
Ge n e t i c s
Se lec t ion
Evolut ion

Sonesson et al. Genetics Selection Evolution 2012, 44:27
http://www.gsejournal.org/content/44/1/27
RESEARCH Open Access
Genomic selection requires genomic control of
inbreeding
Anna K Sonesson1*, John A Woolliams2,3 and Theo HE Meuwissen2
Abstract

Background: In the past, pedigree relationships were used to control and monitor inbreeding because genomic
relationships among selection candidates were not available until recently. The aim of this study was to understand
the consequences for genetic variability across the genome when genomic information is used to estimate
breeding values and in managing the inbreeding generated in the course of selection on genome-enhanced
estimated breeding values.

Methods: These consequences were measured by genetic gain, pedigree- and genome-based rates of inbreeding,
and local inbreeding across the genome. Breeding schemes were compared by simulating truncation selection or
optimum contribution selection with a restriction on pedigree- or genome-based inbreeding, and with selection
using estimated breeding values based on genome- or pedigree-based BLUP. Trait information was recorded on
full-sibs of the candidates.

Results: When the information used to estimate breeding values and to constrain rates of inbreeding were either
both pedigree-based or both genome-based, rates of genomic inbreeding were close to the desired values and the
identical-by-descent profiles were reasonably uniform across the genome. However, with a pedigree-based
inbreeding constraint and genome-based estimated breeding values, genomic rates of inbreeding were much
higher than expected. With pedigree-instead of genome-based estimated breeding values, the impact of the
largest QTL on the breeding values was much smaller, resulting in a more uniform genome-wide
identical-by-descent profile but genomic rates of inbreeding were still higher than expected based on pedigree
relationships, because they measure the inbreeding at a neutral locus not linked to any QTL. Neutral loci did not
exist here, where there were 100 QTL on each chromosome. With a pedigree-based inbreeding constraint and
genome-based estimated breeding values, genomic rates of inbreeding substantially exceeded the value of its
constraint. In contrast, with a genome-based inbreeding constraint and genome-based estimated breeding values,
marker frequencies changed, but this change was limited by the inbreeding constraint at the marker position.

Conclusions: To control inbreeding, it is necessary to account for it on the same basis as what is used to estimate
breeding values, i.e. pedigree-based inbreeding control with traditional pedigree-based BLUP estimated breeding
values and genome-based inbreeding control with genome-based estimated breeding values.
Background
Traditional pedigree-based BLUP (Best Linear Unbiased
Prediction) estimated breeding values (EBV) [1] are
based on pedigree information and recordings of selec-
tion candidates and relatives, e.g. sibs of candidates, as
in aquaculture breeding schemes, where many traits
(e.g. disease resistance and fillet quality) cannot be mea-
sured on the candidates. For genomic breeding values, the
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effects of dense genetic markers are first estimated in a
test population and later used to predict breeding values
of selection candidates [2]. Genome-based EBV, i.e. EBV
based on high-density marker data across the genome,
generally have higher accuracy than pedigree-based BLUP
EBV, because genetic markers provide a more accur-
ate relationship matrix than pedigree [3], which is
based on expected genetic relationships. For example,
the expected relationship between two full-sibs is 0.5 but
markers show that the true relationship deviates from 0.5
[4] and varies among pairs of sibs, depending on the
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segregation of the parental chromosomes. However, the
increased accuracy of genome-based EBV can differ be-
tween methods used to estimate them and, e.g., the number
of genes affecting the trait. The genomic BLUP method-
ology has shown highest accuracy for traits without large
quantitative trait loci (QTL) but the BayesB method has
shown highest accuracy for traits with known large QTL,
because it puts higher weight on genetic markers with large
effects [5,6].
Optimum contribution selection [7,8] is a selection

method that maximises genetic gain while restricting the
rates of inbreeding in the progeny by restricting relation-
ships between selected parents. Until now, pedigree-based
relationship matrices have been used to control inbreeding
rates, which constrain inbreeding rates at a neutral locus
that is not linked to any QTL. It may be questioned
whether such a locus exists, especially since genomic se-
lection and other studies suggest that most traits are
affected by a large number of QTL across the genome
[9-12]. Thus, using genomic relationships may help to bet-
ter control genome-based inbreeding, and may provide a
tool for breeders to manage footprints of selection [13-16].
The aim of this study was to understand the conse-

