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Summary - Official competition data were used to study the length of competitive life
in jumping horses. The trait considered was the number of years of participation in
jumping. Data included 42 393 male and gelded horses born after 1968. The competitive
data were recorded from 1972 to 1991. Horses still alive in 1991 had a censored record

(43% of records). The survival analysis was based on Cox’s proportional hazard model.
The independent variables were year, age at record, level of performance in competition
(these three first variables were time dependent), age at first competition, breed and a
random sire effect. The prior density of the sire effect was a log gamma distribution. The
maximization of the marginal likelihood of the ’Y parameter of the gamma density gave an
estimate of the additive genetic variance. The baseline hazard, the fixed effects and the
sire effects were then estimated simultaneously by maximizing their marginal posterior
likelihood. Jumping horses were culled for either involuntary or voluntary reasons. The
involuntary reasons included the management of the horse, for example, the earlier a horse
starts competing the longer he lives. The voluntary reasons related to the jumping ability:
the better a horse, the longer he lives (at a given time, an average horse is 1.6 times more
likely to be culled than a good horse with a performance of one standard deviation above
the mean). The heritability of functional stayability was 0.18. The difference in half-lives
of the progeny of two extreme stallions exceeded 2 years.

horse / jumping / survival analysis / longevity

Résumé - Analyse des facteurs de variation de la durée de vie en compétition des
chevaux de concours hippique. La durée de vie sportive des chevaux de concours hippique
est analysée à partir des données des compétitions o,!îciéllés. Le caractère étudié est le
nombre d’années en compétition. Les données concernent 42 393 chevaux mâles et hongres
nés depuis 1968 et enregistrés en compétition de 1972 à 1991. Les chevaux encore en
compétition en 1991 se voient attribuer une donnée dite censurée (43 % des données).
L’analyse de survie est basée sur le modèle de risque proportionnel de Cox. Les variables
indépendantes sont l’année, l’âge au moment de l’enregistrement, l’âge à la première
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compétition, le niveau de performance en compétition, la race et un effet « père » aléatoire.
La densité a priori de l’effet «père» est une distribution log gamma. La maximisation de
la vraisemblance marginale du paramètre y de la fonction de densité gamma permet une
estimation de la variance génétique additive. La fonction de risque de base, les effets
fixés et l’effet « père» ont été estimés de façon simultanée par la maximisation de leur
vraisemblance marginale a posteriori. Les chevaux de concours hippique sont éliminés de
la compétition soit pour raisons volontaires, soit pour raisons involontaires. Les premières
sont dues aux circonstances (effet année) et à la valorisation : plus un cheval commence
tôt la compétition, plus il y reste longtemps. Les secondes concernent l’aptitude du cheval
au saut d’obstacles : meilleur est le cheval, plus longtemps il concourt (à un moment
donné, un cheval moyen a 1, fois plus de chances d’être éliminé qu’un bon cheval de
performance égale à un écart type au dessus de la moyenne). L’héritabilité de la longévité
fonctionnelle est 0,18. La différence entre les demi-vies des descendants de deux étalons
extrêmes dépasse 2 ans.
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INTRODUCTION

The primary trait required for a jumping horse is its ability to jump obstacles. Since
this requires a long training period, involuntary culling of a horse always represents
an important economic loss. The reasons for culling are various and are seldom
recorded because of veterinary professional secrecy. The most frequent reasons are
probably lameness and breathing diseases as well as accidents and colics. Since data
on specific diseases were lacking, the aggregate trait, length of competitive life, was
studied to measure physical stamina and endurance. This trait includes two different
aspects. Culling may be voluntary, ie, the horse does not perform at the desired
level, or involuntary, ie, the horse can no longer perform at all. Two stayability traits
may be defined (Ducrocq, 1988a): the ’observed’ stayability, which combines sport
capacity and physical resistance, and the ’functional’ stayability, which measures
the robustness of the horse for a given jumping quality. It is this latter trait that
will be examined in this study.

MATERIALS AND METHODS

Data

The annual results of all horses in jumping competitions in France from 1972 to
1991 were available. For each horse participating in any competition, the number
of competitions it started and the money it earned were recorded. However, it
was not known whether the first recorded year of a horse was really its first year in
competition, nor if its last recorded year was its last year in competition. According
to competition rules, jumping may start from 4 years of age and continue for an
indefinite period of time. Only the year of performance was recorded, as no more
accurate date was available. Different measures of the length of competitive life
might be used: the difference between the first and the last year in competition, the
true number of years in competition (years without a start omitted), the number
of starts (in this case, the scale of time is ’one’ start). The true number of years in
competition was considered as the most appropriate criterion.



