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Abstract – Markov chain Monte Carlo (MCMC) methods have been widely used to overcome
computational problems in linkage and segregation analyses. Many variants of this approach ex-
ist and are practiced; among the most popular is the Gibbs sampler. The Gibbs sampler is simple
to implement but has (in its simplest form) mixing and reducibility problems; furthermore in
order to initiate a Gibbs sampling chain we need a starting genotypic or allelic configuration
which is consistent with the marker data in the pedigree and which has suitable weight in the
joint distribution. We outline a procedure for finding such a configuration in pedigrees which
have too many loci to allow for exact peeling. We also explain how this technique could be used
to implement a blocking Gibbs sampler.

Gibbs sampler /Markov chain Monte Carlo / pedigree peeling / Elston Stewart algorithm

1. INTRODUCTION

The calculation of the likelihood plays an important role in the analysis
of genetic data, for example in linkage analysis. Apart from the likelihood,
other probability functions such as marginal distributions for certain genotypes
of certain individuals are also needed for example in genetic counseling. In
many instances, the likelihood, which is proportional to the probability of the
observed phenotypic data, can be written as a product of probabilities summed
over all possible genotype configurations.

For a trait with m alleles in a population with N individuals, the number of
genotypes to be summed over in evaluating likelihoods could be as large as
{m(m + 1)/2}N , clearly a huge number even when m is 2 and N is moderately
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large. This number may often be reduced by a large factor if some of the in-
dividuals in the population are genotyped [13], but even in such cases is still
dauntingly large. Nonetheless, if the inheritance is monogenic and if the pedi-
gree has no loops, the sum over genotypes can be computed easily along the
lines of the Elston-Stewart algorithm [4], which is often referred to as peeling.
If the pedigree is not too large (about 100 members) and does not have too
many loops, extensions of the Elston-Stewart algorithm have been developed
for evaluating the likelihood [2,9,11,12,16–18]. This situation arises in human
genetics, however, in animal pedigrees the number of individuals may easily
reach several hundred and interbreeding loops are common. Furthermore, even
if the pedigree structure is not too complex, exact peeling may not be possible
if there are many loci present, which is often the case in human genetics.

If exact peeling over all genotypic configurations is not possible, one alter-
native is to use MCMC procedures to sample genotypic configurations accord-
ing to the posterior distribution. Among the many samplers in use, the single
Gibbs sampler site is possibly the easiest to implement. However, the single
Gibbs sampler site frequently has problems with reducibility [1], and poor
mixing [8]. The mixing and reducibility problems are not as severe in more
complex variants of the Gibbs sampler such as the Blocking Gibbs sampler, as
will be discussed later. Quite apart from these problems, a valid starting config-
uration is needed to initiate the Gibbs sampler, i.e. a configuration of genotypes
which is consistent with the pedigree and marker information is needed. In or-
der to avoid convergence problems, the starting configuration should also be
one whose statistical weight is not too small; this requirement can be hard to
fulfill if there are many tightly linked loci in the data set. One way of obtain-
ing a starting configuration when exact peeling over all loci and all individuals
is not possible, is to peel as much as possible and then condition on suitably
chosen genotypes, as has been implemented for a single locus in Heath [7]. In
Heath [7] the framework employed is genotypic sampling which is difficult to
extend to multilocus data sets.

In this investigation, we discuss in detail an alternative procedure which uses
allelic, as opposed to genotypic, variables to handle multilocus data sets. Our
procedure also relies on peeling and conditioning to find not only a valid start-
ing configuration but also a starting configuration with reasonable statistical
weight in cases where there are too many loci for the pedigree to be peeled,
necessitating the use of samplers. This situation can be expected to arise in
human genetics where marker maps are dense. After presenting numerical re-
sults for the situation just described, we will also discuss the extensions of this
idea to situations where exact peeling cannot be implemented not just due to
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the large number of loci but also because of the presence of a large number
of loops between individuals. A central concept in our discussion is the notion
that certain marginal distributions can be calculated accurately and with rela-
tive ease by truncating the full pedigree. These marginal distributions involve
variables which are located at some distance from where we truncate the pedi-
gree. This observation relies on the Markov property of probability functions
of interest as well as the notion of distance in graph theory. Once we have a
reliable estimate for marginal probabilities for these variables, we can sample
and condition on these variables which in turn facilitates peeling and condi-
tioning on the full pedigree. Since our initial sampling and conditioning was
to a good approximation from the joint distribution of the full pedigree, our
subsequent conditioning can also be expected to be from the joint distribution
of the full pedigree. By this divide and conquer scheme, we are in a position to
reliably sample from the joint distribution for the full pedigree without having
to peel the entire pedigree.

