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Abstract

Background: Studies to detect associations between DNA markers and traits of interest in humans and livestock
benefit from increasing the number of individuals genotyped. Performing association studies on pooled DNA
samples can provide greater power for a given cost. For quantitative traits, the effect of an SNP is measured in the
units of the trait and here we propose and demonstrate a method to estimate SNP effects on quantitative traits
from pooled DNA data.

Methods: To obtain estimates of SNP effects from pooled DNA samples, we used logistic regression of estimated
allele frequencies in pools on phenotype. The method was tested on a simulated dataset, and a beef cattle dataset
using a model that included principal components from a genomic correlation matrix derived from the allele
frequencies estimated from the pooled samples. The performance of the obtained estimates was evaluated by
comparison with estimates obtained using regression of phenotype on genotype from individual samples of DNA.

Results: For the simulated data, the estimates of SNP effects from pooled DNA are similar but asymptotically
different to those from individual DNA data. Error in estimating allele frequencies had a large effect on the
accuracy of estimated SNP effects. For the beef cattle dataset, the principal components of the genomic correlation
matrix from pooled DNA were consistent with known breed groups, and could be used to account for population
stratification. Correctly modeling the contemporary group structure was essential to achieve estimates similar to
those from individual DNA data, and pooling DNA from individuals within groups was superior to pooling DNA
across groups. For a fixed number of assays, pooled DNA samples produced results that were more correlated with
results from individual genotyping data than were results from one random individual assayed from each pool.

Conclusions: Use of logistic regression of allele frequency on phenotype makes it possible to estimate SNP effects
on quantitative traits from pooled DNA samples. With pooled DNA samples, genotyping costs are reduced, and in
cases where trait records are abundant this approach is promising to obtain SNP associations for marker-assisted
selection.

Background
Genotyping with dense single nucleotide polymorphism
(SNP) assays is now common for studies on humans,
laboratory animals, wild animals and livestock. In all
cases, power increases with increasing numbers of geno-
typed individuals. Recent studies on quantitative traits in
humans and livestock suggest that, for many traits,
genetic variation is mainly due to a large number of
regions in the genome, each having a small effect [1,2].
This has led to the conclusion that much larger numbers

of individuals need to be genotyped than was assumed
previously. With the progress in technology, throughput
and number of SNP on the genotyping assays have
increased. The price of genotyping each SNP has come
down by orders of magnitude but the price per individual
assay has remained relatively constant. Consequently, for
studies for which many phenotype records are available
at a low cost, it is interesting to reduce the number of
assays required by genotyping pooled samples of DNA.
Research on the statistical analysis of data from pooled

DNA experiments has included sources and effects of
errors in allele frequency estimates, e.g. [3-5], experimen-
tal design, e.g. [3,6], and methods for inferring phase and
haplotype frequencies [7,8]. To date, studies using DNA
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pooling reported in the literature concern mostly disease
traits for which the phenotype is binary (diseased, not
diseased) or quantitative traits that are effectively con-
verted to binary traits by selective DNA pooling of sam-
ples from extreme performing individuals [9-11]. Marker
effects on the quantitative trait can be estimated from the
allele frequencies in the selected DNA pools [9].
In this paper, we propose and demonstrate a more

general method to analyze pooled DNA samples when
the phenotype is a quantitative trait with a continuous
distribution. The effect of an SNP on a quantitative trait
is measured in the units of the trait. For quantitative
traits and with DNA assayed on individuals, it is usual
to regress phenotype on genotype and to estimate the
effect of each haploid copy of the SNP allele. As with
selective genotyping [12], this method produces biased
estimates of SNP effects when data originates from
pooled DNA. The method proposed and demonstrated
here, uses logistic regression of genotype on phenotype
as proposed by Henshall and Goddard. The effect of the
SNP genotype on the phenotype is calculated as a func-
tion of the effect estimated in the logistic regression.
The objective of this study is to demonstrate the
method using a simulated dataset and show that esti-
mates are subject to little bias. The method is also
applied to a livestock dataset with genetic and environ-
mental stratification, with a model that includes the
relationship between sample pools (as suggested by
Sham et al. [6]), estimated from all SNP, as a covariate.

