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Abstract – The DRB1 intron 2 (GT)n(GA)m microsatellite was genotyped in experimental
flocks of seven Merinoland rams and 249 ewes as well as their offspring (381 lambs) from con-
secutive lambings. A total of 16 DRB1 alleles were detected, ranging between 353 and 857 bp.
In comparison with carriers of other alleles, the ewes carrying the predominant 411 bp allele had
higher values of all the recorded fertility traits. For ewes carrying the 394 and 857 bp alleles, the
birth weight of lambs was about 400 g higher as compared to the residual group of ewes. The
observed associations could be due to differences in disease resistance, cell recognition or tissue
differentiation between carriers of various MHC haplotypes which can in turn affect individual
fertility and growth performance.

DRB1 /microsatellites / growth / reproduction / sheep

1. INTRODUCTION

Vertebrate Major Histocompatibility Complex (MHC) comprises a series
of highly polymorphic genes whose products belong to three classes (I, II
and III) of molecules. Products of the MHC class I and II genes are the main
contributors to the ability of discrimination between self and non self with
class I proteins being expressed on the surface of all cell types while the prod-
ucts of the class II genes are restricted to antigen presenting cells. Class III
genes encode components of the complement system (reviewed for example
by Hauptmann and Bahram [12]). Individual MHC genes show high degrees
of polymorphism, whereas the overall structure of this gene region is largely
conserved among vertebrate species and it contains a high density of coding
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genes [18]. In addition to the central role of the MHC in host defence, MHC
genotypes have been observed to be associated with e.g. spermatogenesis, mat-
ing preference or embryo development in humans and rodents [13, 20, 28].

In sheep however, the knowledge concerning the influence of the MHC on
reproduction and growth related trait values of economic relevance is still lim-
ited. The sheep MHC (ovine leukocyte antigen system, OLA) is located on
chromosome 20 [25] and covers a region of more than 10 cM [22]. Among
OLA class II genes, the expressed DR beta 1 (DRB1) gene has been found to be
highly polymorphic. To date, at least 106 OLA-DRB1 alleles have been iden-
tified by DNA sequencing of exon 2 from various sheep breeds, and several
reports are available which describe associations between carriers of distinct
alleles and their disease resistance [14, 15, 24].

In our experiments, we used the polymorphic microsatellite (GT)n(GA)m

(GenBank accession number: U00222) within intron 2 of the DRB1 gene,
first described by Riess et al. [21]. This repeat is supposed to have been con-
served between humans and artiodactyls for more than 70 million years [2].
In vitro experiments have revealed protein binding to (GT)n(GA)m sequences,
which points towards a biological function of this microsatellite in gene regu-
lation [17]. In Merinoland sheep [7], a total of at least 36 (GT)n(GA)m alleles
have been described by Griesinger [8], and six alleles appear to be specific for
this breed. The DRB1 genotyping was performed in addition to the recording
of a range of reproduction and growth related traits in Merinoland ewes and
their offspring from consecutive lambings for subsequent association analyses.

2. MATERIALS ANDMETHODS

2.1. Animals and experimental design

Seven rams and 249 ewes of the Merinoland breed [7] were kept at an exper-
imental station of the University of Hohenheim (Stuttgart, Germany) under a
standardised management system. For the experiment, young and virgin ewes
were chosen from flocks of different holders. Besides, the seven rams were
unrelated with each other as well as with the ewes and purchased from differ-
ent sheep breeders in Baden-Württemberg, Germany, by considering the avail-
able pedigree data of the sheep breeders association (Landesschafzuchtverband
Baden-Württemberg, Germany). The study was performed over three years
with several mating periods as shown in Table I. Each ewe was mated with
a distinct ram in order to produce two consecutive pregnancies. During each
mating period of 6 to 8 weeks, each ram had free access to a group of ewes.
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Table I. Experimental design.

p1, . . . , p4: Lambing period 1, . . . , 4; nME: number of mated ewes; nLE: number of
lambing ewes.

The ewes that did not become pregnant in a mating season were mated again
with the same ram in the next season. After two pregnancies, the ewes were
replaced by again virgin, young ewes. Altogether, 381 lambs were born during
the different lambing periods, 58 of which were stillborn or did not reach the
age of three months.