2. MATERIALS ANDMETHODS

A vital preliminary step in our discussion is the notion that a pedigree can
be represented by an undirected graph with weights associated with each ver-
tex. If we first consider just a single locus, then each vertex in the graph rep-
resents an individual, and the edges linking vertices will depend on familial
relationship. Thus there will be edges linking any non founding individual to
its parents and to its offspring as well as spouses. Once we have a theoretical
graph representation of our pedigree, we can discuss the notion of distance
along a graph which will play a crucial role. We adopt the definition of dis-
tance between two vertices as being the shortest number of edges that need to
be traversed to move from one vertex to the next. Following this definition of
distance, there is no distance between a node and itself and there is a separa-
tion of one unit of distance between any individual and its spouses, offspring
or parents. There are two units of distances separating grandchildren and their
grandparents, assuming no inbreeding between generations.

Next we note that the calculation of probability functions such as likelihoods
involves products of conditional probabilities such as transmission probabili-
ties which involve vertices that are just one unit of distance apart, founder
probabilities and penetrance functions which involve just one vertex. This is
the Markov property alluded to earlier. It is reasonable to assume on the ba-
sis of this Markov property that any alteration to the pedigree will be only
weakly felt when calculating probability functions for vertices which are far
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Figure 1. A trial pedigree.

away from the location where the pedigree is altered. This gives us a rule of
thumb to assess which marginal distributions may be altered when truncating
a pedigree at a specified location. To make the notion of “far away” more con-
crete, let us consider the pedigree in Figure 1 with 9 individuals and assume
just one locus with three alleles.

It is easy to see that individuals 8 and 9 are 4 units of distance away from
individuals 1 and 2. We simulate marker information for the entire pedigree
keeping individuals 1, 2, 3, 7 and 8 ungenotyped. As a result of individuals 1,
3 and 7 being ungenotyped, the genotype frequencies for individual 1 are po-
tentially quite sensitive to the marker information at individual 9. Conditional
on our simulated marker information we can calculate genotype probabilities
for individuals 1 and 2. Then we remove individuals 8 and 9 from the pedi-
gree and recalculate the same genotype probabilities as before. Since we have
altered the pedigree 4 distance units away from the vertices we are interested
in, we expect both sets of genotype probabilities to be very similar. This is
indeed the case as is apparent from the results in Table I where we display
the marginal allele frequencies for individual 1 with and without truncating
the pedigree. The numbers in parentheses indicate the values obtained from
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Table I. Comparing allele frequencies in full and truncated pedigrees.

Allele Maternal allele frequency Paternal allele frequency
1 0.2496 (0.2422) 0.2516 (0.2478)
2 0.2564 (0.2633) 0.2570 (0.2633)
3 0.4940 (0.4945) 0.4914 (0.5042)

the full pedigree; in each case the pedigree was peeled exactly (i.e. making no
modifications to the pedigree) and 10 000 samples were generated.

The effects of truncating the pedigree are indeed small, as expected. In this
very simple instance the distance between vertices could be determined visu-
ally, in more complex instances the distance between vertices can be efficiently
obtained using the breadth first algorithm [3].