Methods
Statistical methods
Each SNP was analyzed independently to estimate SNP
effects and significance levels. Conceptually, for a single
SNP, a pooled sample of DNA consists of multiple haploid
copies of each of the two SNP alleles, and associated with
each haploid copy is a contribution to the overall pooled
phenotypes. Our aim was to estimate the effect of the
ratio of SNP alleles in the pooled DNA on the pool of phe-
notypes. Each individual contributes two haploid DNA
alleles to the pool and, assuming an additive model for
SNP effects, half of its phenotype to the pool of pheno-
types for each haploid DNA copy. The variance of the
haploid phenotypes is half the variance of the diploid phe-
notypes (since the diploid phenotypes are the sum of two
random haploid phenotypes). If the effects associated with
the diploid SNP genotypes are (-a, 0, +a), and if we
assume a normally distributed error with diploid variance
se

2, then the distribution of the haploid phenotypes is a
mixture of two normal probability density functions f -

and f +, with means μ - a/2 and μ - a/2, and variance se
2/

2, where μ is one half the diploid population mean. Let Y
be a vector of haploid phenotypes, and let Zi be a random
variable that takes the value 1 if haploid DNA copy i

contains the SNP allele associated with effect + a/2, and
the value 0 if haploid DNA copy i contains the SNP allele
associated with effect -a/2, and let πi be the probability
that Zi = 1. Then, using the same derivation as Henshall
and Goddard [13]
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2. Both g and b can
be estimated using standard logistic regression software,
and the estimate of b is an estimate of the effect of the

phenotype on log
(

π
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)
. Our ultimate goal is an

estimate of a, the effect of a SNP allele on the pheno-
type, and we obtain this by noting that s2 = se

2 + 2p(1-
p)a2, where s2 is the diploid phenotypic variance and p
is the frequency of one of the SNP alleles. Solving for a
in terms of b and p gives
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When p = 0.5, this formula is very similar to that of
Henshall and Goddard [13]. Including allele frequency p
was not necessary in their analyses of paternal half-sib
data, since within large families, the allele frequency of
the paternally derived allele is always close to 0.5. In
practice, a more general model

log
(

π i

1− π i

)
= bYi + Xiβ + e is used, where X is an

incidence matrix containing covariates or stratification
levels applying to the individual animals contributing to
each pool, b is the vector of effects estimated for these
covariates and factors, and e is a random error term.
Standard software packages for logistic regression also
provide an estimate of the significance of the effect of
the phenotype on the SNP allele frequencies. We used
this value as our estimate of the significance of the
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effect of the SNP allele on the phenotype. All analyses
were conducted in R [14] using the glm() function, with
a binomial distribution for the error and a logit link
function. In logistic regression, the dependent variable is
a formulation of counts of the two alternative outcomes
at each level of the explanatory variable. In pooled data,
these counts are unobserved so they are derived by mul-
tiplying the estimated allele frequency for the pool by
the number of individuals in the pool. The explanatory
variable in the logistic regression is one half the vector
of mean phenotypes for each pool. We evaluated two
methods for the inclusion of the effect of contemporary
group in the model: i.e. (1) pre-adjusting each indivi-
dual’s phenotype for contemporary group and (2) simul-
taneously fitting contemporary group and phenotype by
including contemporary group as a factor in the inci-
dence matrix X. For comparison, we tested the logistic
regression method on genotype data from individuals as
well as on genotype data from pools, and also estimated
effects and significance for a by regressing individual
phenotypes on genotypes (i.e. without pooling), using
the model Y = Gα + Xβ + ε , where G is a vector of gen-
otypes for individuals and ε is an error term. For this
regression we used the R lm() function.

Accounting for population stratification
Just as with individual samples, a potential problem in
estimating SNP effects from pooled DNA is the pre-
sence of hidden population stratification [15]. To
account for this, we used all the SNP to estimate a
genomic correlation matrix for the pooled samples
using the first of the three methods reported by VanRa-
den [16], except that instead of integer valued genotypes
for individuals, real valued allele frequency estimates for
pools were used with appropriate scaling. Then, the
principal components of the genomic correlation matrix
were used to account for stratification [17,18] by fitting
the most important eigenvectors from the principal
components analysis as covariates in the model when
estimating the effect of a SNP and its significance. Since
our aim is to compare the analysis of pooled samples
with the analysis of individual samples, rather than to
examine the effect of population stratification, we took
the simple approach of always fitting the first five eigen-
vectors regardless of their significance. The eigenvectors
were fitted along with contemporary groups, and we
tested both pre-adjusting the data for both contempor-
ary group and eigenvectors, and fitting the eigenvectors
and contemporary groups concurrently with the SNP.
Eigenvectors were not nested within a contemporary
group, since our aim was to adjust equally for popula-
tion stratification regardless of the level of genetic diver-
sity within a contemporary group.