2.2. Isolation of DNA

At least two EDTA stabilised blood samples (10 mL) or one spleen sam-
ple (from stillborn lambs) were collected per animal and stored at −20 ◦C.
Isolation of genomic DNA was performed according to standard procedures.
DNA preparation from spleen samples was based on protocols of Chapdelaine
et al. [6].

2.3. Primers and PCR conditions

A DNA fragment which contained approximately 180 bp of
exon 2 and intron 2 of the ovine DRB1 including the (GT)n(GA)m
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microsatellite locus was amplified by PCR, using the primers
5’-GGGGGATCCGCTTCGACAGCGACTGGGGCG-3’ and 5’-
CGTACCCAGAKTGAGTGAAGTATC-3’ (K: G or T) according to
Griesinger et al. [9]. Approximately 200 ng of DNA were used in a
25 µL reaction volume with 0.5 U Taq polymerase, 0.8 µM primers, 0.4 mM
dNTP and 1.5 mM MgCl2. Denaturation at 94 ◦C for 3 min was followed by
32 cycles with a denaturation time of 30 s and annealing (60 ◦C) as well as
extension (72 ◦C) times of 60 s. The final cycle was concluded by an extension
period of 5 min.

2.4. Fragment length analysis

Fragment length analysis was performed on an Automated Laser Fluores-
cent Sequencer (A.L.F., Pharmacia, Freiburg, Germany) using 5% Hydrolink
gels. The lengths of allelic fragments were measured based on internal and ex-
ternal length standards. The A.L.F. software of Pharmacia (Freiburg, Germany)
was used for electrophoresis and genotyping. Each genotyping was repeated at
least twice.

2.5. Recording of reproduction and growth traits

The following traits or effects were scored corresponding to each mating
season: (i) For each ewe: mating period; body weight at mating time; date of
lambing; ages at mating and lambing; pregnancy status; number of lambs born
and weaned per lambing. (ii) For each lamb: parents; date of birth; number
of siblings; date of weaning or death; sex; birth and weaning weight. Other
traits measured on the lambs were as follows: age at weaning; total weight
gain (weaning weight - birth weight); daily weight gain (total weight gain /
age at weaning).

2.6. Statistical analysis

Allele frequencies, heterozygosity and deviations from Hardy Weinberg
equilibrium were calculated using BIOSYS-2 [27]. Associations between pa-
rameters of the DRB1 microsatellite and trait values were analysed using the
GLM-procedure of SAS©, version 8 (SAS© Institute Inc., Cary, NC, USA).
Each ewe was mated with only one sire and so the ewe factors and ram used
for different flocks were disconnected. The unrelated rams used for the ex-
periment had already been used for breeding and had shown their successful
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fertility. Considering these conditions, the statistical models used for the cal-
culations were the following:

– for reproduction traits of ewes (pregnancy status; number of lambs born;
number of lambs weaned):

yi jk = µ + AEi + Pj + b1(MAEi jk − MAE) + b2(MAE2
i jk − MAE2) + ei jk (1)

– for growth traits of lambs (birth and weaning weight; daily weight gain):

yi jklm = µ + AEi + Pj + S k + LBl + b1(LAEi jklm − LAE)

+ b2(LAE2
i jklm − LAE

2
) + {bj3(WALi jklm −WALj)} ∗ +ei jklm, (2)

with y: observed trait value of an animal; µ: mean value of the population; AE:
fixed effect of the allele (of ewe or lamb) in two allele classes (first class: ani-
mals with the specific allele; second class: animals without the specific allele)
or genotype classes (animals homozygous for the specific allele, heterozygous
for the specific allele, or without the specific allele, and up to two specific alle-
les regarded) or combination of ewe and ram alleles; P: fixed effect of mating
period; b1, b2: linear and squared regression values on the age of the ewe at
mating; MAE, MAE2: age of the ewe at mating and its squared value; MAE,

MAE
2
: mean of the age of the ewe at mating and its squared value; S : fixed

effect of lamb sex; LB: fixed effect of the number of lambs born; bj3: linear
regression of weaning weight/gain on the weaning age of lambs nested within
the period; LAE, LAE2: fixed effect of lambing age of the ewe and its squared

value; LAE, LAE
2
: mean age of the ewe at lambing and its squared value;

WAL: fixed effect of the lamb weaning age; WAL: mean weaning age of the
lambs; {bj3(WALi jklm − WALj)}: continues independent variable included for
analysing the dependent traits of the lambs; *: not included in the model for
the birth weight of lambs; e: residual error.

