 0.99±0.02 0.32±0.02

Carcass weight 1.00±0.00 0.56±0.06 1.00±0.00 0.59±0.04
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Results
K-means clustering
The number of individuals and average amax within and
between the K-means clustered groups for Limousin and
Simmental animals are presented in Table 3. The average
amax was much larger within groups than between
groups. These results show that the K-means clustering
successfully partitioned individuals into related groups
with reduced relationships between groups.
Docility 1.00±0.00 0.40±0.04 - -

Fat thickness - - 0.98±0.02 0.29±0.02

Marbling 1.00±0.00 0.65±0.06 1.00±0.00 0.63±0.04

Rib eye muscle area 1.00±0.00 0.63±0.05 1.00±0.00 0.59±0.04

Scrotal circumference 1.00±0.00 0.45±0.05 - -

Shear force - - 1.00±0.00 0.53±0.08

Stayability 1.00±0.00 0.39±0.06 1.00±0.00 0.58±0.06

Weaning weight direct 1.00±0.00 0.58±0.04 1.00±0.00 0.52±0.04

Weaning weight maternal 1.00±0.00 0.46±0.07 1.00±0.00 0.34±0.03

Yield grade 1.00±0.00 0.67±0.05 1.00±0.00 0.62±0.06

Yearling weight 1.00±0.00 0.76±0.08 1.00±0.00 0.45±0.02

Heritability of DGV (hDGV
2 ± SE) and genetic correlations between trait and its

DGV (rg(T,DGV)±SE) estimated from bivariate animal models in Limousin and
Simmental.
Genetic correlations between traits and DGV
The estimated genetic (co) variances of each trait and its
DGV are shown in Table 4 and the estimated heritabil-
ities of DGV and the estimated trait-DGV genetic corre-
lations are shown in Table 5. For most traits, estimates
of genetic variance of DGV were smaller than the corre-
sponding estimates of additive genetic variance and were
almost the same as the estimates of genetic covariance
between traits and their respective DGV. Heritabilities of
DGV were 1.00 for most traits. In Limousin animals,
estimates of the genetic correlation of the trait with its
DGV were higher than 0.40 for all traits except for stay-
ability (0.39±0.06). For Simmental animals, estimates of
the genetic correlation of the trait with its DGV were
higher than 0.30 for all traits except fat thickness (0.29
±0.02). Estimates of the genetic correlation of the trait
with its DGV were higher than 0.50 for birth weight,
carcass weight, marbling, rib eye muscle area, weaning
weight direct and yield grade, in both breeds.
Table 4 Estimates of genetic (co)variances of traits and their r

Trait Limousin

σ2
α1 σ2

α2

Birth weight (kg) 2.80 0.93

Calving ease direct (%) 55.92 11.46

Calving ease maternal (%) 78.12 25.91

Carcass weight (kg) 107.82 25.67

Docility (%) 423.76 84.86

Fat thickness (mm) - -

Marbling (units) 0.009 0.002

Rib eye muscle area (cm2) 5.00 1.53

Scrotal circumference (mm) 831.28 154.71

Shear force (kg) - -

Stayability (%) 93.07 11.91

Weaning weight direct (kg) 68.08 18.76

Weaning weight maternal (kg) 26.00 2.83

Yield grade (units) 0.018 0.005

Yearling weight (kg) 111.76 22.82

σ2α1 is the additive genetic variance of trait, σ2α2 is the additive genetic variance of D
covariance between the trait and its DGV.
Efficiencies of selection on DGV versus parent average
Table 6 presents the efficiencies of selection based on DGV
in comparison to selection based on parent average infor-
mation for genotyped animals in both breeds. Efficiencies
differed between traits and ranged from 0.68 (docility) to
espective DGV for Limousin and Simmental animals

Simmental

σα1α2 σ2
α1 σ2

α2 σα1α2

0.93 3.49 1.29 1.39

13.12 108.62 29.90 25.72

22.97 118.60 28.24 18.50

29.67 122.07 30.87 36.49

75.85 - - -

- 7.10 1.29 0.64

0.003 0.145 0.051 0.054

1.73 12.82 4.16 4.33

162.65 - - -

- 0.085 0.021 0.022

12.96 114.30 28.00 32.90

20.80 75.14 18.01 19.13

3.94 53.37 10.14 7.86

0.006 0.073 0.026 0.027

38.44 726.42 61.77 96.28

GV as a proportion of trait additive genetic variance) and σα1α2 is the genetic



Table 6 The reliabilities of parent average and the efficiency of selection on DGV versus parent average