Dataset A simulated
We simulated data on a population of 3000 individuals.
No relationships between individuals were assumed and
phenotypes consisted of the effect of a single SNP and
an error term with variance s2, which incorporates com-
ponents due to environmental variation and all genetic
effects other than the SNP under consideration. We
repeated the simulation 1000 times, each time sampling
and analyzing a single SNP. For each replicate, we
sampled a population-wide frequency for the first SNP
allele (p) from a uniform (0.01, 0.99) distribution and a
population-wide SNP effect a from a uniform (0.0, 0.5)
distribution. Diploid SNP genotypes were then sampled
for each individual, and genotypic effects of 0, a or 2a
were assigned to individuals with zero, one or two
copies of the first SNP allele, respectively. Phenotypes
comprised the genotypic effect plus a random error
term, with a new error term for each individual sampled
from a normal distribution with mean = 0 and variance
s2 = 1.0. Individuals were ranked on phenotype and
assigned to pools based on rank. To explore the effect
of the number of pools, we used 2n pools for n = 1:m,
with m chosen such that 2m was less than 3000, i.e. the
number of individuals in the population. We calculated
the mean phenotype and SNP allele frequency for each
pool, with either no error simulated in the frequency
estimates, or with an error component added to each
allele frequency estimate. The error component was
sampled from a normal distribution with mean = 0 and
standard deviation = 0.05. Since frequencies are only
meaningful when between 0 and 1, if adding the error
resulted in an allele frequency that was less than 0 or
greater than 1, frequencies were set to 0 or 1,
respectively.

Dataset B - beef cattle hip height
Records were available on 1041 female cattle born over
three years and originating from two genetically diverse
breeds, pure bred Brahman (Bos indicus) and Tropical
composite (predominantly B. taurus). Tropical composite
cattle are widely used in northern Australia, with founder
genetics from a variety of breeds, including British
B. taurus (e.g. Shorthorn, Hereford), but sometimes also
Sanga (African B. taurus) and Brahman (B. indicus). We
analyzed hip height (adjusted for age), measured in cm at
around three years of age. Hip height is known to have a
high heritability, for example Vargas et al. [19] estimated
a heritability of 0.65 in Brahman cattle. Contemporary
groups were a concatenation of measurement date, farm
of origin and cohort, i.e., the interaction of these effects.
All contemporary groups contained individuals of only
one breed, so there was no need to explicitly include
breed when assembling the groups. This resulted in
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56 different groups, with 76 animals in the largest con-
temporary group and one animal in the smallest contem-
porary group. Groups with less than 16 animals were
discarded, leaving 940 animals in 29 contemporary
groups. We ranked animals on hip height phenotype
within a contemporary group, and then allocated them to
pools on the basis of rank within contemporary group,
with approximately the same number of individuals
in each pool. The smallest number of pools considered
was 134 pools of six, seven or eight animals, since this
made it possible to have two pools of eight animals
for the smallest contemporary groups. To explore the
effect of the number of pools, we also considered 268
pools of three or four animals, and 536 pools of one or
two animals. Two additional analyses were conducted for
comparison. First, pre-adjusting phenotypes for contem-
porary group and then ranking across contemporary
group before allocating individuals to pools that took no
account of contemporary group (and therefore breed)
and second, using the 29 contemporary groups described
above, but instead of pooling, using the genotype and
phenotype of one randomly selected individual from each
pool.
Individual genotypes for the BovineSNP50 Array [20]

were available on each individual [21,22]. Pooled geno-
types were generated in silico as the frequencies of
alleles in animals in the pool. No random error term
was added to the pool genotypes. For analyses that esti-
mated SNP and contemporary group effects simulta-
neously, we checked the within contemporary group
allele frequency for each SNP and excluded contempor-
ary groups with minor allele frequencies less than 0.01
for that SNP. Essentially, this removes contemporary
groups in which one SNP allele is fixed. The within con-
temporary group minor allele frequency for pooled data
was estimated as the mean of the allele frequencies of
the pools, weighted by the number of individuals in
each pool. For analyses on data pre-adjusted for con-
temporary groups, we either included all contemporary
groups for all SNP or excluded contemporary groups
with minor allele frequencies less than 0.01 for the SNP
under analysis.

Results
For pooled data, we evaluated the logistic regression (LR)
of genotype on phenotype using the significance of esti-
mated SNP effects (expressed as minus log(p-value),
abbreviated here by MLP) and the magnitude of the esti-
mated SNP effect a, estimated using equation (1). In
each case, the comparison is done with the MLP or a
obtained using least squares (LS) regression of phenotype
on genotype with SNP data from all individuals. For
clarity in the presentation of results, generally we do not
explicitly state the method (LR or LS). Where the data

are referred to as “pooled” it is implicit that the analysis
method is LR, even when the number of pools is equal to
the number of individuals (since LR was also used on
individual data). Where the data are referred to as “indi-
vidual” it is implicit that the analysis method is LS.
Selected comparisons are presented graphically, by plot-
ting the MLP or a from pooled data against the MLP or
a from individual data, for the 1000 replicates, in the
case of simulated data, and for 1000 randomly selected
SNP and all SNP with a significance value less than
1.0E-4, in the case of the cattle hip height data.

