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Abstract – Classical selection for increasing prolificacy in sheep leads to a concomitant increase
in its variability, even though the objective of the breeder is to maximise the frequency of an
intermediate litter size rather than the frequency of high litter sizes. For instance, in the Lacaune
sheep breed raised in semi-intensive conditions, ewes lambing twins represent the economic
optimum. Data for this breed, obtained from the national recording scheme, were analysed.
Variance components were estimated in an infinitesimal model involving genes controlling the
mean level as well as its environmental variability. Large heritability was found for the mean
prolificacy, but a high potential for increasing the percentage of twins at lambing while reducing
the environmental variability of prolificacy is also suspected. Quantification of the response to
such a canalising selection was achieved.

canalising selection / threshold trait / heterogeneous variances / litter size / sheep

1. INTRODUCTION
Selection for increasing prolificacy in sheep, although leading to a better

average litter size in selected lines, also leads to an increase in prolificacy
variability. This phenomenon is well known for qualitative traits, where mean
and variance are linked. Extreme litters are encountered in prolific ewes
(Romanov; Finnish) with five or even more lambs per lambing, which is
obviously unacceptable for ewe and lamb viability. Breeders would like to have
litter sizes of two exactly – and not on average – or as often as possible. Inmany
situations twins are the most profitable (Benoit, personal communication).
Based on the example of the French Lacaune breed, the aim of this work was

to evaluate if sheep can be selected for the objective: “concentrating prolificacy
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on 2”. For that purpose, data consisting of litter size measurements on Lacaune
sheep were analysed, using a direct adaptation to ordered categorical data of
the quantitative genetic model described by SanCristobal-Gaudy et al. [22]
relative to continuous traits. The hypothesis was stated that factors affect the
underlyingmean and/or the underlying environmental variability. These factors
can be environmental, but also genetic. Variance components were estimated,
giving the amount of genetic control on the mean and on the environmental
variability, in a polygenic context. Prediction of the response to a selection
for twins, based on the previous genetic parameter estimates, was derived
usingMonte Carlo simulation. Finally, this approach was compared with more
traditional methods.

2. GENETIC MODEL

2.1. Threshold model for polytomous data – Likelihood approach

AsGianola and Foulley [10], Foulley andGianola [8] or SanCristobal-Gaudy
et al. [23] for example, we consider the threshold Wright model, based on an
underlying Gaussian random variable. Thresholds transform this continuous
variable into amultinomial variablewith J ordered categories. Let us define I as
cells indexed by i as combinations of levels of explanatory factors. Multinomial
data are observed:

(Ni1, . . . ,Nij, . . . ,NiJ) ∼ M
(
ni+; (Πi1, . . . ,Πij, . . . ,ΠiJ)

)
(1)

with Nij as the number of counts in cell i for the jth category, and Πij the
probability that an unobservable Gaussian random variable Yi ∼ N (µi, σ

2
i )

lies between two thresholds τj−1 and τj (falls into the jth ordered category).
Setting τ0 = −∞ and τJ = +∞, the following is obtained:

Πij = P[τj−1 ≤ Yik < τj|Yik ∼ N (µi, σ
2
i ), k ∈ {1, ..., ni+}]

= Φ

(
τj − µi

σi

)
− Φ

(
τj−1 − µi

σi

)
, (2)

where ni+ is the observed number of counts in cell i for all J categories:
ni+ = ∑

j nij.
The underlying means µi and variances σ2i are linear combinations of para-

meters to estimate:

µi = x′
iβ, (3)

lnσ2i = p′
iδ, (4)

where x′
i and p

′
i are incidence vectors, β is a vector of location parameters, and

δ is a vector of dispersion parameters.
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Estimation and hypothesis testing

The estimation procedure can simply bemaximum likelihood, implementing
for example a Fisher-scoring algorithm, exactly as in [8]. Moreover, the test
of H0 : K′δ = 0 vs. H1 = H̄0, where K is a full-rank matrix, is achieved
with the log-likelihood ratio λ = −2(L1 − L0), where L0 (resp. L1) is
the log-likelihood of model M0 (resp. M1) corresponding to H0 (resp. H1).
Asymptotically, the statistic λ follows a chi-square distribution under the null
hypothesis H0, with degrees of freedom equal to the difference in the number
of estimated parameters between modelsM0 andM1.