Trait Limousin (Genotyped animals) Simmental (Genotyped animals) Simmental (Young animals)1

RPA
2 Efficiency RPA

2 Efficiency RPA
2 Efficiency

Birth weight 0.42 0.89 0.37 1.06 0.37 1.08

Calving ease direct 0.41 0.81 0.36 0.75 0.33 0.78

Calving ease maternal 0.41 0.80 0.34 0.55 0.28 0.60

Carcass weight 0.39 0.89 0.31 1.07 0.28 1.11

Docility 0.35 0.68 - - - -

Fat thickness - - 0.33 0.51 0.22 0.62

Marbling 0.38 1.05 0.33 1.10 0.20 1.41

Rib eye muscle area 0.38 1.02 0.32 1.05 0.19 1.35

Scrotal circumference 0.32 0.80 - - - -

Shear force - - 0.14 1.44 0.07 2.04

Stayability 0.32 0.69 0.17 1.39 0.15 1.48

Weaning weight direct 0.40 0.92 0.35 0.87 0.33 0.91

Weaning weight maternal 0.39 0.74 0.35 0.57 0.28 0.64

Yield grade 0.38 1.08 0.28 1.17 0.20 1.40

Yearling weight 0.36 1.28 0.36 0.75 0.32 0.79
1Non-genotyped purebred Simmental animals that were born after January 2012 (overall 323 animals).
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1.28 (yearling weight) in Limousin, and from 0.51 (fat thick-
ness) to 1.44 (shear force) in Simmental. Efficiency values
larger than 1 (meaning that indirect selection based on
DGV is expected to produce greater genetic response than
direct selection based on parent average information) were
observed for marbling, rib eye muscle area, yield grade and
yearling weight traits in Limousin, and for birth weight,
carcass weight, marbling, rib eye muscle area, shear force
and yield grade traits in Simmental.
Table 6 also presents the reliabilities of parent averages

and the efficiencies of selection on DGV versus parent
average for non-genotyped young Simmental animals. In
general, reliabilities of parent average were lower for non-
genotyped young animals than those calculated for geno-
typed Simmental animals. Efficiencies are influenced by
the reliabilities of parent average. Higher efficiencies were
obtained for non-genotyped young animals, ranging from
0.60 (calving ease maternal) to 2.04 (shear force) over all
studied traits. The results show that parent average
reliabilities are quite variable, ranging from zero to 0.50,
and show benefits for selection on DGV versus parent
average (efficiency larger than 1) for some Simmental ani-
mals even for traits with overall efficiency smaller than 1
(Additional file 1). Some traits exhibit bimodal distribu-
tions of parent average reliabilities, reflecting the differ-
ence in reliabilities between animals sired by natural
mating compared to artificial insemination (AI) sires.

Discussion
The accuracy of DGV cannot be assessed in the training
set but must be assessed in a sample of individuals that
are not included in training. Multi-fold cross-validation
in beef cattle has some advantages described below in
comparison to partitioning the genotyped animals into
two groups (old and young animals), with training in
older animals and validation in younger animals, which
is the usual approach in dairy cattle studies [17,18].
Using multi-fold cross-validation, the DGV can be
obtained for all genotyped animals in validation sets,
while large training sets can be retained.
Habier et al. [19] showed that the accuracies of DGV

depend on both genetic relationships between individuals
in the training and validation sets and on linkage dis-
equilibrium (LD) between markers and quantitative trait
loci (QTL). They showed that the accuracy of DGV for a
selection candidate decreases as the average genetic rela-
tionship of the candidate to the training set individuals
decreases. In beef cattle, many registered selection candi-
dates are produced by natural mating sires, which may
be distantly related to the individuals in training sets. If
the accuracies of DGV are more dependent on genetic
relationships than on marker-QTL LD, then the effect-
iveness of genomic selection will be limited in practice
for such distantly-related selection candidates. Saatchi
et al. [11] showed that conservative accuracies of DGV
that are less affected by relationships can be obtained by
minimizing the genetic relationships between training
and validation sets using K-means clustering. In this
study, we also used K-means clustering and found
greater amax values between groups than reported by
Saatchi et al. [11] for Angus beef cattle. This indicates
that the genetic relationships were greater between
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training and validation sets for the Limousin and Sim-
mental populations used here than for the Angus popu-
lation used by Saatchi et al. [11].
In simulation studies, the correlation between DGV