Dataset A - simulated
For the simulated data, summary statistics from various
pooling scenarios are shown in Table 1. Both the coeffi-
cient of determination (R2) and the slope from a regres-
sion of MLP or a estimated from pooled data on the
MLP or a estimated from individual data are presented.
For the estimates obtained when no error in estimated
allele frequency was simulated (Figure 1A), the estimate
of a obtained from pooled data is plotted against the esti-
mate of a from individual data. R2 values obtained with
128 or more pools are practically identical to those with
3000 pools (i.e. individual samples, no pooling). Thus,
only results for individual samples and for 64, 16 and
four pools are shown graphically. With individual sam-
ples, the effect estimated using LR is smaller than the
effect estimated using LS, indicating that the methods
produce different estimates even when given the same
(un-pooled) data. Most of the plotted points for 64 pools
are masked by, or very close to those from individual
samples (the order of plotting was from the smallest to
the largest number of pools). As the number of pools
decreases, the R2 falls but the slope of the regression
remains fairly constant. Figure 1B shows the MLP asso-
ciated with the estimates of a in Figure 1A. For highly
significant replicates, estimates from pooled data are less
significant than those from individual data. Again, plotted
points for 64 pools are masked by or very close to those
for individual data. When the number of pools is reduced
below 64, the significance of estimates from pooled data
is reduced, as shown by the reduced slope of the regres-
sion in Table 1.
The high R2 between results from pooled samples and

individual samples is partly due to the wide range of SNP
effects simulated in the data (from 0.0 to 0.5 phenotypic
standard deviations). Figures 1C and 1D present the
same data as Figures 1A and 1B, but focus on replicates
with MLP less than 5.0 (p-value > 1E-05), for which there
is most uncertainty about whether SNP effects are real or
simply due to chance. For these replicates, estimates of a
and significance levels for 64 pools are almost identical
to those from individual data (R2 for a and MLP 0.998
and 0.999 respectively, regression slope equal to 0.998 for
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both a and MLP). This means that the estimated effect
and significance level for an SNP will be almost exactly
the same regardless of whether all 3000 individuals are
genotyped or 64 pooled samples of DNA are genotyped.
Even with four pools only, SNP that are significant with
individual samples will be identified as significant (R2 =
0.9), and with 16 pools the precision will be sufficient for
most purposes (R2 = 0.98).
These are best-case results, since no error in estimat-

ing allele frequency for the pools was simulated. As
expected, introducing an error with a standard deviation
of 0.05 (a 5% error) reduces the correspondence
between the LR and LS results (Table 1). This is parti-
cularly the case for fewer pools and when effect sizes
are small (MLP < 5).

Dataset B - beef cattle hip height
Minor allele frequency (MAF) affected results more for
pooled samples than for individual data, probably
because pooling reduces the number of genotype obser-
vations in each contemporary group. Consequently,
results are presented for SNP with a population-wide
MAF > 0.20, MAF > 0.05 and MAF > 0.01. To summarize
results, we present the R2 from the regression of the
results from pooled data on the results from individual
data. The results from individual data were obtained
using concurrent estimation of contemporary group,

population stratification and SNP effects, with data from
contemporary groups excluded when the within-group
MAF was less than 0.01. This model is more complicated
to set up because which individuals are included in the
analysis varies between SNP, but we judged that this
model would be less affected by any confounding of con-
temporary group and SNP allele frequency.
Results for selected analyses are presented in Table 2.