2.2. Bayesian approach

Furthermore, the Bayesian quantitative genetic model developed by
SanCristobal-Gaudy et al. [22] is based upon the underlying continuous variable
Y as follows:

µi = t′iθ = x′
iβ + z′iu, (5)

ln σ2i = w′
iγ = p′

iδ + q′
iv, (6)

where ti = (x′
i, z

′
i)

′ and wi = (p′
i, q

′
i)

′ are incidence vectors, θ = (β′,u′)′
are location parameters, and γ = (δ′, v′)′ are dispersion parameters. The
parameters β and δ have flat priors, in order to mimic a mixed model structure,
while u and v represent genetic values, with a joint normal prior distribution:(

u
v

)
|σ2u, σ2v , r ∼ N

[
0,

(
σ2u rσuσv

rσuσv σ2v

)
⊗ A

]
, (7)

where ⊗ denotes the Kronecker product, A is the relationship matrix between
the animals present in the analysis, σ2u and σ2v are additive genetic variances
relative to the location and log variance of the trait, respectively, and r is the
correlation coefficient between genetic values u and v. Note that the continuous
random variable Y is Gaussian conditional on (u, v). Using a now common
incorrect terminology, the expressions “fixed effects”and “random effects”will
sometimes be used in the following.
Here, focus is on the genetic aspect of the modelling of multinomial data,

by the introduction of two (possibly) related groups of polygenes acting on the
trait mean and log variance respectively.
Following SanCristobal-Gaudy et al. [22,23], a sire model is written with

µi = x′
iβ + 1

2
z′iu, (8)

σ2i = 3

4
σ2u + exp

[
p′
iδ + 1

2
q′
iv + 3

8
σ2v

]
(9)

replacing (5) and (6). Vectors u and v are genetic values of sires, and data are
collected on their progeny.
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Model fitting

Let us denoteN = (Nij)(i=1,...I)(j=1,...J) as the observation, σ2 = (σ2u, σ
2
v , r) the

set of variance component parameters, and ζ = (τ′, θ′, γ′)′ the other parameters
with τ = (τj)j=1,...J as the thresholds. The logarithm L of the joint posterior
distribution reads:

L =
I∑

i=1

J∑
j=1

nij lnΠij − 1

2(1− r2)

[
u′A−1u

σ2u
− 2r

u′A−1v
σuσv

+ v′A−1v
σ2v

]

− q

2
ln σ2u − q

2
ln σ2v − q

2
ln(1− r2) + const. (10)

where q denotes the number of elements in vector u (or v).
Estimation of parameters ζ via the maximisation of L with respect to

τ, θ, γ presents no theoretical difficulty when variance components are known.
A Fisher-scoring algorithm leads to extended mixed-model equations (see
Appendix).
When variance components have to be estimated, we chose to base the

inference on the mode of the log marginal posterior distribution of variance
components σ2:

σ̂2 = Argmax ln p(σ2|N), (11)

by extension of the usual case (σ2v = 0) where the previous equation leads to
REML estimates of variance components.
An EM-type algorithm was implemented as in [9,22], using an iterative

algorithm where two systems are involved. The first system consists of
BLUP-like mixed-model equations, where variance components are replaced
by their current estimates. Solutions of these equations give current estimates
of ζ. The second system updates the variance component estimates. When
r is set to zero, equation (11) reduces to usual REML equations. However,
numerical integration is required for multinomial data; details can be found in
the Appendix.
At convergence, maximum a posteriori (MAP) estimates of ζ are obtained

as a by-product:
ζ̂ = Argmax ln p(ζ|σ2 = σ̂2,N). (12)

3. ANALYSIS OF LITTER SIZE DATA

3.1. Data

Data were collected fromLacaune ewe lambs born over 11 years as the result
of inseminations made from 157 sires in 57 flocks. These flocks were a part
of a selection scheme implemented in the Lacaune population since 1975 for
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Table I. Significance effects of explanatory factors on the underlyingmean. Reference
model is YEAR + SEASON + AGE + HERD + SIRE.

Factor Test statistics df p-value

−YEAR 15.8 10 0.1
−SEASON 10.4 1 0.001
−AGE 80.2 3 0
−HERD 557.2 56 0
−SIRE 788.2 156 0

increasing prolificacy and operating on farms through a sire progeny test, as
described by Perret et al. [20]. In the experimental design, each ram offspring
averaged 25 daughters spread among five different flocks (factor HERD) and
each flock had ewe lambs of about eight different sires thus providing a suitable
sample for the estimation of genetic values. The sample used in this study was
limited to data for rams (factor SIRE) with at least 30 controlled daughters.
It considered only the first lambing after natural oestrus in ewes of 4 age
classes at mating (< 7, 7 to 11, 11 to 14, > 14 months of age, factor AGE),
and obtained in two lambing seasons (November-December and March-April,
factor SEASON). This sample involved the results of 11 723 litter sizes over
11 years (factor YEAR).
Litter sizes greater than 5 were grouped into the 5th and last category. The

percentages of litters with 1, 2, 3, 4 and 5 or more lambs were 41.1, 47.5, 9.8,
1.5 and 0.1 respectively. The overall prolificacy of these ewes at their first
lambing was 1.72.

3.2. Homoscedastic models

A usual homoscedastic threshold model is fitted, including the fixed effects
YEAR, HERD, SEASON, AGE in an additive way, and a random sire effect
(u/2), symbolically written as:

E(Y|u) = YEAR + HERD + SEASON + AGE + u/2 (13)

on the underlying mean, where u ∼ N157(0, σ2uA) is the vector of sire genetic
values andA is the relationshipmatrix. Interactionswere not taken into account
in themodel because of non-(or bad) estimability or statistical non-significance.
The significance tests for the explanatory factors on the underlying mean are
shown in Table I.
The estimation procedure of Gianola and Foulley [10] gave an estimate of

heritability equal to ĥ
2

u = 0.39.
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Table II. Significance effects of explanatory factors on the underlying environmental
log variance.

