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Abstract – Two methods of computing Monte Carlo estimators of variance components using
restricted maximum likelihood via the expectation-maximisation algorithm are reviewed. A
third approach is suggested and the performance of the methods is compared using simulated
data.

restricted maximum likelihood / Markov chain Monte Carlo / EM algorithm / Monte Carlo
variance / variance components

1. INTRODUCTION

The expectation-maximisation (EM) algorithm [1] to obtain restricted max-
imum likelihood (REML) estimators of variance components [7] is widely used.
The expectation part of the algorithm can be demanding in highly dimensional
problems because it requires the inverse of a matrix of the order of the number
of location parameters of the model. In animal breeding this can be of the order
of hundred of thousands or millions.

Guo and Thompson [3] proposed a Markov chain Monte Carlo (MCMC)
approximation to the computation of these expectations. This is useful because
in principle it allows to analyse larger data sets but at the expense of introducing
Monte Carlo noise. Thompson [9] suggested a modification to the algorithm
which reduces this noise.

The purpose of this note is to review briefly these two approaches and to
suggest a third one which can be computationally competitive to the Thompson
estimator.
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2. THE MODEL AND THE EM-REML EQUATIONS

The sampling model for the data is assumed to be

y|b, s,σ2
e ∼ N

(
Xb + Zs, Iσ2

e

)

where y is the vector of data of length n, X and Z are incidence matrices, b
is a vector of fixed effects of length p, s is a vector of random sire effects of
length q, I is the identity matrix and Iσ2

e is the variance associated with the
vector of residuals e. Sire effects are assumed to follow the Gaussian process:

s|σ2
s ∼ N

(
0, Iσ2

s

)

where σ2
s is the variance component due to sires.

Implementation of restricted maximum likelihood with the EM algorithm
requires setting the conditional expectations (given y) of the natural sufficient
statistics for the model of the complete data (y, s) equal to their uncondi-
tional expectations. Let θ = (

σ2
s , σ

2
e

)
. In the case of the present model, the

unconditional expectations of the sufficient statistics are E
(
s′s|θ) = qσ2

s and
E

(
e′e|θ) = nσ2

e . The conditional expectations require computation of

E
(

s′s|y,θ̂
)

= ŝ′ŝ + tr
[
Var

(
s|y,θ̂

)]
= ŝ′ŝ +

q∑

i=1

Var
(

si|y,θ̂
)

(1)

and

E
(

e′e|y,θ̂
)

=
(

y − Xb̂ − Zŝ
)′ (

y − Xb̂ − Zŝ
)

+ tr
[
Var

(
e|y,θ̂

)]
, (2)

where θ̂ is the value of θ at the current EM iterate, and b̂ and ŝ are the expected

values of
[
b, s|y,θ̂

]
which can be obtained as the solution to Henderson’s mixed

model equations [5]:

[
X′X X′Z
Z′X Z′Z + Ik̂

] [
b̂
ŝ

]
=

[
X′y
Z′y

]
. (3)

In (3), k̂ = σ̂2
e

/
σ̂2

s . Throughout this note, to make the notation less cum-
bersome, a parameter x with a “hat” on top, x̂, will refer to the value of the
parameter at the current EM iterate.
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3. THE GUO AND THOMPSON ESTIMATOR

A MC estimate of the expectation in (1) requires realizations from the

distribution
(

s|y,θ̂
)

. A restricted maximum likelihood implementation of the

approach proposed by Guo and Thompson [3] involves drawing successively
from

p
(

si|s−i, b,θ̂, y
)

and from
p
(

bj|b−j, s,θ̂, y
)

,

where i = 1, . . . , q; j = 1, . . . , p, using the Gibbs sampler [2]. In this notation
xi is a scalar, and the vector x−i is equal to the vector x = {xi} with xi excluded.

With T realisations from
(

s|y,θ̂
)

, the MC estimate of the variance component

at the current EM iterate is

σ̂2
s = 1

qT

T∑

i=1

(
s( j)′s( j)

)
(4)

where T is the number of rounds of Gibbs samples used within the current
EM iterate. After several cycles, once convergence has been reached, the
converged values are averaged to obtain the final MCEM REML estimator.
Guo and Thompson [3] provide a detailed description of the algorithm and a
useful overview can be found in [8].