The ram effect was considered in alternative models (not shown).

3. RESULTS

3.1. Allelic diversity

A total of 16 DRB1 alleles were detected, ranging between 353 and 857 bp.
The fragment lengths and their distribution in the flocks are shown in Figure 1.
The 411 bp allele was the most frequent with 22.5% (n: 232) followed by the
405 (14.5%; n: 150), 394 (14.1%; n: 146) and 383 bp (12.2%; n: 126) alleles.
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Figure 1. Distribution of DRB1 microsatellite fragment lengths in the experimental
flock.

The predominant genotypes 394/411 (7.0%; n: 36), 411/411 (6.0%; n: 31),
394/405 (5.6%; n: 29) and 405/411 (5.4%; n: 28) were observed among a total
of 91 different genotypes.

3.2. Fertility traits

Associations between the DRB1 alleles of the mated ewes and their fertil-
ity traits were examined using model (1), checking ewes carrying individual
alleles against a residual class containing carriers of all other alleles. Pregnant
ewes carrying the 386 bp allele had a higher (P < 0.01) number of lambs born
and carriers of the 389 bp allele had a lower (P < 0.01) number of lambs
weaned (not shown). Table II elucidates the superior fertility of ewes carrying
the predominant 411 bp allele. Mated ewes with the 411 bp allele were superior
to the residual class in pregnancy status (P < 0.01), lambs born (P < 0.001)
and lambs weaned (P < 0.001) (Fig. 2). Regarding environmental factors, we
found that the period of mating had an influence (P < 0.001) on all fertility
traits of the mated ewes. The ewes were mated with the same ram for two
consecutive pregnancies, showing that the number of lambs born in the first
lambing (1.34 ± 0.11) was slightly higher (n.s.) than in the second lambing
(1.17 ± 0.18). Calculation of results using a model with a ram effect revealed
no influence on estimates for fertility traits concerning the allele classes (not
shown).
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Table II. Associations between genotype or allele classes and trait values1.
a) Fertility traits 2.

Source of variance n 3 Pregnancy Number of lambs Number of lambs
status 4 born weaned

Genotype of ewe 5:
394/rest 101 .572 .044 .665 .067 b .508 .060 b
394/411 31 .645 .080 .914 .120 .699 .109
411/rest 102 .607 .044 a .899 .066 a .675 .060 a
411/411 32 .710 .078 a .942 .118 a .773 .107 a
Rest/rest 223 .500 .030 b .675 .045 b .488 .041 b
Signif. 6 a > b: P < 0.05 a > b: P < 0.01 a > b: P < 0.05
Allele of ewe:
394 135 .591 .039 .724 .059 .556 .053
Rest 357 .550 .024 .763 .036 .567 .033
Signif. n.s. n.s. n.s.
411 165 .633 .034 .909 .052 .698 .047
Rest 327 .523 .025 .672 .037 .495 .034
Signif. 6 P < 0.01 P < 0.001 P < 0.001
Allele of ewe resp.
allele of ram:
411 resp. 411 54 .627 .060 a .968 .090 a .672 .082 ac
411 resp. rest 111 .636 .042 a .881 .063 a .711 .057 a
Rest resp. 411 144 .487 .037 b .675 .055 b .471 .050 b
Rest resp. rest 183 .553 .033 .669 .050 b .515 .045 bc
Signif. 6 a > b: P < 0.05 a > b: P < 0.01 a > b: P < 0.01