Reference Added Test
model factor nmin (a) s2Max/s

2
min

(b) σ̂
2
Max/σ̂

2
min statistics df p-value

const. +YEAR 156 1.38 1.6 20.4 10 0.026
+SEASON 5236 1.09 1.02 0.22 1 0.64
+AGE 619 1.25 1.22 3.6 3 0.31
+HERD 11 3.85 11.17 61.04 56 0.3
+SIRE 30 4.63 13.8 237.6 156 3× 10−5

SIRE +YEAR 1.48 16 10 0.1
+SEASON 1.01 0.02 1 0.89
+AGE 1.28 4.5 3 0.21
+HERD 62.55 71.4 56 0.08

(a) Minimum number of observations among all levels of each factor.
(b) Observed ratio of highest variance over lowest variance among levels of each
factor.

3.3. Heteroscedastic models

The previous additive model for the mean was used throughout the next
analyses.
(i) First, factors that have a significant effect on the underlying trait environ-

mental variability were sought. A likelihood ratio test was implemented. The
reference model is the homoscedastic model with only fixed effects, including
a sire fixed effect (model of the form (8)-(9), without u nor v):

M0 :
{
E(Y) = YEAR + HERD + SEASON + AGE + SIRE

lnVar(Y) = const.
(14)

The current model for the significance test for, say, the YEAR factor, is for
example:

M1 :
{
E(Y) = YEAR + HERD + SEASON + AGE + SIRE

lnVar(Y) = YEAR.
(15)

Table II gives the results of a forward selection procedure for the model on
log variances. It shows that only the sire (considered as a fixed effect) has a
significant effect.
(ii) Then a mixed sire model (8)-(9), with β = (YEAR, HERD, SEASON,

AGE), u = SIRE and v = SIRE, is fitted in order to estimate the variance

components. This gives ĥ
2

u = 0.34 (s.e. = 0.037), σ̂2v = 0.23 (s.e. = 0.027)
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Figure 1. Plot of estimated u and v genetic values of the 157 numbered sires, in genetic
standard deviation units.

and r̂ = 0.19 (s.e. = 0.092). These variance component estimates are approx-
imately the samewhen the correlation r between the two sets of breeding values

is arbitrarily set to 0 (σ̂2v = 0.25 and ĥ
2

u = 0.36, see also [23]).
The fixed effects and breeding value estimates are compared with those

obtained with the mixed homoscedastic threshold model. They are close to
each other, although the ranking is not exactly the same (not shown).
A plot of estimated breeding values (û, v̂) (Fig. 1) allows to apprehend the

joint ability of the 157 sires to produce high or low litter size on average and
with a high or low variability.
In Table III, two sires with a mean prolificacy of the same order of mag-

nitude are compared. The former has a high dispersion while the latter is
canalised. The heteroscedastic model detects these differences and predicts
slightly better the probabilities for the five categories. The total number of
parameters is higher in the heteroscedastic than in the homoscedastic model,
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Table III. Comparison of two sires. Expected probabilities correspond to an environ-
ment with average effect.

Sire Mean prol. û v̂ Model Π1 Π2 Π3 Π4 Π5

raw data 0.40 0.43 0.14 0.03 0.00
44 1.80 0.738 0.283 homosc. mod. 0.48 0.42 0.08 0.01 0.00

hetero. mod. 0.46 0.36 0.13 0.04 0.01
raw data 0.34 0.59 0.07 0.00 0.00

83 1.73 0.621 −0.625 homosc. mod. 0.49 0.47 0.04 0.00 0.00
hetero. mod. 0.45 0.48 0.06 0.01 0.00

but the likelihood ratio test infers that the former better fits the Lacaune data,
accounting for the extra number of parameters (p-value = 3×10−5, see Tab. II).
The high estimate of genetic variance (σ̂2v = 0.23) and of heritability (ĥ

2

u =
0.34) can be viewed as a great potential for the population to be canalised
toward the phenotypic optimum of two (twins are economically the best), with
a reduction of the environmental variability. The next section is a first attempt to
quantify the expected response to such a selection, as was done for continuous
traits [22].

4. PREDICTION OF THE RESPONSE TO CANALISING
SELECTION OF PROLIFICACY IN THE LACAUNE BREED

4.1. Objective

One of the general objectives is the minimisation of discrepancies from an
optimum

Π0 = (Π0,1, . . . ,Π0, j, . . . ,Π0, J)

of the descendence performances.
The simple example of sheep breeders who wish to maximise the proportion

of twins, first prompted this work. A single lamb and more than three lambs
are economically undesirable. The optimum is then Π0 = (0, 1, 0, . . . , 0). In
the remainder of the text, the focus will be on this particular target. Obviously,
generalisations are straightforward without any conceptual addition.