Now we consider the more realistic situation of a pedigree with L loci with
varying map distances between the loci and varying numbers of alleles at each
locus. In this case the vertices in the graph do not correspond to individuals
but rather to allelestate nodes and alleleorigin nodes [5, 6]. Allelestate nodes
are nodes which store information on the permissible alleles at a given locus,
while alleleorigin nodes contain segregation information. (Note that our alle-
lestate nodes and alleleorigin nodes correspond to the genetic loci and selector
variables of [5] respectively). The edges between the nodes are filled by deter-
mining which nodes arise in some function appearing in the likelihood calcu-
lation. For example, the maternal and paternal allelestate nodes of a given indi-
vidual at the same locus both arise in the calculation of penetrance, thus there
is an edge linking these two nodes and these two nodes are one unit of distance
apart. For any non-founder individual at any locus there is a transmission prob-
ability which involves the maternal allelestate, the maternal allelestate and the
paternal allelestate of the mother along with the maternal alleleorigin for that
locus. All these nodes are therefore connected to one another by edges and the
maternal alleleorigin node is one unit of distance removed from the maternal
allelestate node for a fixed locus for any non-founding individual. Once again
the separation between any two nodes is determined from the number of edges
in the shortest path connecting the two nodes. It is easy to see that there is at
least one unit of distance between any two nodes corresponding to adjacent
loci, since recombination probabilities involve alleleorigins of a given individ-
ual at two adjacent loci. If the nodes correspond to different individuals, then
the separation will be larger. Similarly, if the loci corresponding to two nodes
are i and i + j, then the two nodes are at least j units of distance apart.
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We now assume we can (or are willing) to exactly peel over the first m
loci where m < L. Thus we truncate the pedigree keeping just the first m loci.
Since we peel over m loci, we can by reverse sampling condition on all m loci,
or any subset s of the m loci, which we have just peeled. If all the nodes in
the subset s are far away from where we have truncated the pedigree, we can
sample and condition on these nodes. This sample is, (from our previous ex-
ample) to a good approximation, a sample from the marginal over s of the joint
distribution of the untruncated pedigree. Once we have a subset s conditioned,
it may be possible to exactly peel over the rest of the pedigree conditional on
our initial sample. If peeling over the rest of the pedigree after conditioning
on the nodes in s can be carried out with no approximation we can by reverse
peeling, sample all the loci in the problem to obtain a starting configuration
for a Gibbs sampler. Since the initial sampling (i.e. over the subset s) is to a
good approximation from the marginal of the full distribution over all L loci,
then our sample will also be drawn to a good approximation from the full dis-
tribution over all L loci and will thus be a good starting configuration for the
Gibbs sampler. We have implicitly assumed that all loci can be sampled once
we have just one initial sample over just a few loci, i.e. we are assuming we
can obtain a sample over all loci in just two stages. Later on we will discuss
the consequences of relaxing this assumption.

3. RESULTS

We now assume for the sake of concreteness that the total number of
loci L = 10 and the number of loci that we peel exactly m = 8. Our set s
is over the first two loci. We neglect loci 9 and 10 and peel over the first eight
loci and consider just the joint marginal distributions over just the first two
loci (i.e. loci 1 and 2). Both of these loci are at a substantial distance from
the location where we have altered the pedigree by neglecting loci 9 and 10.
More precisely each of the nodes in the first two loci is a minimum of 6 units
of separation from where we modified the pedigree. Based on our earlier rea-
soning we expect that the joint marginal distribution of the first two loci will
be only weakly affected by truncating the pedigree and is a good approxima-
tion to the joint marginal distribution for the full pedigree. To test this idea,
we consider a real dataset with 555 individuals and marker information at ten
highly polymorphic markers [14, 15], which includes a sprinkling of missing
marker information. The pedigree was generated by crossing two Berkshire
grand sires and nine Yorkshire grand dams and includes 499 F2 progeny from
45 F1 matings. In order to estimate the number of loops in the pedigree we
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consider the same pedigree with just one biallelic locus with no marker data.
We deliberately restrict the amount of memory available in the peeling process
requiring a loop to be cut whenever there is a memory bottleneck prevent-
ing peeling. From keeping track of the number of loops which get cut we get
a lower bound on the number of loops in the pedigree; our results indicate
that the pedigree has over a thousand loops. If we greatly relax restrictions on
memory usage the entire pedigree can be peeled by brute force using a greedy
heuristic [11] to determine the peeling order, thus we are able to obtain the
true joint marginal haplotype distribution for the first two loci for each individ-
ual in the pedigree. Next we ignore loci 9 and 10 and obtain a joint marginal
haplotype distribution for the first two loci for each individual in the pedigree.
Each joint marginal is based on a sample of size 10 000. In order to compare
frequencies of different haplotypes in both samples we ignore all haplotypes
in each sample where the frequency is 1 or less than 0.001. We observe that in
each sample the haplotypes which survive after making these selection criteria
are identical. The frequencies of the haplotypes considering all ten loci and
considering all eight loci are stored in vectors V and U such that V[i] and U[i]
correspond to the frequencies of the same haplotype for the same individual in
each sample. We construct the quantities | V |=