quences for genetic variability across the genome when
genomic information is used to estimate EBV and in
managing the inbreeding generated in the course of se-
lection on genome-enhanced EBV. The consequences
are measured by genetic gain and the pedigree- and
genome-based rates of inbreeding and local inbreeding
across the genome. Breeding schemes are compared by
simulating truncation selection or optimum contribution
selection with a restriction on pedigree- or genome-
based inbreeding, and with selection on genome- or
pedigree-based BLUP EBV. The trait under selection is a
trait for which information on selection candidates
comes from full-sibs, which provides a challenging test
for developing theory, because the use of genome-based
EBV is most beneficial in this situation [3]. In addition,
these so-called sib-tests are commonly applied in prac-
tical breeding schemes.

Methods
Simulation of populations
A base population with an effective size of 1000 was
simulated for 4000 generations. Details are described in
[17]. One hundred sires and 100 dams from generation
4000 were randomly selected to create generation G0,
consisting of 3000 selection candidates (Ncand) and
3000 or 6000 test sibs (Ntest). In later generations (G1-
G10), selection was done by truncation or optimum con-
tribution selection. Inbreeding coefficients based on
pedigree (Fped) and rates of inbreeding based on pedigree
(ΔFped) assumed that the G0 individuals were unrelated
base individuals.
Simulation of the genomes has been described else-
where [17]. The genome consisted of 10 pairs of chro-
mosomes (1Morgan each). All polymorphisms were
generated during the 4000 generations of the Fisher-
Wright population model [18,19]. The infinite sites mu-
tation model [20] was used to create new bi-allelic single
nucleotide polymorphisms (SNP), using a mutation rate
of 10-8 per nucleotide and assuming 106 nucleotides per
cM. Inheritance of the SNP followed Mendel’s law and
the Haldane mapping function [21] was used to simulate
recombination. One hundred SNP per chromosome
were sampled randomly without replacement from SNP
with a minor allele frequency (MAF) > 0.05 and used as
QTL, i.e. the total number of QTL was 1000. From the
remaining SNP, 1000 SNP with the highest MAF over all
chromosomes were chosen as genetic markers. In
addition, 100 artificial identical-by-descent (IBD) mar-
kers were positioned at equal distances on each chromo-
some. These IBD markers were not involved in
selection, but were assigned unique founder alleles in
generation G0, in order to monitor the increase of the
local genomic IBD at these positions.
Additive effects of the QTL alleles were sampled from

a gamma distribution with a shape parameter of 0.4 and
a scale parameter of 1.66 [9]. The QTL effects were
assumed to be either positive or negative with a prob-
ability of 0.5 because the gamma distribution only gives
positive values. After sampling, these QTL effects were
standardized so that the total genetic variance was 1.

Calculation of phenotypic values and true and estimated
breeding values
The true breeding value (TBV) of an individual was cal-
culated as:

TBVi ¼
X1000

j¼1
xij1gj1þxijgj2
� �

where xijk is the number of copies of the kth allele that in-
dividual i has at the jth QTL position and gjk is the effect
of the kth allele at the jth position. The phenotypic values,
yi, of individuals in the sib-test were simulated by:

yi ¼ TBVi þ εi

where εi is an error term for animal i, which was normally
distributed with mean zero and variance σ2e, which was
adjusted so the heritability was 0.4.
Marker effects, âj, were predicted using the genome-

based BLUP method described in [2], named GBLUP
hereafter. The statistical model used was:

yi ¼ μþ
Xn

j
Xijaj þ ei

where yi is the record of test sib i, μ is the overall mean,
n is the total number of markers, Xij denotes the
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standardised marker genotype, aj is the random effect of
the jth marker and Var(aj) is assumed 1/n since the total
genetic variance was standardised to 1, ei is a random re-
sidual. Xij was standardised to a mean of 0 and a vari-
ance of 1:

Xij ¼ �2pj=√Hj

denotes that the individual is homozygous for the first
allele; (1-2pj)/√Hj denotes that it is heterozygous; and (2-
2pj)/√Hj denotes that it is homozygous for the second al-
lele, where Hj is the marker heterozygosity and pj is the
frequency of the second allele. Division by √Hj results in
every SNP explaining an equal amount of variance a
priori (independent of the frequency of the SNP). The
genetic variance explained by a SNP is R2*VQTL, where
R2 is the linkage disequilibrium between the SNP and
the nearest QTL, and VQTL is the variance due to this
QTL. Division by √Hj, avoids making the assumption
that SNP with high Hj have proportionally higher R2,
which would especially be questionable in a situation
where most QTL have a low frequency, as is the case
when the QTL alleles are in mutation-drift equilibrium
and even more so if the QTL are under selection. How-
ever, QTL with low allele frequencies are expected to
have lower VQTL. Here, none of the markers used had
low Hj, thus correction of Xij by √Hj is expected to affect
the results only marginally.
Genome-based BLUP EBV (GEBV) were estimated by

summing across the estimated effects of the markers:

GEBVj ¼
Xn

j

Xijâj

In addition, GEBV were calculated with method
BayesB, as described in [2]. BayesB uses the same statis-
tical model as GBLUP but attempts to reduce the weight
of SNP that are estimated to have no association with
QTL. It also assumes a priori that many SNP have no ef-
fect and few SNP (1000 here) have t-distributed effects.
Traditional pedigree-based BLUP EBV (TEBV) were

estimated with the method described in [1], named
TBLUP hereafter, in which genetic relationships are
based on pedigree information. Pedigree recording
started in generation G0.

Optimum contribution selection and mating
The optimum contribution selection algorithm of [7]
was used, i.e. the genetic level of the next-generation
animals, gt+1= ct’EBVt (EBVt contains either GEBV or
TEBV), was maximised, where ct is a vector of genetic
contributions of the selection candidates to generation
t+ 1. Rates of inbreeding were restricted by constraining
the average relationship of the selection candidates to
�Ctþ1 ¼ ct0Atct=2 , where At was a relationship matrix
among the selection candidates, �Ctþ1 ¼ 1� 1� ΔFdð Þt ,
and ΔFd was the desired rate of inbreeding [8], i.e. 0.005
or 0.010 per generation. The relationship matrix was ei-
ther based on pedigree or genomic data. For the latter, it
equalled Gt=XtXt’/n [3].
Having calculated the optimum contribution vector ct,

the next generation of offspring were produced by sam-
pling a male and a female parent with replacement,
according to the probabilities given by 2ct, which
resulted in random mating. One hundred full-sib fam-
ilies were created each generation, from G1 to G10. Each
family was split into 30 selection candidates and 30 or
60 test sibs. The test sibs were recorded for the trait.

Recording
For the schemes using TEBV, test sibs were only pheno-
typed, while for those using GEBV, test sibs were pheno-
typed and genotyped to estimate the SNP effects and
selection candidates were genotyped. This sib-test pro-
vided a challenging test for the management of genetic
variation but it is also very relevant as it in such circum-
stances that the use of genomic data in breeding value
estimation is of greatest value.

Truncation selection and mating
For a simple comparison of TBLUP and GBLUP, trunca-
tion selection was used instead of optimum contribution
selection. Each generation, 100 sires and 100 dams were
selected from 3000 selection candidates on their breed-
ing values estimated either from TBLUP or GBLUP.
These sires and dams were pair-wise mated to produce
100 full-sib families for the next generation, using sam-
pling without replacement.

Calculation of genomic identity-by-descent
Genomic IBD was obtained by calculating the allele fre-
quencies of the founder alleles at the IBD markers, i.e. fij
for founder allele j at IBD marker i. Their homozygosity,
i.e. probability of IBD was then calculated for IBD mar-
ker i as Σj fij

2. To calculate ΔFIBD, this IBD probability
was averaged over all IBD markers to evaluate the over-
all IBD over the genome in generationsG0 to G10. IBD
profiles differed between replicates because the position
and size of the QTL differed.