4.2. Selection schemes

Simulated selection schemes were run 1 000 times in order to have accurate
empirical responses to canalising selection. A fixed number (np) of unrelated
sires were mated to n unrelated dams each, producing n daughters per sire
family. Each daughter had one record (litter size), and the set of n performances
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in a sire family was used to evaluate this sire. Different indices were compared
and are detailed later. For the likelihood-based indices, animals were treated
as if they were unrelated. True variance components were used (otherwise
mentioned). After sire ranking, ns sires were selected and produce np males
for the next generation. The selection scheme was hence the same as in
SanCristobal-Gaudy et al. [22], except that the phenotype was not directly

y = µ + u + exp

(
η + v

2

)
ε

but was set to j if y lied in the interval [τj−1, τj].
Let us denote by i the sire, j the category, Πij the probability that father i

has daughters with a litter size equal to j for j in the {1, 2, 3, 4, 5} set, nij the
number of daughters of sire i that have a j litter size, I(ni) the index of sire i
with ni = (ni1, . . . ni5),

∑5
j=1 nij = n.

Two phenotypic selection indices were considered:

IPO(ni) = ni2
n

(16)

the empirical estimate of Πi2, where the index P stands for phenotypic and O
denotes on the observed scale;
if the discrete trait is treated as continuous, as in [22], the index is:

IPC(ni) = (n̄i − y0)
2 + S2i , (17)

where C stands for continuous (data are considered as such), n̄i and S2i are the
empirical mean and variance, respectively, of ni and y0 = 2.
Then, four selection indices were defined, using estimated breeding values

ûi and v̂i (when an heteroscedastic model is used) of sire i, on the observed (O)
or underlying (U) scale. The estimates ûi and v̂i areMAP estimates of breeding
values (see paragraph 2.2), i.e. likelihood-based estimates (index L):

ILhomO(ni) = Φ

(
τ2 − µ − ûi/2

σe

)
− Φ

(
τ1 − µ − ûi/2

σe

)
(18)

and σe =
√
3σ2u/4+ exp(η + σ2v/2), where hom means that the model is

homoscedastic;

ILhetO(ni) = Π̂i2 = Φ

(
τ2 − µ − ûi/2

σ̂e,i

)
− Φ

(
τ1 − µ − ûi/2

σ̂e,i

)
(19)

and σ̂e,i =
√
3σ2u/4+ exp(η + v̂i/2+ 3σ2v/8), where het means that the model

is heteroscedastic;
ILhomU(ni) = (µ + ûi/2− y0)

2, (20)
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with y0 = τ1+τ2
2 ; and

ILhetU(ni) = (µ + ûi/2− y0)
2 + (

3σ2u + exp(η + v̂i/2+ 3σ2v/8)
)
, (21)

with y0 = τ1+τ2
2 ·

Particular parameters were chosen in order to mimic the Lacaune population
analysed in the previous section: np = 30, ns = 5, n = 30 or 100, r = 0,
σ2u = 0.64, σ2v = 0.25, µ and η such that the mean prolificacy equals 1.7 and
the phenotypic variance equals 0.71, τ1 = 0.311, τ2 = 2.193, τ3 = 3.456, and
τ4 = 4.637.
Data were also generated with σ2v = 0.001 and likelihood calculations were

performed with σ2v = 0.25 and vice versa, to apprehend the impact of using a
wrong model on selection efficiency.
Moreover, the model was slightly complicated by adding a fixed effect

with two levels, say a HERD factor. Each sire i was given at generation t a
proportionαit (resp. 1−αit) of daughters in herd 1 (resp. 2), with αit drawn from
a uniform distribution U(0, 1). The following parameterisation was adopted:
the two levels had effects equal to a and −a, respectively. The particular
value 2a = 1.5 was used in the simulations. It corresponds to a large effect
encountered in the analysis of the Lacaune data.
At this point the following question arises: how can one introduce fixed

effects in the index of selection when the relation between breeding values and
phenotype (or index) is nonlinear? In the traditional linear case, let us denote
µ̂k + ûi the estimated index of animal i in environment k. Evidently, the ranks
of these indices do not depend on the environments. This is not the case in the
threshold model since the ranks of

Π̂2,i,k = Φ

(
τ2 − µ̂k − ûi

σ̂ik

)
− Φ

(
τ1 − µ̂k − ûi

σ̂i,k

)
(22)

do depend on environment k. In our particular case, the aim was to select sires
giving the maximum of twins whatever the herd. The chosen index was

ILhetO = 1

2
Π2,i,k=1 + 1

2
Π2,i,k=2 (23)

since each sire has a probability of 1/2 of having a daughter in herd 1, by con-
struction. More generally, each likelihood-based index IL∗ of equations (18),
(19), (20), and (21) is replaced by