and true breeding values (TBV) has been used to repre-
sent the accuracy of DGV. However, in field data, TBV
are not available and the correlation between DGV and
the response variable (phenotype records, EBV, DEBV,
etc.) is commonly used to derive the accuracy of DGV.
In dairy cattle, the correlation between DGV and DEBV
(or EBV) is a good estimate of the accuracy of DGV, be-
cause the reliabilities of DEBV are high. However, in beef
cattle, for which the reliabilities of DEBV are usually low
(less than 0.70, Table 2), these correlations typically
underestimate the accuracy of DGV due to the contribu-
tion of environmental effects and random error to the
DEBV. In some studies, the correlation between the
DGV and the response variable is divided by the square
root of the average reliability of the response variable
[17,20] to adjust for the underestimation of the accuracy.
However, this adjustment does not consider the hetero-
geneous error variance that is associated with DEBV
when they have different reliabilities in the validation
animals, which may lead to bias. Saatchi et al. [11] stan-
dardized the covariance between DGV and DEBV by an
estimate of the genetic variance to estimate the accuracy
of DGV in American Angus beef cattle. In this study, esti-
mates of genetic variance were not available to apply that
method. Instead, the estimate of the genetic correlation of
a trait with its DGV was used to estimate the accuracy of
DGV, as the square of these correlations represents the
proportion of genetic variance accounted for by the gen-
omic information if the DGV has heritability 1.
In general, the DGV accuracies obtained here are lower

than those reported for dairy cattle for traits with similar
heritabilities [17,18,21]. Saatchi et al. [11] also reported
that accuracies of DGV using the BovineSNP50 Bead-
Chip were lower in Angus beef cattle than in dairy cattle.
One reason is that the accuracies of EBV (used to derive
the DEBV response variable) are lower in beef cattle than
in dairy cattle because of a less extensive use of artificial
insemination in beef bulls having fewer progeny with
production records [22,23]. Estimates of SNP effects and
resulting DGV will be more accurate as the accuracies of
EBV (or DEBV) increase, because the response variable
will be closer to the TBV. In dairy cattle, the accuracies
of DEBV in the training set are much higher than in beef
cattle and the number of animals with high accuracy
DEBV is greater. The average accuracy of the EBV for
traits studied by Su et al. [21] was 0.89, compared to
0.57 and 0.52 in our Limousin and Simmental popula-
tions. The size of training population is an important fac-
tor affecting the accuracies of DGV [2], which is typically
higher in dairy than beef cattle [17,18,21]. Furthermore,
it has been common for dairy cattle studies to validate
DGV on progeny [17], and progeny are more highly
related to the training population than the situation we
have created here with K-means clustering. Also, differ-
ent extents and patterns of LD have been reported for
beef and dairy cattle [24,25], which could contribute to
the lower accuracy of DGV reported here. The different
approaches used to measure the DGV accuracies could
also explain these differences.
Estimates of variances and of covariances between