Statistics
TBLUP and GBLUP schemes were compared using ei-
ther truncation selection or optimum contribution selec-
tion. In the latter case, the constraint was based on
relationships derived either from pedigree (ΔFA) or from
markers (ΔFG). The schemes were run for ten genera-
tions (G1-G10) and summary statistics for each of the
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schemes were based on 100 replicated simulations. The
breeding schemes were compared for rates of inbreeding
per generation (ΔF) and genetic gain (ΔG), expressed in
genetic standard deviation units of generation G0 (σa) in
generation G10. The rates of inbreeding per generation
were calculated in two ways, either from the pedigree
ΔFped or using the IBD loci ΔFIBD. Here, the symbol ΔFA
denotes a constraint on pedigree-based relationships and
thus on inbreeding, and ΔFped denotes the rate of
inbreeding as calculated from the pedigree that results
from the breeding scheme. Inbreeding coefficients at
each IBD locus were also stored to analyse inbreeding
rates as a function of locus and generation.
Results
Truncation selection with TBLUP and GBLUP breeding
values
The truncation selection schemes evaluated constitute
classical selection with comparisons made at constant
selection intensity and scheme size. For these schemes,
genetic gain was 11% higher for GBLUP than for TBLUP
and, although ΔFped was much lower for GBLUP than
TBLUP, ΔFIBD was only slightly lower for GBLUP than
TBLUP (Table 1). Rate of inbreeding measured by ΔFIBD
was 51% greater than inbreeding measured by ΔFped for
TBLUP schemes but 292% greater for GBLUP schemes
(Table 1). Thus, with GBLUP schemes the increase in
genomic inbreeding was well above the increase in pedi-
gree inbreeding. A higher genome-wide IBD profile was
obtained with TBLUP than with GBLUP (Figure 1).
These results show the importance of considering the
basis for constraining rates of inbreeding.
Optimum contribution selection with TBLUP and
GBLUPEBV
Table 2 shows that, with the current practice of explicitly
constraining ΔFA, the desired rate of inbreeding, ΔFd,
was observed in ΔFped but not when the constraint was
implemented based on ΔFG. Table 2 also shows that
when selection was on TBLUP, the observed ΔFIBD sub-
stantially exceeded ΔFd.
When ΔFA was constrained, ΔG was substantially

greater with GBLUP than with TBLUP, by ~ 35% when
Table 1 Truncation selection on breeding values
estimated using TBLUP or GBLUP

Breeding value
estimation

ΔG (se) ΔFped (se) ΔFIBD (se)

TBLUP 2.49 (0.035) 0.0156 (0.0001) 0.0235 (0.0009)

GBLUP 2.77 (0.026) 0.0053 (0.0002) 0.0209 (0.0005)

Genetic gain (ΔG), rate of inbreeding based on pedigree (ΔFped) or on
genomic IBD (ΔFIBD) relationship matrices at generation G10 with truncation
selection and either TBLUP or GBLUP breeding value estimatesa.
aNumber of test sibs = 3000; number of selection candidates = 3000.
Ntest= 3000 and by ~25% when Ntest= 6000. Due to the
inadequacy of constraining ΔFA, ΔFIBD increased above
ΔFd even more strongly with GBLUP than with
TBLUP (by ~320-360% with GBLUP and ~35-50% with
TBLUP). The greatest increase in ΔFIBD was observed
when Ntest= 6000.
When ΔFG was constrained, ΔG was again greater with

GBLUP than with TBLUP, however in this case, the mag-
nitudes of the increase depended on ΔFd, i.e. by ~35%
when ΔFd was set at 0.005 and Ntest= 3000 and
by ~65% when ΔFd was set at 0.010. When applying the
constraint using ΔFG with TBLUP, ΔFIBD substantially
exceeded the desired ΔFd. The observed ΔFped was even
more extreme, and was ~50% greater than ΔFIBD. How-
ever, when applying the constraint using ΔFG with
GBLUP, ΔFped was ~70-80% of the desired ΔFd.
With GBLUP, schemes that constrained ΔFA showed a

substantially more variable IBD profile across the gen-
ome (Figure 2A), than those that constrained ΔFG
(Figure 2B). In contrast, with TBLUP, schemes that con-
strained ΔFA showed little variation in the genome-wide
IBD profile (Figure 2C), while those that constrained
ΔFG showed a very erratic profile (Figure 2D).
Schemes that constrained ΔFG showed a constant