Only males and geldings were studied. The competitive lives of males and
females are quite different and should not be compared. The careers of mares are
interrupted by reproduction, whereas stallions can breed and compete in the same
year. Consequently, sport longevity of females is more difficult to interpret.
A general characteristic of survival analysis is censoring. Some horses began their

jumping life before the beginning of data collection (left censoring). On the other
hand, at the date of analysis, a large number of horses were still in competition
(right censoring). In both situations, their true length of competitive life was not
known, only a lower bound was known. To avoid left censoring, data of horses born
before 1968 (aged more than 4 years old in 1972 and perhaps already in competition
before this time) were deleted because the estimation of the parameters of the model
requires the full knowledge of the past life of the horse. They represented 10.9%
of the total number of horses. For horses still in competition in 1991, 31.6% of the
total, the lengths of life were treated as right censored in the analysis. The same
was true for exported horses (6.4% of the number of horses) and some national
stallions (0.4%), which returned to the stud after some limited participation in
special jumping tests. The horses reimported during their competitive life were
excluded from analysis (0.3%).

Edited data included 42 393 lengths of jumping life, out of which 43.3% were
censored. This represented 155 570 years of performance.

Survival analysis and derivation of the likelihood

The basic information concerning survival analysis may be found in Kalbfleisch and
Prentice (1980). Only definitions of specific functions are presented here, and the
form of likelihood when censoring is present. Letting T be the random variable
representing the failure time (or the length of competitive life) of a horse, the
survivor function is defined by:

with F(t) the cumulative distribution function. The hazard function A(t) is defined
as the instantaneous rate of failure at time t:

where f (t) is the probability density function of T.
According to the Cox model (1972), the hazard function is divided into the

product of two terms: the first depends only on time and represents a type of mean,
the baseline hazard explaining the common aging of horses; the second depends on
the explanatory variables. For a horse i:

where Ao(t) is the baseline hazard function, zi, the design vector of explanatory
variables for the horse i and (3 the vector of effects of these variables. With this
model, the ratio of hazards for two horses at any time depends only on covariates.



Cox (1975) proposes a method based on a partial likelihood to estimate the
parameters of the hazard function. He compares the hazard of one individual who
fails at time t to the hazards of the whole population alive at time t. However, this
method can not be applied here because the data are annually recorded, and many
horses fail at the same time. As Cox’s approach is not suited to situations with a
large number of ties, the following alternative likelihood must be used (Kalbfleisch
and Prentice, 1980):

where L is the likelihood of all the observations, n is the number of horses in the data
file, 6 = 0 for censored observations and 6 = 1 for uncensored observations. This
likelihood assumes that the censoring process is independent of the explanatory
variables of the length of life. Note that it requires the horse’s entire competitive
life history and not only its state at the time of failure.

In the case of discrete failure times such as in the present study, the particular
following of the survivor function is applied from Prentice and Gloeckler (1978).
The time intervals are denoted Aj and defined by:

A culling or censoring event during the time interval A! is denoted ti. For
example, a horse that disappears after 3 years of competition fails at time 3. A horse
that has been competing for 3 years in 1991 (last year of recording) is censored at
time 3. We have:

The hazard function during the time interval is similarly written as:

The likelihood is then proportional to:



where D,! is the set of horses culled and Rk the set of horses alive during the time
interval k.

Model

Different models of the hazard function were used to analyze the different causes
of culling and the appropriate associated covariates. Each additional covariate was
included in the successive models and was tested with the likelihood ratio test. The
final model was:

where zi(t) corresponds to the time-dependent covariates. The use of time-

dependent covariates modeled effects that are not constant throughout the life of
a horse. For example, ’year’ changed each time interval and ’level of performance’,
(computed annually), was not constant. We denoted:

j3y is the vector of ’year’ effects. It included 19 levels (from 1972 to 1990).
Because the year 1991 contained only censored data, its effect was not estimable.

(3A is the vector of ’age’ effects. Usually, this effect is described by the baseline
hazard function. In the present study, the baseline hazard function described the
survival process with regards to the number of years in competition. However, this
number of years in competition might differ from age, because the age at which
a horse first competes varies, and because the horses might have years without
any performance. Hence, an accurate description of the aging effect is required to
explicitly include an age factor, which was defined with 15 levels: from 4 to 18 years
old and more, in steps of year.

I3F is the vector of ’age at the first start’ effects. The baseline hazard function
measured the effect common to horses with the same number of years in compe-
tition; the ’age’ effect measured the effect common to horses at the same age, at
different moments of their competitive life. The ’age at first start’ effect would mea-
sure the influence of age at first start on the whole competitive life. This effect had
six levels: from 4 to 9 years old and more, in steps of 1 year.