4. THE THOMPSON ESTIMATOR

Consider the decomposition of Var
(

si|y,θ̂
)

in (1):

Var
(

si|y,θ̂
)

= E
[
Var

(
si|s−i, b, y,θ̂

)]
+ Var

[
E

(
si|s−i, b, y,θ̂

)]

=
(

z′
izi + k̂

)−1
σ̂2

e + Var
[
E

(
si|s−i, b, y,θ̂

)]
(5)

where zi is the ith row of the incidence matrix Z. In (5), only the second term
has MC variance. This term is given by

Var
[
E

(
si|s−i, b, y,θ̂

)]
= Es−i,b|y,θ̂

[
E

(
si|s−i, b, y,θ̂

)2
]

−
{

Es−i,b|y,θ̂

[
E

(
si|s−i, b, y,θ̂

)]}2

= Es−i,b|y,θ̂

[
s̃ 2

i

]
− ŝ 2

i (6)
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where s̃i = E
(

si|s−i, b, y,θ̂
)

and ŝi = E
(

si|y,θ̂
)

. Using (6) and (5) in (1)

yields:

E
(

s′s|y,θ̂
)

=
q∑

i=1

{(
z′

izi + k̂
)−1

σ̂2
e + Es−i,b|y,θ̂

[
s̃ 2

i

]}
· (7)

The MC estimator of (7) is given by
∑q

i=1

{(
z′

izi + k̂
)−1

σ̂2
e + 1

T

∑T
j=1

[
s̃ ( j)2

i

]}
,

where s̃ ( j)
i is the expectated value over the fully conditional distribution[

si|s−i, b, y,θ̂
]

at the jth Gibbs round ( j = 1, . . . , T). The MC estimate of

the variance component at the current EM iterate is now equal to

σ̂2
s = 1

q

q∑

i=1





(
z′

izi + k̂
)−1

σ̂2
e + 1

T

T∑

j=1

(
s̃ ( j)2

i

)




= 1

q

q∑

i=1

(
z′

izi + k̂
)−1

σ̂2
e + 1

qT

T∑

j=1

(
s̃( j)′ s̃( j)

)
. (8)

This expression is equivalent to equation (4) in [9].

5. AN ALTERNATIVE ESTIMATOR

Consider the distribution of
[
s|θ̂, y = 0

]
, which is normal, with mean zero

and variance equal to the variance of
[
s|θ̂, y

]
. That is:

[
s|θ̂, y = 0

]
∼N

(
0, Var

(
s|θ̂, y = 0

))
. (9)

The term Var
(

s|θ̂, y = 0
)

corresponds to the lower diagonal block of the

inverse of the coefficient matrix of (3) at the current EM iterate. Then
equation (1) can be written:

E
(

s′s|y,θ̂
)

= ŝ′ŝ +
q∑

i=1

Var
(

si|y = 0,θ̂
)

. (10)

Decomposing the second term in (10), using (5) and (6), and noting that

Es−i,b|y,θ̂

[
E

(
si|s−i, b, y = 0,θ̂

)]
= 0
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yields:

Var
(

si|y = 0,θ̂
)

=
(

z′
izi + k̂

)−1
σ̂2

e + Var
[
E

(
si|s−i, b, y = 0,θ̂

)]

=
(

z′
izi + k̂

)−1
σ̂2

e + Es−i,b|y=0,θ̂

[
E

(
si|s−i, b, y = 0,θ̂

)2
]

=
(

z′
izi + k̂

)−1
σ̂2

e + Es−i,b|y=0,θ̂

[
s̃ 2

0,i

]

where s̃0,i = E
(

si|s−i, b, y = 0,θ̂
)

. Therefore

E
(

s′s|y,θ̂
)

= ŝ′ŝ +
q∑

i=1

{(
z′

izi + k̂
)−1

σ̂2
e + Es−i,b|y,θ̂

[
s̃ 2

0,i

]}
. (11)