√∑
V[i]2 and | U |=

√∑
U[i]2

where the sum is over all elements of each vector. Then we compute W which
is given by

∑
(V[i] − U[i])2. Finally we calculate

D =
W

| V || U | (1)

which turns out to be 0.000211655. The two joint marginal distributions are
thus in good agreement with each other, as expected. Next we construct the
quantity

S =
| (V[i] − U[i]) |

V[i]
(2)

this time keeping only values of V[i] and U[i] that are larger than 0.05. We
found that the largest value that this quantity takes is 0.08. As a further check
we compare the genotype probabilities at locus 2 for all 555 individuals in the
pedigree. Since we base our comparison on 1000 samples for any individual we
ignore any genotypes which are sampled less than 50 times (i.e. correspond-
ing to a probability of less than 5%) as well as genotypes which are com-
pletely fixed by marker information. The surviving genotypes in each of the
joint marginal distributions for each individual are identical. Next we store the
probabilities for the surviving genotypes in vectors E[i] from sampling eight
loci and T[i] from sampling ten loci. These vectors are constructed so that E[ j]
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and T[ j] contain the probabilities for the same genotype for the same individ-
ual. Once again we calculate quantities analogous to D and S using the vectors
E and T instead of U and V;D is 0.000551779 while S exceeds 0.07 in less than
3% of all cases. Even in cases where S exceeds 0.07 the marginal probabilities
are consistent with each other assuming normally distributed sampling errors.
This indicates that the genotypes for all individuals at locus 2 are indeed well
sampled by considering just the first eight loci. Genotype probabilities closer
to where we alter the pedigree are not as well reproduced; for example the
1/2 genotype for individual 55 at locus 7 is sampled 120 times when using the
complete pedigree, and just 15 times when using just the first eight loci and
the same sample sizes. Another instance arises in comparing the 1/2 genotype
of individual 354, with the information on all ten marker loci it is sampled
147 times; keeping just eight loci it is sampled 555 times, clearly a glaring dis-
crepancy. These discrepancies are hardly surprising given that locus 7 is just
one unit of distance away from locus 8 where the pedigree has been modified
in contrast to loci 1 and 2 which are much further away from the location where
the pedigree has been truncated. At locus 8 (i.e. where we have modified the
pedigree) the marginal probabilities for the genotypes of individuals 55 and
354 are very poorly reproduced when the pedigree is truncated, the effects of
the propagation of the error induced by truncation to nearby loci is apparent.

In order to set up a desirable starting configuration for the Gibbs sampler
we first truncate loci 9 and 10 and then draw a sample for the full distribution
over the remaining eight loci. We store the sampled information over just the
first two loci. This sample is to a good approximation a sample from the joint
marginal distribution from the true distribution. Next we use our sample to
condition the first two loci and then peel over the remaining eight loci (loci 3
through 10) and draw a sample from the remaining loci. Since our sample over
the first two loci was to a good approximation a sample over the true marginal,
our sample over all ten loci will also be to a good approximation a sample from
the joint true distribution over all ten loci. This gives us a desirable starting
point for the Gibbs sampler. What is striking though is the dramatic difference
in memory requirements; in peeling all ten loci by brute force using a peeling
order determined by a greedy heuristic the largest cutset [2] encountered has a
size of just over 260 million, however the size of the largest cutset encountered
when peeling the pedigree in two stages using the same greedy heuristic to
determine the peeling order was just under two million. Thus conditioning
on a few judiciously chosen loci at the start has had the effect of reducing
memory requirements by more than two orders of magnitude. Given that the
peeling order generated by the greedy heuristic is very likely not optimal in
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either case it would be unwise to draw any firm conclusions about reduction
in memory usage in peeling, however the results presented are encouraging in
this regard. In this example we broke up the problem in two steps, i.e. we were
able to sample across all loci with two judiciously chosen peelings, one from
loci 1 to 8 and the other from loci 3 to 10. If we had more than 10 loci, e.g. 12
loci we could consider using the second peeling to condition on loci 3 and 4.
With loci 1 through 4 conditioned, we could then consider exactly peeling
loci 5 to 12 and generating a desirable initial sample. In this manner datasets
with rather more loci than can be peeled exactly could presumably be handled.