They show that the R2 are lower than for the simulated
data, and fall rapidly as the number of pools is reduced.
In most cases, there is little difference between the R2

for both breeds analyzed together and for each breed
analyzed separately. The R2 obtained from pre-adjusted
data are generally similar to those obtained from con-
current estimation, except when SNP with a MAF <
0.05 are included. For both concurrent estimation and
pre-adjusted data, estimates of a from pooled data in
Brahman with a MAF > 0.01 (i.e., including SNP with a
MAF < 0.05) have a very low correlation with estimates
from individual data. Further analysis of the results
revealed that this is due to a small number of SNP with
a low MAF and with very large effects when estimated
using LS on individual data, so the slope of the regres-
sion of a estimated from pooled data on a estimated
from individual data is close to zero.
Beef cattle hip height data, 940 individuals, Bovi-

neSNP50 Array; coefficients of determination (R2)

Table 1 Simulated data, regression of results from logistic regression of pooled data on results from least squares
regression of individual data

Number of pools 3000 1024 512 256 128 64 32 16 8 4 2

Parameter Statistic Subset With no genotyping error simulated

a R2 All SNP 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.996 0.994 0.987 0.957

MLP < 5 0.999 0.999 0.999 0.999 0.999 0.998 0.997 0.992 0.983 0.955 0.849

Slope All SNP 0.967 0.967 0.967 0.967 0.966 0.967 0.967 0.967 0.966 0.962 0.965

MLP < 5 0.997 0.998 0.998 0.997 0.998 0.996 0.995 0.989 0.979 0.980 0.993

MLP R2 All SNP 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.998 0.997 0.993 0.978

MLP < 5 0.999 0.999 0.999 0.999 0.998 0.997 0.993 0.983 0.964 0.903 0.686

Slope All SNP 0.923 0.923 0.922 0.922 0.922 0.921 0.918 0.909 0.886 0.819 0.622

MLP < 5 0.997 0.997 0.996 0.997 0.998 0.994 0.991 0.971 0.920 0.825 0.618

With genotyping error (SD = 0.05) simulated

a R2 All SNP - 0.975 0.929 0.895 0.861 0.808 0.705 0.597 0.388 0.110 0.024

MLP < 5 - 0.911 0.693 0.527 0.385 0.318 0.181 0.100 0.059 0.004 0.015

Slope All SNP - 0.929 0.900 0.903 0.915 0.894 0.908 0.911 0.947 0.829 0.873

MLP < 5 - 0.773 0.618 0.587 0.543 0.572 0.639 0.503 0.721 -0.370 -1.586

MLP R2 All SNP - 0.996 0.988 0.982 0.971 0.942 0.881 0.819 0.677 0.455 0.195

MLP < 5 - 0.909 0.765 0.680 0.577 0.334 0.139 0.076 0.053 0.039 0.016

Slope All SNP - 0.910 0.907 0.916 0.928 0.909 0.917 0.902 0.906 0.758 0.531

MLP < 5 - 0.924 0.882 0.871 0.831 0.823 0.757 0.670 0.953 1.424 1.112

Simulated data, 3000 individuals, regression of results from logistic regression (genotype on phenotype, 3000 individuals or pooled data) on results from least
squares regression (phenotype on genotype, 3000 individuals); parameters are the estimated effect (a) and minus the log p-value (MLP); the coefficient of
determination (R2) and slope of the regression line are shown; results are presented for all SNP, or for SNP with MLP from individual data less than 5 (p-value >
1E-05), and with no genotyping error simulated, or with genotyping error (SD = 0.05) simulated
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between parameters (effect (a) and minus the log
p-value (MLP)) estimated using a logistic regression
(genotype on phenotype, individual or pooled data) and
least squares regression (phenotype on genotype, indivi-
dual data); SNP effects were either estimated concur-
rently with contemporary group and population
stratification effects, or estimated on data pre-adjusted
for those effects; in all rows except for the last, pooling
was within contemporary group; results are presented
for SNP with minor allele frequency (MAF) greater than
0.20, 0.05 and 0.01, for combined breed analyses and
within breed analyses
To further illustrate the relationships that appear in the

top three rows of Table 2 (MAF > 0.20 and concurrent
fitting of contemporary groups, population stratification
and SNP effects), estimated effects and significance levels
are plotted in Figure 2. The correspondence between the
methods is not as good as for the simulated data, espe-
cially when the number of pools is below 536. The rank-
ing of estimated SNP effects or significance levels differs

between pooled data and individual data. In particular,
the most significant SNP are more significant with indivi-
dual data or more pools, than with fewer pools, suggest-
ing that pooling causes a loss of sensitivity.
Results obtained by analyzing a dataset with the phe-

notype and genotype of one randomly chosen individual
from each pool are also presented in Table 2. When less
than 100% of individuals are analyzed, for the same
number of DNA assays, results from pooled data are far
more correlated with results from individual data than
are results from a subset of individuals.
We evaluated an alternative approach to the analyses

described above, by pre-adjusting the phenotypes for con-
temporary groups, and then allocating animals to pools
across breeds and contemporary groups. Clearly, this is
not appropriate for such data because of the presence of
two genetically divergent breeds; however a comparison of
models is interesting since in some data, the existence of a
genetic effect such as breed may not be known to the
researcher. Even without pooling (i.e., 940 individual