ΔFIBD over generations but at a higher level than the
constraint when selection was on TBLUP (Figure 3).
Schemes that constrained ΔFA showed an increase in
ΔFIBD over generations, in particular when selection was
on GBLUP. This increase in ΔFIBD over generations is
probably due to fixation of favourable alleles, which
occurs faster with GBLUP. This increased ΔFIBD over
time also suggests that the constraint on ΔFA becomes
less restrictive over time when selection uses GEBV.
Use of GEBV derived using BayesB showed very simi-

lar results as using GEBV from GBLUP in terms of ΔG
and accuracy of selection (Table 3). BayesB had signifi-
cantly higher ΔFIBD (0.0235 compared to 0.0209), which
can be explained by a larger focus on some SNP, which
increased local IBD values but also the overall ΔFIBD.
These results are in concordance with [5], who found
that BayesB is advantageous for traits with a few large
QTL and many smaller QTL. Here, 1000 QTL were
simulated, which disadvantaged BayesB compared to
GBLUP. With BayesB, the IBD profile had a few IBD
peaks but was generally quite uniform (Figure 4).

Discussion
Several methods for the management of ΔFA have been
suggested in the literature [7,8,13,14,16]. With the devel-
opment of genomic selection, genomic relationships
have become available in addition to the traditional
pedigree-based relationships. An immediate question
then is whether the constraint should be based on pedi-
gree (ΔFA) or genomic (ΔFG) relationships, when
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Figure 1 Identity-by-Descent for one replicate of truncation selection on breeding values estimated by TBLUP or GBLUP. Variance
(σg

2-unit) explained by QTL in generation G0 (—) and Identity-by-Descent (IBD;�) in generation G10 with truncation selection and (A) TBLUP

(BLUP based on pedigree relationships) or (B) GBLUP (BLUP based on genomic relationships); results are from one replicate with 3000 selection
candidates and 3000 test sibs.
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combined with breeding value estimation based on pedi-
gree (TBLUP) or genomic (GBLUP) information. Our
results address this question by showing that if the infor-
mation sources used to estimate breeding values and to
constrain ΔF are identical, i.e. either both pedigree-based
or both genomic-based, then the resulting rates of gen-
omic inbreeding correspond to the desired values and
the rates are reasonably uniform across the genome.
However, if different information is used to calculate
breeding values and to constrain ΔF, e.g., the EBV are
based on genomic information and the ΔF constraint is
on pedigree information, the resulting rate of inbreeding,
based on ΔFIBD, is much higher than expected.
It is important to recognise the distinction between

the three relationships measures between two individuals
u and v that are considered in this study: auv, the numer-
ator relationship derived from pedigree; guv, the identity
by state relationship obtained from the markers accumu-
lated over time and used to estimate GEBV; and tuv, the
relationship between the identity-by-descent markers
defined in the base population used for reference. EBV
were estimated either using auv (TBLUP) or guv
(GBLUP) and rates of inbreeding were controlled using
either auv or guv, since these values are accessible and
known. However, the examination of the development of
relationships over time is based on auv or tuv since these
measure IBD with respect to the base generation G0,
with the objective of controlling the drift in an unknown
locus from the start of selection. Using auv for this con-
trol will be predictive and unbiased for a neutral locus
that is unlinked to variants with an effect, whereas tuv is
an empirical value that is not restricted by neutrality or
position of the locus. Using guv to control inbreeding has
the advantage of acting upon relationships that already
exist in generation G0, whereas both auv and tuv assume
that G0 animals are unrelated.
Interpretation of the consequences of these differences

in breeding value estimation, control of inbreeding and
assessment of IBD may be helped by considering the
impacts when u and v are full-sib candidates. For the