4. DISCUSSION

We demonstrate with one simple and one complex example, how certain
marginal probability functions may be accurately estimated from truncated
pedigrees. As long as the marginal probabilities involve variables which are
many units of distance from where we modify the pedigree the resulting er-
ror may be expected to be small. Although we have illustrated the utility of
this idea for tackling complications due to many loci, the idea can conceivably
be used in other circumstances where exact peeling cannot be implemented.
For example, we could consider a situation even with a single locus where
there are too many loops to allow exact peeling. In this situation we could also
truncate the pedigree keeping just a handful of individuals to begin with and
then calculate the marginal distribution for individuals far away from where we
have truncated the pedigree. In this case, the distances between nodes (which
correspond to individuals in this case) would have to be computed using the
breadth first algorithm mentioned earlier to locate the individuals for which
marginal distributions could be reliably calculated despite the truncation. Hav-
ing done so, we could then sample other individuals in the pedigree along the
lines suggested above. In situations where there are not only many loops but
also many loci, the same idea could in principle apply. In this case though, the
subset m may not be that straightforward to determine. Work along these lines
is currently in progress.

Our strategy could also be used to implement the blocking Gibbs sam-
pler [10] for sampling the joint genotype distribution of pedigrees with many
loci. In the example we have just considered, we could, after obtaining a start-
ing configuration over all ten loci, condition on loci 9 and 10 and then resample
loci 1 through 8. With a new sample for loci 1 through 8, we could condition
again on loci 1 and 2 and obtain a new sample for loci 3 through 10. This would
in turn yield a new sample for loci 9 and 10 which could in turn yield another
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sample for loci 1 through 8. In this manner we could implement the blocking
Gibbs sampler for the pedigree just considered with better mixing and none
of the irreducibility problems of the scalar Gibbs sampler. Furthermore, in the
scheme just described, we could sample all loci with approximately the same
frequency as required for a successful implementation of the Blocking Gibbs
sampler [10].

The scheme we have just outlined presupposes that we can peel over all
loci in just two stages, in many cases of interest this may not be the case.
Let us assume for concreteness that we have 12 loci to peel over. We might
consider the following adaptation of our basic strategy to set up a blocking
Gibbs sampler: we partition the pedigree into overlapping blocks with loci 1
through 8 defining one block, loci 3 through 10 defining another block and
loci 5 through 12 the third block. We generate an initial sample as follows:

(i) Peel loci 1 through 8 and sample loci 1 and 2. Save sample for loci 1
and 2.

(ii) Use sample from (i) to condition loci 1 and 2.
(iii) Peel loci 3 through 10.
(iv) Sample loci 3 and 4. Save sample on 3 and 4 and use to condition on

loci 3 and 4. Loci 1 through 4 are now conditioned.
(v) With loci 1 through 4 conditioned, peel and sample loci 5 through 12. We

now have sampled the entire pedigree. Save sample for loci 5 through 12.

Once we have this initial sample it is straightforward to sample and update
blocks keeping all nodes outside the blocks conditioned. More precisely, loci 1
through 8 are sampled conditional on the previous sample for loci 9 through 12,
loci 3 through 10 are sampled conditional on the current sample for loci 1 and 2
and the previous sample for loci 11 and 12, and loci 5 through 12 are sampled
conditional on the current sample for loci 1 through 4. This procedure can
be repeated as many times as desired, while potentially keeping mixing and
irreducibility problems under control.

To conclude, we have described a method to generate a desirable starting
configuration for the Gibbs sampler. Our method relies on finding a good ap-
proximation to the marginal distribution over a handfull of loci and then con-
ditioning to permit peeling over the remaining loci. We demonstrate how this
can be achieved in practice by breaking up a dataset involving ten loci in two,
stages, one stage involving a peeling over loci 1 to 8 neglecting loci 9 and 10,
followed by a conditioning on the first two loci followed in turn by a peeling
from loci 3 through 10. The distance between two vertices in the graph repre-
senting the pedigree plays a crucial role in determining which marginals can be
reliably computed for a given truncation of the pedigree. Our results indicate
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that this divide and conquer approach requires much less memory than would
be needed to peel across all loci.
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