Figure 1 Effects and significance for simulated SNP. Estimated effects (A and C) and minus the log p-value (MLP, B and D) for 1000
replicates of a simulated SNP and simulated trait phenotypes; no genotyping error was simulated; effects or significance levels estimated using
least squares regression of individual phenotype on individual genotype are on the X-axis, effects or significance levels estimated using logistic
regression of pooled genotype on phenotype data are on the Y-axis; in (C and D), only SNP with p-values greater than 1E-5 are shown.
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phenotypes and genotypes) and only including SNP with a
MAF > 0.20, estimates were worse under this model than
when pre-adjustment was performed after pooling (Table
2 R2 of 0.91 and 0.99, respectively for MLP). For 940 indi-
viduals, these models differ only in the order in which
fixed effects are fitted: the eigenvectors from the principal
component analysis are identical. With less than 940 pools

the eigenvectors from the principal components analysis
differ according to whether pooling is performed before or
after adjustment, and results for adjustment for contem-
porary groups before pooling are worse than for pooling
within contemporary groups.
To explore the effectiveness of using principal compo-

nents to adjust for population stratification in pooled

Table 2 Hip height data, R2 between parameters estimated using logistic regression and least squares regression

940
individuals

536 pools 268 pools 134 pools

MAF Breed R2

(a)
R2

(MLP)
R2

(a)
R2

(MLP)
R2

(a)
R2

(MLP)
R2

(a)
R2

(MLP)

Concurrent estimation, contemporary groups with MAF < 0.01
excluded from analysis

>
0.20

both breeds 0.99 0.99 0.94 0.90 0.84 0.75 0.68 0.53

Tropical
composite

0.98 0.98 0.93 0.89 0.82 0.72 0.64 0.50

Brahman 0.99 1.00 0.94 0.92 0.86 0.78 0.67 0.53

>
0.05

both breeds 0.96 0.97 0.92 0.89 0.84 0.74 0.69 0.52

Tropical
composite

0.95 0.96 0.91 0.87 0.81 0.71 0.64 0.48

Brahman 0.97 0.98 0.92 0.90 0.83 0.76 0.61 0.51

>
0.01

both breeds 0.95 0.97 0.92 0.88 0.84 0.73 0.68 0.51

Tropical
composite

0.81 0.95 0.70 0.87 0.59 0.70 0.38 0.47

Brahman 0.02 0.90 0.02 0.80 0.01 0.64 0.01 0.38

Pre-adjusted, all contemporary groups included in analysis >
0.20

both breeds 0.96 0.99 0.91 0.90 0.80 0.74 0.65 0.53

Tropical
composite

0.99 1.00 0.93 0.89 0.81 0.71 0.64 0.50

Brahman 0.99 1.00 0.94 0.91 0.86 0.79 0.67 0.54

>
0.05

both breeds 0.97 0.99 0.92 0.90 0.83 0.73 0.69 0.53

Tropical
composite

0.98 0.99 0.93 0.89 0.82 0.71 0.66 0.50

Brahman 0.97 0.99 0.93 0.91 0.86 0.79 0.69 0.54

>
0.01

both breeds 0.97 0.99 0.91 0.89 0.83 0.73 0.71 0.53

Tropical
composite

0.84 0.98 0.80 0.88 0.71 0.70 0.59 0.49

Brahman 0.00 0.76 0.00 0.68 0.00 0.59 0.00 0.41

Pre-adjusted, contemporary groups with MAF < 0.01 excluded from
analysis

>
0.01

both breeds 0.97 0.99 0.93 0.90 0.85 0.73 0.72 0.53

Tropical
composite

0.95 0.99 0.92 0.89 0.82 0.71 0.65 0.50

Brahman 0.93 0.90 0.78 0.62 0.80 0.62 0.45 0.18

Concurrent estimation, one random individual from each pool >
0.20

both breeds 1.00 1.00 0.38 0.23 0.10 0.04 0.02 0.01

Tropical
composite

1.00 1.00 0.36 0.21 0.09 0.04 0.03 0.01

Brahman 1.00 1.00 0.36 0.23 0.10 0.05 0.00 0.00

Adjustment for contemporary group before pooling >
0.20

both breeds 0.95 0.91 0.74 0.62 0.74 0.61 0.30 0.17
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DNA samples, the first and second eigenvectors are
plotted in Figure 3. Regardless of the number of pools,
there is a clear separation between the Tropical compo-
site and the Brahman populations. In Figure 4, the sec-
ond and third eigenvectors for Tropical composite cattle

are plotted. Clusters of pools were defined in an ad hoc
manner for 134 pools (panel D). Then, when pools were
split into 268, 536 or 940 pools, the new pools retain
the color of the “parent” pool. Pools in the most distinct
cluster (in pink) for 134 pools remain together