The MC estimator of (11) is given by

ŝ′ŝ +
q∑

i=1





(
z′

izi + k̂
)−1

σ̂2
e + 1

T

T∑

j=1

[
s̃ ( j)2

0,i

]




where s̃ ( j)
0,i is the expected value over the fully conditional distribution

[
si|s−i,

b, y = 0,θ̂
]

at the jth Gibbs round. The MC estimate of the variance component

at the current EM iterate is now equal to

σ̂2
s = 1

q


ŝ′ŝ +

q∑

i=1





(
z′

izi + k̂
)−1

σ̂2
e + 1

T

T∑

j=1

(
s̃ ( j)2

0,i

)





 · (12)

6. COMPARISON OF MONTE CARLO VARIANCES

The smaller MC variance of (8) relative to (4) is explained via the decom-

position of the variance of
[
si|y,θ̂

]
in (5): only the second term is subject to

MC variance.
In order to compare the MC variance of (12) and (8) note that the ith element

of s̃( j) in (8), s̃ ( j)
i , can be written as

s̃ ( j)
i = ŝi + s̃ ( j)

0,i . (13)

Inserting (13) in (8) yields

σ̂2
s = 1

q



ŝ′ŝ +

q∑

i=1




(
z′

izi + k̂
)−1

σ̂2
e + 1

T

T∑

j=1

(
2ŝis̃

( j)
0,i + s̃ ( j)2

0,i

)





 (14)

which shows that (8) has an extra term relative to (12) which contributes with
extra MC variance.
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Table I. Restricted maximum likelihood estimators of sire variance based on expres-
sion (4) method 1, expression (8) method 2, and (12) method 3. The REML of
σ2

s and the MC variance of σ2
s is based on 1 000 Monte Carlo replicates.

Estimator True h2 REML of σ2
s MC variance of σ2

s

1 0.1 5.69 0.0707
2 0.1 5.71 0.0007
3 0.1 5.71 0.0001

1 0.3 11.08 0.0995
2 0.3 11.10 0.0025
3 0.3 11.10 0.0003

1 0.5 19.97 0.0949
2 0.5 19.98 0.0047
3 0.5 19.98 0.0008

6.1. An example with simulated data

The performance of the three methods is illustrated using three simulated
data sets with heritabilities equal to 10%, 30% and 50%. In each data set,
one thousand offspring records distributed in 100 herds were simulated from
100 unrelated sires. The figures in Table I show the performance of the three
methods in terms of their MC variances, which were computed empirically
based on 1 000 replicates.

The figures in Table I show clearly the ranking of the methods in terms of
their MC variances.

Table II shows a comparison of (8) and (12) in terms of computing time
(these two only are shown because the time taken to run (4) and (8) is almost
identical). The length of the MC chain for updating σ2

s at each EM iterate (T)
was increased for each method, until the same MC variance of 0.0005 was
obtained, and the time taken was recorded.

Estimator (12) requires knowledge of E
(

s|y,θ̂
)

at each EM iterate. There-

fore, it takes longer per EM iteration than (8). However, the proposed method
is still more efficient than that based on (8) since it compensates by requiring
a shorter MC chain length (T) for updating σ2

s at each EM iterate. In general,
the relative efficiency of the methods will be dependent on the model and data
structure.

7. EXTENSION TO CORRELATED RANDOM EFFECTS

MCEM provides an advantage in models where the E step is difficult to
compute, and this can be the case in models with many correlated random
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Table II. CPU-time in seconds (per complete EM replicate) taken for estimators (8)
and (12) to achieve an MC variance equal to 0.0005. (Based on 100 replicates).

Estimator (a) True h2 T (b) CPU-time (s)

2 0.1 60 9.12
3 0.1 6 7.96

2 0.3 190 29.28
3 0.3 26 16.15

2 0.5 400 60.74
3 0.5 90 41.95

(a) Same symbol as in Table I.
(b) Length of MC chain for updating σ2

s at each EM iterate.

effects. An example is the additive genetic model, where each phenotypic
observation has an associated additive genetic value. Consider the model

y = Xb + Z∗a + e

where y is the data vector of length n, X and Z∗ are known incidence matrices,
b is a vector of fixed effects of length p and a is the vector of additive genetic
values of length q. With this model, usually q > n. The sampling model for
the data is

y|b, a, σ2
e ∼ N

(
Xb + Z∗a, Iσ2

e

)

where σ2
e is the residual variance. Vector a is assumed to be multivariate

normally distributed as follows:

a|A,σ2
a ∼ N

(
0, Aσ2

a

)

where A is the q × q additive genetic covariance matrix and σ2
a is the additive

genetic variance.
Consider the decomposition of A as in [6]:

A = FF′.