traits and their respective DGV obtained in this study in-
dicate that the heritabilities of the DGV were 1 for most
traits in both the Limousin and Simmental population.
Heritabilities of 1 are expected for perfectly inherited
attributes, such as SNP genotypes or linear functions of
SNP genotypes. However, heritabilities less than 1 (ran-
ging from 0.75 to 0.95) were estimated in Angus cattle
using a similar K-means clustering and cross-validation
approach [11]. In that study, the complete numerator re-
lationship matrix among individuals of all clustered
groups was used in the bivariate animal model, rather
than a matrix with zero covariances between animals
that are in different groups. By using the full relationship
matrix, the heritability of the DGV was underestimated
in [11] because the linear functions that predict DGV
were different for each group. Using the complete nu-
merator relationship matrix also resulted in estimates of
the trait heritability from bivariate analyses to be biased
downwards ([11]) compared to the values used in na-
tional evaluations ([11], Table 2). This downwards bias
was removed when the DEBV were used to estimate her-
itability in a single trait model, i.e. ignoring the corre-
lated DGV. Setting the relationships between animals in
different groups to zero results in the derivative of the
likelihood function being pooled from the derivatives of
the likelihood functions that would be obtained from
separate analysis of each group. Furthermore, when set-
ting relationships between groups to zero, the heritability
of the DGV is depressed only by SNP genotyping errors
and the heritability of the DEBV is essentially the same
as that obtained from single trait analyses of DEBV.
Zeroing relationships between groups results in a block
structure to its inverse of the variance-covariance matrix
and avoids any cross-products between DEBV used to
derive an individual’s DGV and the individual’s DGV.
That cross-product introduces some residual covariance
between DEBV and DGV but these are assumed zero in
the bivariate model used here. We believe that this ap-
proach makes better use of the data than could be
achieved by estimating the genetic correlation between
DEBV and DGV separately in each group and then pool-
ing those estimates.
The estimated trait-DGV genetic correlations varied

between traits due to different quantities of information



Saatchi et al. Genetics Selection Evolution 2012, 44:38 Page 8 of 10
http://www.gsejournal.org/content/44/1/38
and possibly different genetic architectures between the
traits (Table 5). Hayes et al. [26] showed that the accur-
acy of genomic predictions is higher for traits with a
higher proportion of large effect loci than for traits with
no loci of large effect. Furthermore, the LD between
BovineSNP50 BeadChip loci and QTL could differ be-
tween traits and between breeds. The difference in the
trait-DGV genetic correlations was relatively small be-
tween low and high heritability traits due to the use of
DEBV as the response variable, which makes accuracies
less dependent on heritability itself and more a function
of the EBV accuracies. In general, estimates of trait-DGV
genetic correlations were higher in Limousin than in Sim-
mental animals (the averages across traits were 0.55 and
0.50 for Limousin and Simmental, respectively). This may
be because registered Limousin animals have a more
homogeneous genetic background than the Simmental
animals, as the amax values between groups were higher
for Limousin than for Simmental. Both these US associa-
tions allow registration of crossbreds with other beef cat-
tle breeds but upgrading and composite cattle are more
common for the American Simmental Association than
for the North American Limousin Foundation.
The estimated trait-DGV genetic correlations reported

here for Limousin and Simmental animals were lower
than those reported for Angus beef cattle by Saatchi
et al. [11] for most traits that were in common in these
studies. This could be due to the different selection strat-
egies practiced within Angus compared to Continental
breeds or due to differing allele frequencies among the
breeds, which could affect the extent of LD between
markers and causative genes and consequently the accur-
acies of DGV. Also, larger training population sizes
(about 3570 total genotyped animals) were used in
Angus [11]. Using 1006 Angus animals genotyped with a
proprietary 384 SNP panel developed by Igenity (Duluth,
GA), MacNeil et al. [4] reported a lower trait-DGV gen-
etic correlation for marbling (0.38) than obtained here in
Limousin and Simmental animals (correlations of 0.65 or
0.63, respectively, Table 5). The different SNP panels
used for the prediction of DGV and different training
and validation populations largely explain these differ-
ences. In the commercial implementation of genomic
prediction in these breeds, training will use all genotyped
animals from each breed to predict DGV for selection
candidates, which usually are young animals without
phenotype records. Thus, higher correlations than
reported here are expected due to the larger training
dataset sizes (from all genotyped animals) and closer
genetic relationships between training and implementa-
tion populations.
In beef cattle, birth weight is typically the only obser-

vation on a young bull at the time of castration when a
decision is made to retain the bull. While the animal’s
birth weight may contribute to EPD calculated for wean-
ing weight direct and yearling weight in a multi-trait
analysis performed before selection, in general, parent
average information is the main source of information
available for selecting young animals. The efficiencies of
selection based on DGV in comparison to selection
based on parent average information (Table 6) indicate
that selection on DGV was more efficient than using
parent average information only for some traits. In gen-
eral, the parent averages used here have higher reliabil-
ities than parent averages that are available at the time of
birth of their progeny because they include information
on progeny and grandprogeny that would not normally
exist at the time of selection. Also, the available parent
averages are not adjusted for selection to account for the
Bulmer effect. Bijma [27] showed that the accuracy of
parent average is dramatically reduced by selection, up
to a factor of three fold, which is ignored when comput-
ing reliabilities in national genetic evaluations. This leads
to an underestimation of the efficiency of selection on
DGV relative to selection on parent average when the
DGV accuracies obtained by cross-validation are com-
pared to parent average accuracies obtained from na-
tional genetic evaluation.
Reliabilities of parent average are lower and so the effi-