Figure 2 Effects and significance for cattle hip height data. Beef cattle hip height, estimated effects (A, C and E, in cm) and minus the log
p-value (MLP, B, D and F) for 1000 randomly chosen SNP and for those with p-values less than 1E-4; effects or significance levels estimated
using least squares regression of individual phenotype on genotype are on the X-axis, effects or significance levels estimated using logistic
regression of pooled genotype on phenotype data are on the Y-axis; effects were estimated across breeds (A and B), within the Tropical
composite breed (C and D) and within the Brahman breed (E and F).
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regardless of the number of pools, but all become some-
what overlaid, and for 940 pools (panel A), there is little
power to discriminate between pink, grey, yellow and
half of the blue pools. For different numbers of pools,
the principal components may explain different aspects
of the variation. In Figure 5, the second and fourth
eigenvectors are plotted with pools having the colors
derived for the second and third eigenvectors, as in
Figure 4. For 940 pools (panel A), the pink pools form a
cluster characterized by high values for the fourth prin-
cipal component and it is this cluster that is well char-
acterized by the second and third principal components
for 134 pools.

Discussion
This study demonstrates that if SNP allele frequencies can
be accurately measured in pooled samples of DNA, then
SNP effects can be estimated for quantitative traits.
Furthermore, in the datasets tested, these estimates are
similar to those estimated when all individuals are

genotyped. As the number of pools assayed increases, the
estimates become more similar to those from individual
genotype samples. With individual samples, the logistic
regression of genotype on phenotype does not give identi-
cal results to least squares regression of phenotype on gen-
otype. Thus, as the number of pools increases, estimates
from logistic regression converge to a different value to
that from least squares regression of phenotype on geno-
type. This is most notable for SNP of very large effect,
where estimates from logistic regression are more conser-
vative than those from LS. When no error in estimating
pool allele frequencies is included, as for the simulated
datasets used in this study, logistic regression with 128
pools per contemporary group produce almost identical
estimates to those obtained using logistic regression with
individual samples. There is no advantage in genotyping
more than 128 pools per population, unless all individuals
are genotyped and a regression of phenotype on genotype
is performed. However, when an error (SD = 0.05) in esti-
mating pool allele frequencies is introduced, the results

Figure 3 Principal components of genomic relationships across two cattle breeds. Plots of eigenvalues for the second principal
component over eigenvalues for the first principal component from a genomic correlation matrix estimated using individual genotypes (A) or
genotype data from 536 (B), 268 (C) or 134 (D) pools.
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are not nearly as good, and it is clear that controlling error
will be very important in assembling pools and genotyping
the pooled samples.
With the beef cattle hip height data, as the total number

of pools increases, and therefore also as the number of
pools per contemporary group increases, the results con-
verge toward those for 940 pools (i.e. LR on individual
data), suggesting that the strategy of pooling within con-
temporary groups and fitting contemporary group in the
model is effective. This is important, as it may also be the
most efficient way to organize an experiment. For exam-
ple, it makes it possible to increase the size of an existing
study by including estimated allele frequencies from
pooled samples from additional contemporary groups,
rather than having to pool the new samples with samples
that have already been genotyped in the existing study.
Furthermore, pre-adjusting the data for contemporary
group and pooling based on adjusted phenotypes did not
perform well in our study. In most cases, it made little

difference whether phenotypes were pre-adjusted for con-
temporary group and stratification effects (after pooling)
or whether estimation was done simultaneously. The only
exception was for SNP with a small MAF and even then it
was not the pre-adjustment itself that caused the differ-
ence, but the inclusion of data from contemporary groups
in which only one SNP allele was present. A weakness of
our analysis of the beef cattle data is that SNP allele fre-
quencies for pools are estimated from individually assayed
DNA samples, instead of from assays of pooled DNA. As
such, our results are upper bounds for the performance of
methods with pools, achievable only if the allocation of
DNA to pools and subsequent assay introduces no error.
However, our approach allowed us to consider a greater
range of pooling strategies.
The motivation for assaying pooled samples of DNA

rather than individual samples is to reduce costs. How-
ever, pooling DNA places restrictions on the experimen-
tal design and on the parameters that can be estimated,