Define the transformation
ϕ = F−1a.

It follows that
ϕ|σ2

a ∼ N
(
0, Iσ2

a

)
.
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Let θ = (
σ2

a, σ
2
e

)
. Clearly, conditionally on y and θ̂ the distribution of

(
a′A−1a

)

and of
(
ϕ′ϕ

)
have the same expectation; that is:

E
(

a′A−1a|y,θ̂
)

= E
(
ϕ′ϕ|y, θ̂

)

= ϕ̂′ϕ̂ +
q∑

i=1

Var
(
ϕi|y,θ̂

)

where ϕ̂ satisfies:

[
X′X X′Z
Z′X Z′Z + Ik̂

] [
b̂
ϕ̂

]
=

[
X′y
Z′y

]
. (15)

In (15), Z = Z∗F. We label the coefficient matrix in (15), W = {
wij

} ; i, j =
1, . . . , p + q.

The MCEM restricted maximum likelihood estimator of σ2
a at the current

EM iterate, equivalent to (4) is now

σ̂2
a = 1

qT

T∑

j=1

(
ϕ′( j)ϕ( j)

)

where ϕ( j) is the vector of Gibbs samples at the jth round, whose elements are

drawn from p
(
ϕi|y,θ̂

)
, i = 1, . . . , q. Using the same manipulations as before

that led to (8) and (12), it is easy to show that the estimators equivalent to (8)
and (12) are

1

q

q∑

i=1

(
w−1

i+p,i+p

)
σ̂2

e + 1

qT

T∑

j=1

(
ϕ̃′( j)ϕ̃( j)

)
(16)

and

1

q


ϕ̂′ϕ̂ +

q∑

i=1

w−1
i+p,i+pσ̂

2
e + 1

T

T∑

j=1

(
ϕ̃

′( j)
0 ϕ̃

( j)
0

)

 (17)

respectively. In (16), ϕ̃(j) is the vector of Gibbs samples at the jth round with

elements ϕ̃i = E
(
ϕi|ϕ−i, b, y,θ̂

)
. Similarly in (17), ϕ̃

( j)
0 is the vector of Gibbs

samples at the jth round with elements ϕ̃0,i = E
(
ϕi|ϕ−i, b, y = 0,θ̂

)
. In both

expressions, w−1
i+p,i+p is the inverse of the diagonal element of row/column i+p

of design matrix W.
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8. DISCUSSION

Markov chain Monte Carlo (MCMC) methods are having an enormous
impact in the implementation of complex hierarchical statistical models. In the
present paper we discuss three MCMC-based EM algorithms to compute Monte
Carlo estimators of variance components using restricted maximum likelihood.
Another application along the same lines can be found in [4], which shows how
to use the Gibbs sampler to obtain elements of the inverse of the coefficient
matrix which features in equations (1) and (2).

The performance of the methods was compared in terms of their Monte
Carlo variances and in terms of length of computing time to achieve a given
Monte Carlo variance. The different behaviour of the methods is disclosed in
expressions (4), (14) and (12). The method based on (8) divides the overall
sum of squares involved in (4) into two terms, one of which has no Monte
Carlo noise. In our method, further partitioning is achieved which includes a
term which is not subject to Monte Carlo noise. However, this is done at the
expense of requiring a solution to a linear system of equations. When tested
with simulated data, the proposed method performed better than the other two.
The data and model used induced a simple correlation structure. The relative
performance of the proposed method may well be different with models that
generate a more complicated correlation structure.

Efficient implementation is likely to require a fair amount of experimenta-
tion. For example, the solution to the linear system in each round within an EM
iterate need only be approximate and can be used as starting values for the next
iteration. Similarly, the number of iterates within each round (variable T) can
be tuned with the total number of cycles required to achieve convergence. One
possibility which we have not explored is to set T = 1 and to let the system
run until convergence is reached.
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