1

2
IL∗,k=1 + 1

2
IL∗,k=2. (24)

The effect of the herd was not taken into account in the phenotypic indices PO
and PC.
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4.3. Results

The six selection indices are compared in terms of mean prolificacy (Fig. 2),
phenotypic standard deviation (Fig. 3) with the corresponding genetic progress
for v (Fig. 4), and percentage of twins (Fig. 5) during 20 generations of selection,
and n = 100 daughters per sire. The shape of the u genetic progress is the
same as the shape of the phenotypic mean in Figure 2 (not shown). Similarly,
the percentage of quintuplets (not shown) behaves like the phenotypic standard
deviation (Fig. 3). More importantly, the equivalence of indices corresponding
to the same model, no matter the scale in which it is calculated (Observed or
Underlying), is to be mentioned: LhomO behaves like LhomU, and LhetO like
LhetU.
The phenotypic variance and the percentage of quintuplets are stabilised

by the PO index, while the phenotypic mean tends very slowly towards the
optimum. The PC index shows no progress in the mean prolificacy. This can
be explained by the fact that the strong effect of the environment is not taken
into account; this omission increases the residual variance and hence drastically
decreases the heritability. The selection is consequently quite inefficient in
moving themean towards the target. The selection is nevertheless very efficient
in decreasing the variance. In contrast the likelihood-based indices show a fast
increase in the main criterion, that is the twin percentage and consequently the
mean prolificacy. Because of the discrete nature of the data, the strong increase
in the mean is accompanied by an increase in phenotypic variance. As soon as
the population has reached the optimum on average, the phenotypic variance
decreases provided that a heteroscedastic model is used (indices LhetO and
LhetU). If not, the variance and the percentage of quintuplets are maintained
at a high and constant level. Note that the PC index, also leading to a high
genetic progress for v but with a lower mean than the LhetO and LhetU indices,
shows a reduction in phenotypic variance.
Since data are discrete, the link between the mean and variance is so strong

that the underlying genetic progress in v, which is indeed high for the LhetO
and LhetU indices (one genetic standard deviation gain in 10 generations of
selection), is not visible on the phenotypic scale until themean stops increasing.
It is however possible to slowdown the genetic progress of u in order to privilege
the genetic progress of v and its phenotypic expression. This can be achieved
by putting different weights in the index, like:

ILhetU(ni) = w1(µ + ûi/2− y0)
2 + w2

(
3σ2u + exp(η + v̂i/2+ 3σ2v/8)

)
. (25)

For Figure 6, the particular values w1 = 1 and w2 = 50 were chosen.
Compared to the PO index (Fig. 6), the mean evolves faster towards the
optimum, while the variance decreases, showing that the weighted index LhetU
has the highest performances whatever the point of view (mean or variance
evolution).
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Figure 2. Evolution of phenotypic means for the six indices of selection. Simulations
were performed with np = 30, ns = 5, n = 100, r = 0, σ2u = 0.64, σ2v = 0.25,
µ = 0.61, η = −0.6, a = 1.5, τ1 = 0.311, τ2 = 2.193, τ3 = 3.456, and τ4 = 4.637.

Figure 3. Evolution of phenotypic standard deviations for the six indices of selection.
Simulation parameters as for Figure 2.
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Figure 4. Genetic progress of v expressed in genetic standard deviation units. Simu-
lation parameters as for Figure 2.

Figure 5. Evolution of twin percentages for the six indices of selection. Simulation
parameters as for Figure 2.
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Figure 6. Joint evolution of phenotypic mean and standard deviation. Indices PO and
LhetU with weights 1 and 50 on mean and variance. Simulation parameters as for
Figure 2.

When a parameter σ2v is set to 0.252 in the heteroscedastic model, while its
true value is 0, then the selection based on the heteroscedastic indices LhetO or
LhetU acts as if the genetic variance σ2v was already null, i.e. the indices LhetO
or LhetU are quite equivalent to indices LhomO or LhomU in this case. For
example, the mean prolificacy is only 3% lower with heteroscedastic than with
homoscedastic models, while the phenotypic standard deviation is also 2%
lower after three generations of selection. This means that the heteroscedastic
approach does not slow down the efficiency of the selection if a higher genetic
variance in v is wrongly put in the model.
The previous figures aimed at understanding the global long-term behaviour

of some canalising selection indices. In practice, for the particular Lacaune
breed, the short-term response to selection is given in Table IV in terms of
mean prolificacy, phenotypic standard deviation, underlying genetic progress
and percentages of single, twin, triplets, quadruplets and quintuplets or more.
In this case, n = 30 progeny per sire is assumed.

5. DISCUSSION

The first aim of this work was the analysis of the genetic components of
litter size in the Lacaune sheep breed. A liability model was chosen, as is
often done for the analysis of polytomous data in animal genetics. A high
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Table IV. Performances of six selection indices. n = 30, σ2v = 0.252.