ciencies of selection on DGV versus parent average are
higher for non-genotyped young animals, which repre-
sent the selection candidates. The distribution of parent
average reliabilities exhibits considerable variation within
and between traits and therefore there is considerable
variation in efficiencies of selection on DGV versus par-
ent average (see Additional file 1). Variation in parent
average reliabilities within a trait reflects the difference
in reliabilities between natural mating sires that have few
progeny and AI sires that can have many progeny. Un-
like dairy cattle, natural mating is widely used in the beef
industry. These factors lead to bimodal distributions of
parent average reliabilities for some traits. Even for traits
with efficiencies smaller than 1, there are opportunities
for selection on DGV at least for that fraction of the
population sired by natural mating sires. The proportions
of registrations from natural mating sires are about 63%
among Limousin calves in 2011 (Bob Weaber, K-State
University, personal communication) and about 40%
among Simmental calves (Wade Shafer, American Sim-
mental Association, personal communication). This
means that there are more benefits from selecting on
DGV for breeders who use natural mating sires in their
herds.
Here, we deliberately tried to minimize the relationship

between training and validation set individuals by K-
means clustering to establish lower bounds for predic-
tion accuracies. In practice, training will be performed
on all genotyped animals and predictions will be
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implemented in young animals (creating higher genetic
relationships between training and validation or imple-
mentation sets) and so even higher efficiencies for select-
ing on DGV are expected. However, parent average
information (and/or the animal’s own records) could be
blended with DGV information for selecting young ani-
mals, for example using a selection index approach [17].
Saatchi et al. [11] combined the DGV and adjusted par-
ent average information in a selection index for 16 traits
in Angus beef cattle and showed that the accuracies of
blended information are equal or a little higher than the
accuracies of the most informative source of information
(either DGV or parent average).
Progeny testing is a strategy that is commonly used to

increase the accuracy of the predicted genetic merit of
selection candidates but it increases generation intervals
from 2.5 years when using DGV to about 5.5 years [28].
Furthermore, progeny testing increases the cost of
breeding operations and in cattle is practically limited
only to males, which potentially can have many progeny,
while DGV can be obtained for females with the same
accuracies as for males. The availability of DGV creates
new opportunities for both commercial Limousin and
Simmental producers to identify superior animals in
their herds. To date, this opportunity has been limited to
seed stock animals enrolled in performance-recording
programs. The beef industry will continue to need to
record phenotypes to retrain genomic predictions for
which accuracies will otherwise erode in successive gen-
erations [20,29].

Conclusions
This study applied genomic prediction to US Limousin
and Simmental beef cattle. By minimizing the genetic
relationships between training and validation groups
using K-means clustering, lower bounds for the accuracy
of genomic predictions were established based on the
genetic correlation between the trait and its DGV. Esti-
mates ranged from 0.39 to 0.76 in Limousin and from
0.29 to 0.65 in Simmental cattle. The efficiency of selec-
tion based on DGV in comparison to selection based on
parent average information for genotyped animals ranged
from 0.68 to 1.28 in Limousin and from 0.51 to 1.44 in
Simmental cattle. However, these efficiencies are likely to
be significantly underestimated because estimates of the
accuracies of parent averages used in this retrospective
study are higher than those that are generally available at
the birth of selection candidates and are higher than
those adjusted for the effects of selection. The reliabil-
ities of parent average were lower for non-genotyped
young animals, and the efficiencies of selection on DGV
versus parent average were higher and ranged from 0.60
to 2.04 in Simmental calves. These results demonstrate
the feasibility of implementing DGV for Limousin and
Simmental beef cattle and indicate that greater genetic
responses can be achieved through the use of DGV in
comparison to parent average information for at least
some traits in that fraction of the population sired by
natural mating. Both Limousin and Simmental breeders
will benefit from using DGV information to increase
genetic progress in their populations.
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