Figure 4 Second and third principal components of genomic relationships for Tropical composite cattle. For cattle from the Tropical
composite breed, plots of eigenvalues for the third principal component over eigenvalues for the second principal component from a genomic
correlation matrix estimated using individual genotypes (A) or genotype data from 536 (B), 268 (C) or 134 (D) pools; pools in (D) (134 pools)
were colored on the basis of an ad hoc clustering, and when these pools were split to create 268 and 536 pools, or 940 individuals, pools retain
the color of their “parent” pool.
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as discussed by Craig et al. [23] and others. For binary
traits, it is difficult to include continuous covariates in
the model. This is less of a problem with quantitative
traits, as the individual phenotypes can be pre-adjusted
for covariates, possibly using estimates from a larger
dataset. The existence of population stratification has
also been noted as a problem for pooled DNA analyses
but in this study we successfully included information on
the relationships between pools of individuals in the
model. This is appropriate for the hip height data, since
it is likely that some phenotypic similarities between
pools are due to relatively close relationships. Many SNP
that are not necessarily close to causal mutations may be
in strong linkage disequilibrium with causal mutations
due to recent common ancestry. The eigenvectors esti-
mated using principal component analysis of the genomic
correlation matrix show clear relationships to those from
DNA from individuals (Figures 3, 4 and 5). An alternative
to fitting these eigenvectors in the model would be to fit

the correlation matrix itself as a random effect in the
logistic regression estimation model.
With pooled DNA, only the effects of haploid SNP

alleles can be estimated, so the estimates cannot be
used in models with dominance or epigenetic (imprint-
ing) effects. If SNP are sufficiently dense and all possi-
ble haplotypes are known in advance, then haplotype
frequencies for pools can be estimated, as suggested by
Barratt et al. [3]. The method described here assumes
two haploid SNP alleles, which makes it unsuitable for
SNP haplotypes, where more than two alleles are
usually present. However, if the number of SNP in the
haplotype is greater than the number of haplotype
alleles in the population, then haplotype allele frequen-
cies will be more accurately estimated than single SNP
allele frequencies. These haplotype allele frequencies
are easily collapsed down into estimates of SNP allele
frequencies, suitable for use with the methodology pro-
posed here.

Figure 5 Second and fourth principal components of genomic relationships for Tropical composite cattle. For cattle from the Tropical
composite breed, plots of eigenvalues for the fourth principal component over eigenvalues for the second principal component from a
genomic relationship matrix estimated using individual genotypes (A) or genotype data from 536 (B), 268 (C) or 134 (D) pools; pools have the
same color as in Figure 4.
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For livestock quantitative traits, individual SNP effects
are often small and an estimate of the breeding value or
sum of the SNP effects for an animal is required. Meth-
ods currently used to estimate breeding values using
high-density SNP genotype data apply distributional
constraints to the estimated SNP effects to avoid over-
fitting [24]. Some modifications to these methods will
be required for pooled DNA, for which the genetic
merit of selection candidates with individual DNA
assays will be predicted from phenotyped individuals
with pooled DNA. While the modifications are concep-
tually straightforward, they may pose computational
problems. Analyses using the Gibbs sampler such as
BayesA or BayesB [24] are already computationally
demanding for large datasets, and fitting a logistic
regression model requires more computer time than fit-
ting least squares regression. However, with pooled
DNA there are fewer observations to fit and it remains
to be seen whether this reduction in data size will com-
pensate for the increase in computational complexity.
Our use of the genomic correlation matrix to correct
for population stratification relates to another approach
that is used to estimate genomic breeding values in live-
stock: the use of the genomic correlation matrix in
place of a pedigree derived relationship matrix [25-27].
Under this model, there is no need to estimate the
effects of individual SNP and this is probably a more
computationally tractable approach for pooled data also.

Conclusions
With pooled DNA samples, an estimate of the effect of
an SNP on a quantitative phenotype can be estimated
using a logistic regression of the pooled allele frequen-
cies on the pooled mean phenotypes. For a simulated
dataset with 3000 individuals and no error in estimating
allele frequencies for pooled samples, there was little
benefit in having more than 128 pools, unless all indivi-
duals were genotyped. With the livestock data, consist-
ing of 940 individuals from two breeds distributed over
29 contemporary groups, having more pools was always
an advantage. However, for a fixed number of assays,
pooled samples produced far better results than one
random individual assayed from each pool. Models that
include the relationship between pools derived from a
genomic correlation matrix can be used to account for
hidden population stratification. Pooling across contem-
porary groups based on adjusted phenotypes with rela-
tionships between pools included in the model was for
our data inferior to pooling within contemporary
groups. This suggests that choosing the model and
understanding and correctly fitting contemporary group
structure are important in studies with pooled DNA
data.
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