Gen. Index Average prolificacy Standard deviation Π1 Π2 Π3 Π4 Π5

Phen. u Phen. v

0 1.71 0 0.71 0 42.4 45.7 10.3 1.4 0.12

1 PC 1.72 0 0.71 0 41.5 46.4 10.6 1.4 0.11
PO 1.74 0 0.72 0 40.6 46.7 11.0 1.6 0.13
LhomO 1.84 0 0.75 0 35.3 48.7 13.5 2.2 0.21
LhetO 1.82 0 0.75 0 35.4 48.7 13.2 2.1 0.19
LhomU 1.83 0 0.75 0 35.5 48.6 13.4 2.3 0.20
LhetU 1.82 0 0.75 0 36.0 48.6 13.1 2.1 0.20

5 PC 1.76 0.09 0.71 −0.14 39.1 47.9 11.3 1.5 0.12
PO 1.82 0.19 0.74 −0.10 35.9 48.9 13.1 2.0 0.17
LhomO 2.02 0.58 0.80 0.02 26.0 50.8 18.8 4.0 0.45
LhetO 2.00 0.55 0.78 −0.10 26.1 51.5 18.5 3.6 0.34
LhomU 2.02 0.58 0.80 0.02 26.1 50.7 18.8 4.0 0.46
LhetU 2.00 0.55 0.78 −0.09 26.1 51.5 18.5 3.6 0.35

heritability estimate (ĥ
2

u = 0.34 on the underlying scale) was found for mean
prolificacy. This value is greater than estimates generally found in the literature
but it was observed before in this particular sheep population by Bodin et al. [1].
Although the structure of the data seems suitable for giving unbiased heritability
estimates, according to Engel et al. [5] and Engel and Buist [6], some authors
like Matos et al. [15] remark higher heritability estimates with a sire model
than with an animal model for litter size. Other estimation procedures could
have been chosen such as the quasi-score used by Jaffrezic et al. [12], or
MCMC techniques. The only advantages of an EM approach are the certainty
of convergence of the algorithm to a local minimum of the function to optimise,
and the slight modification of the traditional REML equations. But the need
for a MC step in the EM algorithm leads to heavy computations, which may
tell in favour of full MCMC techniques.

The infinitesimal model proposed by SanCristobal-Gaudy et al. [22] for
continuous traits was extended here to polytomous traits via a continuous
underlying variable, allowing the modelling of the environmental variability as
is usually done for the mean. The year, herd, season and age have no significant
effects on the variability of litter size in the Lacaune population, but the sire
factor has an important influence. The inclusion of the relationship matrix
allows the interpretation of the sire variance σ2v of the log residual variances
in the underlying scale as an additive genetic variance. The estimate of this
parameter was found equal to σ̂

2
v = 0.23; it corresponds to a maximum value
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of the ratio of sire variances on the underlying scale equal to σ2Max/σ
2
min =

exp(vMax−vmin) ≈ exp(6σv) ≈ 18, which is pretty high. At present, this value,
however, has no comparison in the literature.
The second aim of this work was the prediction of the response to a selection

for homogenising litter size around the target of two lambs per lambing. This
problem is already complicated in standard situations, due to nonlinearity.
An immediate extension of the work of Im and Gianola [11] shows that the
parent-offspring regression is nonlinear for polytomous data with more than
two categories. Some of the heritability estimates proposed by Magnussen
and Kremer [13] cannot be extended to multiple-category data. Analytical
expressions for the selection response of a binary trait given by Foulley [7] are
unfortunately not feasible when a multiplicative model is set on the underlying
environmental variance. The simulations performed in the previous section
were imposed by these analytical complications.
Quantitatively, canalising selection is less efficient here than for continuous

traits, due to the relationship between phenotypicmean and variance for discrete
traits. The Lacaune situation is particularly difficult since one aspect of the
objective is the increase of mean prolificacy, whose consequence (the increase
of phenotypic variance) has an opposite action on the other aspect of the
objective (reduction of the environmental variance). Despite a high genetic
progress on the underlying environmental variance, only a small part of this is
reproduced on the observed scale.
In fact, the model assumes a constant genetic variance in the mean value of

the underlying variable Y and fixed threshold values that define a limit to the
possible reduction in phenotypic variance, corresponding to the case in which
Var(Y) = σ2u. At the limit, the expected proportions of litter sizes are equal
to 0.12, 0.76, 0.11, 0.003 and 10−5, in increasing order. No reduction in the
genetic variance was envisaged for this theoretical limit. More flexible models,
derived from a physiological analysis (as in the work of Mariana et al. [14]),
or involving the effects of QTLs or major genes on mean prolificacy, might
probably be required to make such mid- and long-term predictions of the
response to canalising selection more realistic.
Qualitatively, the analysed indices can be ranked on the basis of their related

selection responses. In every case, the indices based on a heteroscedastic
model (LhetO and LhetU) gave the best results for this criterion. A gain in the
selection of categorical traits based on a threshold model over a linear model
was already pointed out by Meuwissen et al. [17]. Moreover, the omission of
an environmental factor with large effect, like theHERD in the simulations, has
disastrous consequences on the selection, stressed by the nonlinearity between
breeding values and index. Long-termfigureswere given in order to understand
the global dynamics of certain canalising selections. So far, the selection
objective had been the increase of twin proportion for the next generation.
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In practice however, short- or mid-term figures are interesting for breeders.
Then, generation-dependent weights in the selection indices can be envisaged,
generalising the use of weights as in index (25):

w1,t(µ + ûi/2− y0)
2 + w2,t

(
3σ2u + exp(η + v̂i/2+ 3σ2v/8)