3.3. Growth traits

Figure 3 illustrates the associations between alleles of ewes and birth weight
of the lambs, analysed by model (2). For carriers of the 394 and 857 bp alleles
the weight of the lambs was about 400 g higher (P < 0.001 and P < 0.05
respectively) as compared to the residual group whereas the 443 bp allele was
negatively associated (P < 0.05). Significant effects on growth traits other
than birth weight in combination with DRB1 alleles was also observed for the
400 bp allele which was positively associated (P < 0.05) with weight up to
weaning (not shown). As shown in Table II for the predominant 411 and 394 bp
alleles, the ewes carrying the 394 bp allele were superior in their offspring not
only for birth weight but also for the other growth traits. Calculation of the
results using a model with a ram effect revealed a significant effect (P < 0.001)
on estimates for growth traits of the lambs, but with marginal influence on the
estimates of the ewe allele classes.
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Table II. Continued.
b) Growth traits.

Source of variance n 3 Birth weight Weaning weight Daily gain up
of lamb (kg) (kg) to weaning (kg)

Genotype of ewe5:
394/rest 71/55 5.203 .106 a 25.10 .79 214.0 8.5
394/411 30/24 5.276 .157 a 24.63 .96 212.9 10.3
411/rest 90/69 4.838 .091 bc 24.55 .68 213.5 7.3
411/411 33/28 4.555 .146 c 24.30 .86 214.6 9.3
Rest/rest 151/111 4.890 .073 b 24.25 .64 208.6 6.9
Signif. 6 a > b: P < 0.001 n.s. n.s.
Allele of ewe:
394 101/79 5.229 .093 24.98 .72 214.3 7.7
Rest 274/208 4.834 .058 24.36 .57 211.5 6.1
Signif. P < 0.001 n.s. n.s.
411 153/121 4.849 .076 24.47 .60 213.5 6.5
Rest 222/166 4.972 .065 24.45 .62 210.0 6.6
Signif. 6 n.s. n.s. n.s.
Allele of lamb:
394 67/60 5.185 .109 24.64 .76 210.1 8.1
Rest 200/173 4.886 .067 24.25 .59 210.0 6.3
Signif. P < 0.01 n.s. n.s.
411 116/92 4.860 .083 24.52 .66 213.4 7.0
Rest 151/141 5.023 .077 24.18 .62 207.8 6.5
Signif. 6 n.s. n.s. n.s.
Allele of ewe resp.
allele of ram:
394 resp. 394 19/14 5.348 .193 ac 27.58 1.16 a 241.6 12.5 a
394 resp. rest 82/65 5.201 .101 a 24.43 .74 b 208.7 7.9 b
Rest resp. 394 71/53 4.933 .101 bc 24.29 .70 b 209.5 7.6 b
Rest resp. rest 203/155 4.798 .066 b 24.39 .60 b 212.4 6.4 b
Signif. 6 a > b: P < 0.001 a > b: P < 0.05 a > b: P < 0.05

1 LS Means and Standard Errors. The letters indicate groups which are significantly (P < 0.05)
different.
2 Traits were defined for the mated ewes, and therefore the genotypes of lambs were not con-
sidered.
3 Number of ewes (for fertility traits) or lambs (for growth traits). First number: lambs born;
second number: lambs weaned.
4 Pregnancy status: Number of lambing ewes in relation to the number of mated ewes, i.e. ratio
of ewes that became pregnant after the mating period.
5 Only 2 carriers of the 394/394 genotype were observed and therefore data are not shown.
6 Significance between groups.
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Figure 2. Pregnancy status (PE), number of lambs born (LB) and number of lambs
weaned (LW) from mated ewes with or without the DRB1 microsatellite 411 bp allele.
The values and levels of significance (∗∗∗: P < 0.001; ∗∗: P < 0.01) are presented at
the head of each column; observation numbers are indicated at the bottom. The error
bars represent the standard error of the mean.

4. DISCUSSION

The 16 observed DRB1 alleles in this study ranged between 353 and 857 bp
which agrees with the findings of previous studies in the same breed [9] as
well as for other sheep breeds [11, 23]. The three most frequent alleles (411,
405, and 394 bp) were each found in two of the seven sires, which is partly
responsible for the predominant occurrence of these alleles in the lambs.