Table 2 Optimum contribution selection on breeding values estimated using TBLUP or GBLUP

Ntest ΔFd ΔG (se) ΔFped (se) ΔFIBD (se)

ΔFA constraint – GBLUP

3000 0.005 3.08 (0.035) 0.0050 (0.0001) 0.0211 (0.0004)

6000 0.005 3.10 (0.035) 0.0048 (0.0001) 0.0226 (0.0004)

6000 0.010 3.31 (0.037) 0.0098 (0.0003) 0.0422 (0.0008)

ΔFG constraint – GBLUP

3000 0.005 1.91 (0.026) 0.0041 (0.0001) 0.0051 (0.0001)

6000 0.005 1.95 (0.024) 0.0039 (0.0001) 0.0053 (0.0001)

6000 0.010 2.41 (0.028) 0.0071 (0.0002) 0.0102 (0.0002)

ΔFA constraint – TBLUP

3000 0.005 2.26 (0.003) 0.0050 (0.0001) 0.0068 (0.0001)

6000 0.005 2.50 (0.003) 0.0049 (0.0001) 0.0074 (0.0001)

6000 0.010 2.63 (0.003) 0.0102 (0.0002) 0.0151 (0.0003)

ΔFG constraint – TBLUP

3000 0.005 1.41 (0.041) 0.0193 (0.0004) 0.0121 (0.0002)

6000 0.005 1.44 (0.039) 0.0185 (0.0004) 0.0122 (0.0002)

6000 0.010 1.48 (0.046) 0.0300 (0.0008) 0.0183 (0.0003)

Genetic gain (ΔG), rate of inbreeding based on pedigree (ΔFped) and on genomic IBD (ΔFIBD) relationship matrices at generation G10 when the constraint on
relationship was either pedigree-based (ΔFA) or marker-based (ΔFG) with TBLUP or GBLUP breeding value estimatesa.
aNtest=number of test sibs; ΔFd = desired rates of inbreeding; number of selection candidates = 3000.
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simulated sib-tested trait, the distinctions between EBV
estimated using TBLUP versus GBLUP are clear, since u
and v will have the same EBV with TBLUP but informa-
tion on Mendelian sampling terms to differentiate the
sibs is available with GBLUP. For the same reason, full-
sibs u, v and w will be treated as having equal pair-wise
relationships when measured using auv but different
pair-wise relationships when measured using guv.
The incentive to include genomic data into breeding

schemes comes from its use in breeding value estimations.
With GBLUP, the results of Table 2 are interpretable from
the framework outlined in the previous paragraph. When
ΔFA is constrained, the relationship of two selected indivi-
duals u and v will be greater than their pedigree relation-
ship since their high merit implies that on average they
are more likely to share QTL, as well as flanking segments
that, over time, will tend to become more homozygous
along with the QTL. Thus the genome will contain seg-
ments where segregation is not free from the influence of
selection and where there is more homozygosity than pre-
dicted by auv and so E[tuv|auv] >auv, i.e. when we condi-
tion on or constrain auv, we expect tuv to exceed auv.
Hence, constraining ΔFA will result in underestimating
ΔFIBD. The extent of this underestimation will depend on
the density of the QTL across the genome and the linkage
disequilibrium between the QTL. In a similar way, when
ΔFG is constrained, E[auv|guv] < guv, and so ΔFped will be
less than the target value, whereas E[tuv|guv] ~ guv in this
context.
If breeding value estimation is based on TBLUP then
truncation selection will select whole full-sib families
but not with selection with optimized contributions.
When inbreeding management is based on ΔFA, then
E[tuv|auv] > auv after selection, for the same reasons as
before, i.e. large segments are not free of the influence
of selection, and ΔFIBD is greater than the desired rate
of inbreeding. With TBLUP, the impact on ΔFIBD is not
as large as when using GBLUP since the QTL are not
identified as accurately and response to selection is less.
The most challenging outcomes occur when ΔFG is con-
strained. In this case, two full-sibs might be selected if
they appear less related based on markers than expected
based on pedigree. On the one hand, E[tuv|guv] is greater
than guv since the prediction errors of tuv from guv will be
positive because variation not explained by guv is more
likely to reflect the full-sib pedigree relationship. On the
other hand, E[auv|guv] will be much greater than guv since
the genomic relationships of those sibs that are selected
will be below average and thus lower than auv. Hence,
ΔFped will be greater than ΔFIBD. It is notable that the
combination of TBLUP with ΔFG delivers the least gain
for close to the highest rates of inbreeding, by either
measure (see Table 2). Although this combination may
not be practical, it is instructive.
The dynamics of ΔFIBD over time can also be