)
(26)

or ∑
j=1,J

cj,tΠ̂j,t (27)

for generation t, these weights should be chosen optimally to maximise a
selection objective over T generations:

∑
t=1,T

∑
j=1,J

c0, j,tΠ0, j,t. (28)

To be fully comprehensive, the quantityΠj,t in equation 27 must be calculated
over all the possible levels of environment k as in (23):

∑
k

pk,tΠk, j,t, (29)

where pk,t is the incidence of level k in the whole population. Economic studies
will estimate weights c0, j,t (Benoit, personal communication).
One must note that the Lacaune population analysed in this paper has been

selected for increasing the mean litter size. The observed high heterogeneity
in sire variances may be due to the presence of polygenes controlling the
residual variance (sensitivity to the environment), as was done in this paper.
Heteroscedasticity may also be due to a major gene controlling the mean and
segregating in the population, with the progeny of homozygote sires being less
variable than heterozygotes. A canalising selection will favour homozygotes
by reducing the variability, and pertaining polygenes will move the population
mean to the optimum. The existence of such a major gene is currently being
tested by Bodin et al. [3]. However, the genetics of reproduction traits is
difficult (see for example Bodin et al. [2]), and no tool is currently available
for fully understanding the genetic determinism of litter size variability.
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APPENDIX

This appendix is devoted to the parameter estimation for multinomial data.
In order to shorten algebraic expressions, we define the following notations:

αij = τj − µi

σi
,

φij = φ(αij),

ξi =



exp

(
w′
iγ + 3

8
σ2v

)
σ2i

for a sire model

1 for an individual model

(30)

t′i =



(
x′
i,
1

2
z′i

)
for a sire model

(x′
i, z

′
i) for an individual model

(31)

w′
i =




(
p′
i,
1

2
q′
i

)
for a sire model

(p′
i, q

′
i) for an individual model

(32)

where φ is the density function of the standardised normal variable.
Themaximisation ofLwith respect to ζ can be achieved via a Fisher-scoring

iterative algorithm. Each iteration t consists in solving a linear system:

−
[
E

∂2L

∂ζ2

][t−1] (
ζ̂

[t] − ζ̂
[t−1]) =

[
∂L

∂ζ

][t−1]
, (33)

where E denotes expectation.
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Here and in the following, αi0φi0 and αiJφiJ are replaced by their limit in
τ0 −→ −∞ and τJ −→ +∞ respectively, i.e. by 0.

The Fisher-scoring algorithm requires the information matrix, which can be
obtained from the Hessian matrix and the fact that (equation (1))

ENij = ni+Πij. (34)

Elements of the gradient of L are equal to:

∂L

∂τj
=

I∑
i=1

φij

σi

(
nij
Πij

− ni, j+1
Πi, j+1

)
, for j = 1, . . . J − 1,

∂L

∂θ
= −

I∑
i=1

ti
1

σi

J∑
j=1

nij
φij − φi, j−1

Πij
− 1

1− r2

[
Ω−

θ θ − r
σv

σu
Ω−

γ γ

]
,

∂L

∂γ
= −1

2

I∑
i=1

wiξi

J∑
j=1

nij
αijφij − αi, j−1φi, j−1

Πij
− 1

1− r2

[
Ω−

γ γ − r
σu

σv
Ω−

θ θ

]
,

(35)

where Ω− denotes a generalised inverse of Ω, with

Ωθ =
(
0 0
0 σ2uA

)
(36)

and

Ωγ =
(
0 0
0 σ2vA

)
. (37)

The results presented in [8] are a special case of these equations with ξi = 1
and r = 0.

We present hereafter the elements of the inverse of the Fisher information
matrix:

−E
∂2L

∂τ2j
=

I∑
i=1

ni+
φ2ij

σ2i

(
1

Πij
+ 1

Πi, j+1

)
,

−E
∂2L

∂τj∂τj−1
= −

I∑
i=1

ni+
φijφi, j−1
Πijσ2i

,
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−E
∂2L

∂τj∂τk
= 0 for j �= k − 1, k, k + 1,

−E
∂2L

∂τj∂θ
=

I∑
i=1

tini+
φij

σ2i

(
φi, j+1 − φij

Πi, j+1
− φij − φi, j−1

Πij

)
,

−E
∂2L

∂τj∂γ
= 1

2

I∑
i=1

wini+ξi
φij

σi

×
(

αi, j+1φi, j+1 − αijφij

Πi, j+1
− αijφij − αi, j−1φi, j−1

Πij

)
,

−E
∂2L

∂θ2
=

I∑
i=1

tit′i
1

σ2i
ni+

J∑
j=1

(φij − φi, j−1)2

Πij
+ 1

1− r2
Ω−

θ ,

−E
∂2L

∂γ2
= 1

4

I∑
i=1

wiw′
ini+ξ2i

J∑
j=1

(αijφij − αi, j−1φi, j−1)2

Πij
+ 1

1− r2
Ω−

γ ,

−E
∂2L

∂θ∂γ
= 1

2

I∑
i=1

tiw′
i

1

σi
ni+ξi

J∑
j=1

(αijφij − αi, j−1φi, j−1)(φij − φi, j−1)
Πij

·

(38)

Link to the Gaussian case

As in Gianola and Foulley [10], terms appearing in the derivatives of log-
likelihood L have some link to the terms of the Gaussian case. For example,
the parallel between (

yi − µi

σ2i

)2
− ni+

(equation (14b) in Foulley et al. [9]) and

−
J∑

j=1
nij

αijφij − αi, j−1φi, j−1
Πij

=
∑
j

nijE

[(
Yik − µi

σi

)2
| τj−1 < Yik < τj

]
− ni+

in ∂L/∂γ is interesting to highlight.
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Similarly, in ∂2L/∂θ2,

1

σ2i

J∑
j=1

nij

[
(φij − φi, j−1)2

Π2
ij

+ αijφij − αi, j−1φi, j−1
Πij

]

=
∑
j

nij
σ2i

{
1+ E2

[
Yik − µi

σi
| τj−1 < Yik < τj

]

−E

[(
Yik − µi

σi

)2
| τj−1 < Yik < τj

]}

corresponds to ni+
σ2i
in the continuous case, and

1

4

J∑
j=1

nij

[
(αijφij − αi, j−1φi, j−1)2

Π2
ij

− αijφij − αi, j−1φi, j−1
Πij

+ α3ijφij − α3i, j−1φi, j−1
Πij

]

= 1

4

∑
j

nij

{
2E

[(
Yik − µi

σi

)2
| τj−1 < Yik < τj

]

+E2
[(

Yik − µi

σi

)2
| τj−1 < Yik < τj

]
− E

[(
Yik − µi

σi

)4
| τj−1 < Yik < τj

]}

to the simpler expression (yi−µi)
2

2σ2i
in the ∂2L/∂γ2 equation for the continuous

case (equation (14d) in [9]).

Variance component estimation

The first system (33) gives updated location parameters to solve the Fisher-
scoring equations.
The second system is relative to the dispersion parameters. Newton-Raphson

equations are:

−
[
∂2 ln p(σ2|N)

∂(σ2)2

][t−1] (
σ̂2

[t] − σ̂2
[t−1]) =

[
∂ ln p(σ2|N)

∂σ2

][t−1]
. (39)

It can be proven, as in [9], that the previous system can be written as

−
[
Ec

∂2L

∂(σ2)2
+ Varc

∂L

∂σ2

][t−1] (
σ̂2

[t] − σ̂2
[t−1]) =

[
Ec

∂L

∂σ2

][t−1]
, (40)

where Ec and Varc denote expectation and variance respectively, relative to

the distribution of ζ|N, σ̂2
[t−1]

. A usual large sample approximation of this
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distribution is given by

ζ|N, σ̂2
[t−1]∼̇N

(
ζ̂

[t]
, Ĉ

[t]
ζ

)
, (41)

where ζ̂
[t]
is the solution of the system (33) and Ĉ

[t]
ζ the inverse of the coefficient

matrix of the same system.
The first order derivative and the second order derivative of (40) have already

been calculated (see (35) and (38)). However, their conditional expectation and
variance have no explicit expressions, so that numerical integration is needed to
calculate the right-hand side and the coefficient matrix of the ζ equations (40),
and is clarified in the following.

S values are randomly drawn from the normal distribution

ζs ∼ N
(
ζ̂

[t]
, Ĉ

[t]
ζ

)
s = 1, . . . S, (42)

and used to get approximations

Ec
∂L

∂σ2
=̇1
S

∑
s

∂L

∂σ2
(ζs)

Ec
∂2L

∂(σ2)2
=̇1
S

∑
s

∂2L

∂(σ2)2
(ζs)

Varc
∂L

∂σ2
=̇1
S

∑
s

[
∂L

∂σ2
(ζs)

]2
−

[
1

S

∑
s

∂L

∂σ2
(ζs)

]2
. (43)

Another possible and simpler system in σ2 takes only account of

Ec
∂2L

∂(σ2)2

in the coefficient matrix of (40). This produces an EM-type algorithm ([9]).
Throughout the algorithm, in order to avoid numerical problems due to null

extreme categories, null probabilities Πij were set to a minimum value (0.01
here) like in Misztal et al. [18].
Programmes are written in fortran 77 using the NAG library [19] and are

available on request.
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