4.1. MHC variants and fertility traits

Two major concepts about MHC involvement in reproduction are currently
being discussed. The first assumes that immunological interactions between
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Figure 3. Associations between birth weight of lambs and maternal DRB1 microsatel-
lite alleles. The values and levels of significance (∗∗∗: P < 0.001; ∗: P < 0.05) are pre-
sented at the head of each column; observation numbers are indicated at the bottom.
The error bars represent the standard error of the mean.

the parents or between the mother and foetus are significant causes for the ef-
ficiency of conception and pregnancy. An increase in pregnancy success has
been observed in heterozygous matings [1]. On fetal membranes, MHC-G is
the only antigen found in most animals, and it is supposed that paternal MHC-
G is recognised by the maternal organism [19] where an excess of “block-
ing antibodies” causes an increased production of cytokines. This leads to an
advantage of the heterozygote in fertility traits which concurs with the results
of our study where DRB1 microsatellite heterozygous ewes had higher fer-
tility values than homozygous ewes (not shown) although the difference was
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not statistically significant in our study and not observed for the predominant
411 bp allele (Tab. II). The fertility of ewes in second mating was reduced
which may also indicate an immune reaction.

The second notion focuses on lethal and semi-lethal genes in close prox-
imity of the MHC such as for example the murine T/t-complex (reviewed for
example by Willison and Lyon [29]). The T/t haplotypes are variants of the
proximal third of chromosome 17 and have been described in most natural
mouse populations [3, 4]. Depending on homo- or heterozygosity for these
haplotypes, a range of symptoms from reduced male fertility to embryonic
malformations or death can occur, and a number of genes that are expressed
during spermatogenesis have been found to be associated with the murine T/t
complex [5, 29]. The highly significant association which we found between
the 411 bp allele and the pregnancy status, the effect of the ram allele as well as
the numbers of lambs born and weaned (Tab. II) probably reflects the superior
effect of an allelic haplotype which includes several closely linked loci. In hu-
mans for example more than 600 coding loci were mapped in close proximity
of the MHC [18], and the low recombination probabilities hinder the analysis
of causative polymorphic sites in population data. The results presented here
justify a direct genotyping of DNA variants within the T/t complex together
with further MHC linked marker loci in order to verify the association be-
tween the MHC chromosome region and fertility traits in independent groups
of ewes.

4.2. MHC variants and growth traits

Associations between serologically defined class I polymorphisms and
growth in cattle have been reported [10] which point to more or less indirect
MHC effects on growth traits. Such associations could be due to differences
in disease resistance between carriers of various MHC haplotypes that can in
turn affect the individual growth performance. In sheep, associations of DRB1
alleles with resistance to bovine leukaemia virus infection [16] or parasitic ne-
matodes [26] are known. We found the birth weight of lambs to be significantly
associated with DRB1 microsatellite alleles (Tab. II) with – regarding the fre-
quent alleles – a superiority of the 394 bp allele carriers. Figure 3 shows that
the rare 443 and 857 bp alleles were also significantly associated with birth
weight. Interestingly, the large 857 bp allele, which did not occur in the rams
and was found to be breed specific [9], was detected to be a second advanta-
geous allele for birth weight.
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These findings differ from earlier observations by Gruszynska et al. [11]
who described associations with different alleles for birth weight in Polish
Heath Sheep that could be caused by breed specific haplotypes; but the authors
only worked with 115 lambs and their calculations were based on observation
numbers between one and seven. Moreover, in our study we found associations
with superior birth weight when regarding the ewe as well as the lamb 394 bp
allele (Tab. II).

5. CONCLUSION

Our results suggest the presence of QTL for fertility and growth in close
proximity of the DRB1 microsatellite, and the association of this locus with
both traits allows allele-/ genotype information to be applied – along with other
markers – in sheep breeding. The observed associations could be due to differ-
ences in disease resistance between carriers of various MHC haplotypes which
can in turn affect individual fertility and growth performance. Moreover, the T/t
complex and interaction between parental or mother / foetus MHC haplotypes
may be associated with cell recognition and tissue differentiation. Further stud-
ies with numerous markers and genes in the OLA region and regarding further
breeds will be required in order to understand sheep MHC genetics and clarify
the genetic background for immunological influences on fertility and growth.
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