explained within this framework. The only combination
without a stable trend in inbreeding was when ΔFA was
used as the constraint with GBLUP; all other
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Figure 2 (See legend on next page.)
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Figure 2 Identity-by-Descent for one replicate of optimum contribution selection on breeding values estimated by TBLUP or GBLUP.
Variance (σg2-unit) explained by QTL in generation G0 (—) and Identical-by-descent (IBD; �) in generation G10 with �FA constraint based on

pedigree relationships and GBLUP (BLUP based on genomic relationships) (A), �FG constraint and GBLUP (B), �FA constraint and TBLUP (BLUP
based on pedigree relationships) (C) or �FG constraint based on marker relationships and TBLUP (D); results are from one replicate with 3000
selection candidates and 3000 test sibs and a desired rate of inbreeding of 0.005.
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combinations showed a stable ΔFIBD (Figure 3). With
GBLUP and ΔFA, ΔFIBD continuously increased during gen-
erations G1 to G10 (i.e. the rate of inbreeding increased),
probably because the estimates of marker effects are more
persistent over generations than the pedigree relationships,
implying that changes across many generations of the fre-
quencies of (selected) chromosome segments are not
picked up by pedigree relationships. As a result, GEBV
favour specific chromosome segments generation after gen-
eration, thereby increasing ΔFIBD but not ΔFped. Thus, espe-
cially in the longer term, discrepancies in the information
used to estimate the breeding values and to control
inbreeding will hamper the control of inbreeding.
Some of the outcomes observed here depend on the

number and distribution of effects of the QTL: we simu-
lated 1000 QTL on a genome of 10 M. With a much smal-
ler number of QTL, i.e. when the genome is predominantly
composed of neutral loci that are weakly linked to QTL,
ΔFIBD is expected to be closer to ΔFped. However, increasing
evidence from well-studied traits such as human height
indicates that many traits are composed of many QTL each
explaining a small part of the variance [12]. Trait heritabil-
ity was rather high here (0.4). With a lower trait heritability,
the number of sib-tested animals needs to be increased in
order to obtain similar accuracies as found in the present
study [22].
Inbreeding at QTL positions is desirable in breeding

schemes because this increases the frequency of the
Figure 3 Rates of genomic inbreeding over generations. Rates of
inbreeding based on genomic IBD (�FIBD) over generations for schemes
with�FA constraint based on pedigree relationships and GBLUP (BLUP
based on genomic relationships)(□),�FG constraint based on genomic
relationships and GBLUP (▪),�FA constraint and TBLUP (BLUP based on
pedigree relationships) (°) or �FG constraint and TBLUP (•); results are
from the scheme with 3000 selection candidates and 3000 test sibs and
a desired rate of inbreeding of 0.005.
positive alleles towards homozygosity. However, narrow-
ing the genomic IBD peak at the QTL positions is also
desired, so that the remaining genome is as little as pos-
sible affected by selection at individual QTL, i.e. the
footprint of selection should be as small as possible.
Based on the hitchhiking effect [23], a broad genomic
IBD peak around the largest QTL would have been
expected. However, when GBLUP was used and ΔFG was
constrained, the genome-wide IBD profile was rather flat
(Figure 1B), which suggests that this selection method
spreads the selection pressure quite evenly over many
loci in order to control ΔFIBD. This implies that, in prac-
tical breeding schemes, it is not necessary to implement
additional constraints on the genomic inbreeding at
positions surrounding large QTL in order to avoid ex-
cessive rates of genomic inbreeding in QTL regions.
A reduction of the footprint of selection may also be

achieved by increasing the frequencies of a broad
spectrum of QTL alleles slowly, instead of heavily select-
ing on the biggest QTL with the danger of a large selec-
tion footprint. The latter seems to have occurred with
genomic optimum contribution selection with estima-
tion based on GBLUP, since the increase of the IBD was
rather flat across the genome for that scenario
(Figure 1B). The GBLUP method assumes that all SNP
explain the same genetic variance (1/n, i.e. 5000 here).
Use of BayesB resulted in an IBD profile with more
peaks (Figure 4) but not to the extent that local restric-
tions of inbreeding would be required. Further research
is needed to investigate whether in situations with a few
large QTL and using BayesB, directed measures would
be required to reduce the footprint of selection in the
regions of large QTL, and how such measures should be
implemented. In case the SNP effects are estimated ac-
curately and do not change over time, a model that
Table 3 Truncation selection on breeding values
estimated using GBLUP or BayesB

Breeding value
estimation

ΔG (se) ΔFped (se) ΔFIBD (se)

GBLUP 2.77 (0.026) 0.0053 (0.0002) 0.0209 (0.0005)

BayesB 2.73 (0.027) 0.0053 (0.0001) 0.0235 (0.0005)

Genetic gain (ΔG) and rate of inbreeding based on pedigree (ΔFA) or on
genomic IBD (ΔFG) relationship matrices at generation G10 with truncation
selection and either GBLUP or BayesB breeding value estimatesa.
aNumber of test sibs = 3000; number of selection candidates = 3000.



Figure 4 Identity-by-Descent for one replicate of truncation
selection on breeding values estimated by BayesB. Variance
(σg-unit2) explained by QTL in generation G0 (—) and IBD (�) in

generation G10 with truncation selection and BayesB estimated
breeding values; results are from one replicate with 3000 selection
candidates and 3000 test sibs.
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maximises the genetic gain over a specified time horizon
can also be used [3], since this will spread the selection
intensity optimally across the genomic regions in order
to maximise long-term genetic gain.
In our study, allelic effects were assumed purely addi-

tive, whereas dominance and higher order interactions
may occur. Dominance interactions can be partly
accommodated by including a regression on (genomic)
inbreeding in the model used to estimate breeding
values. This will correct the (G)EBV so that they are
valid for matings that result in non-inbred offspring. In
practice, animals are expected to be mated to related se-
lection candidates and thus their (G)EBV should be cor-
rected for the inbreeding depression times their
expected future inbreeding, which is their average coan-
cestry with the selection candidates [24].
The design of the breeding scheme studied here

resembles that of aquaculture breeding schemes, which
rely heavily on sib-testing. In this design, traditional se-
lection relies only on family information and either
selects entire full-sib families or rejects them. The use of
genomic selection makes it possible to estimate within-
family deviations, and thus to distinguish between family
members. This sib-testing design may have exaggerated
the differences between genomic and traditional selec-
tion, and their effects on genome structure, because in
most practical breeding schemes traditional selection
also yields an estimate of the within-family deviation.
However, in such schemes, genomic selection will esti-
mate within-family deviations more accurately and thus
the general outcomes of our study will still hold. In
addition, genomic selection will be applied mainly in
situations in which traditional selection yields little or
no information on the within-family genetic component.
This study shows that serious interactions can occur

between the methods used to estimate breeding values
and the types of relationships used to control inbreeding.
Results showed that outcomes are most stable and pre-
dictable, i.e. the final outcome reflects the constraint,
when the same information is used to estimate breeding
values and to control inbreeding. Thus, genomic selec-
tion has to be combined with genomic control of
inbreeding in order to effectively manage ΔFIBD.

Conclusions
Desired control of inbreeding was only achieved when it
was managed using the same information as is used to
estimate breeding values, i.e. pedigree-based inbreeding
control with pedigree-based estimation of breeding
values and genome-based inbreeding control with
genome-based estimation of breeding values. In
addition, the genome-based estimation of breeding
values allows management of changes in genomic
inbreeding, and thus changes in pedigree-based inbreed-
ing are probably no longer relevant.
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