(3P is the vector of estimates of the ’level of performance’ effects. We wanted to
take into account the voluntary culling of horses for reasons of lack of quality. The
major problem was to choose a measure of the level of performance for each year,
which remained as independent as possible of the chance of an involuntary failure
in this year. Unfortunately, all measures based on earnings, including earnings per
start or earnings regressed on the number of starts, were related to the number
of annual starts. In addition, the number of starts was partially related to the
possibility of failure in the year: the horses culled during a year had a smaller
number of starts than horses remaining alive throughout this year. To assess the
influence of the level of earnings regardless of the influence of the number of starts,
an auxiliary model was used. This auxiliary model was defined in order to obtain
adjustment factors for earnings, as independent as possible of the number of starts.
Consequently, this model included a ’number of starts’ effect and a ’Log(earnings)’
effect, in order to separate them.



This model was:

where (3! is the vector of ’number of starts’ effects and (3P is the vector of ’level of
performance’ effects. This auxilary model could not be the true model, because the
correction for number of starts is the correction for the longevity itself. The model
with only a ’level of performance effect’ would have had the same problem. But
’earnings’ effects, estimated in this auxiliary model and assumed to be independent
of the number of starts, were used as preadjustment factors (j3p) in the final model
!19!, which did not include the effect of the number of starts.

The ’number of starts’ effect had eight levels: six levels from 1 to 30 starts in steps
of five starts, one level from 31 to 40 starts and one level for more than 40 starts.
Because the number of starts for young horses was limited by regulation, only the
first three and five levels were considered at the age of 4 and 5 years, respectively.
The logarithm of earnings was standardized by age and year (mean 100, standard
deviation 20), assuming that the culling choice was between horses in the same year
of performance and age group. Horses aged 4 and 5 years had special competitions
reserved for their age class, whereas after 6 years, a horse was compared to any
other horse of any age. Consequently, the level of performance was defined within
these three age classes. Nine levels of performance were defined: one for the horses
that did not earn any money (30% of horses each year), six between 70 and 130 in
steps of ten and two at the extremes (! 70 and > 130). At 4 years old, the extreme
classes were merged and only seven levels were considered, because the distribution
deviated too much from a normal one, and because the variance was too small.

Here, s is the vector of ’sire’ effect. This effect was the only random effect. The
horses were the offspring of 4 851 sires, each with 8.7 offspring on average. More
than 800 sires had over 15 offspring. No ’breed’ effect was included simultaneously
with the sire effect because the breed of the sire did not determine the breed of the

progeny. Another model was applied to estimate breed differences:

where [3B is the vector of ’breed’ effect. Three types of breeds were detected: (1)
riding horse breeds including the ’Selle Franqais’ (SF), selected mainly for jumping
and representing the majority of the jumping population (59%), the ’Anglo-Arabe’
(AA), selected for multiple sports (11%) and the ’Cheval de Selle’ (10%), (2) race
breeds including the thoroughbred (PS) for galloping races (8%) and the ‘Trotteur
Franqais’ (TF) for trotting races (9%), and (3) breeds of small size horses, including
ponies and Arabs (2%). An additional class included horses of unknown origins or
foreign horses (0.7%).

Prior density

The sire distribution is usually assumed to be a normal one. But, in the present
model, the additive polygenic effect might be defined on the exponential scale exp(s)
(denoted w) or on the scale of s. To make the distribution of w more flexible, a



gamma density with parameters -y and y was chosen as a prior density, as in Ducrocq
et al (1988a, b); ie:

where 1’ is the gamma function.

The estimate of q gave the variance of w: V(w) = Ih and of s = log(w):
V(s) = ’I!’(1)(’&dquo;’() where !!1! is the trigamma function. The expectations were E(w)
and E(s) = O(q) - log(q) where IF was the digamma function. Sires were assumed
to be unrelated.

Estimation of parameters

The a posteriori density of the parameters given the data was proportional to the
product of the likelihood [10] by the prior density !14!:

where (3 = (I3v, I3A, I3F, I3p, I3N, s), a = (al,...a,) is the survivor function

by time intervals and 77 is the number of sires. Let 13 = (b, s) where b =
(I3v, I3A, I3F, I3p, I3N)’

The introduction of the different fixed effects was tested by maximization of
the logarithm of the likelihood alone. Then, the marginal a posteriori density of
y( f (y)) after integration of all the effects b, s and a, was used to estimate the
parameter 7. This allowed us to take into account the uncertainty of the estimates
of the location parameters b, s and a in the estimation of dispersion parameters.
The integration of b, s and a could not be performed algebraically. On the other
hand, the uncertainty was not of the same order for all the parameters. The fixed
effects and the survival by time intervals were estimated from large samples, in
contrast to the sire effects. Consequently, the integration of the sire effects was
more necessary than that of the other effects. So instead of f (-y), attention was
paid to the marginal likelihood f (b, a, -y). This marginal likelihood could have been
calculated by numerical integration of the sires, but the numerical maximization
of this function, which depended on about 100 variables, with a ’quasi-Newton’
algorithm, would have required more than 20 000 evaluations of the function.
Because each calculation of this function required as many integrals as sires (4 851),
this maximization was considered to be impossible within a reasonable computing
time. Consequently, this function was approximated by the following likelihood:

This marginal likelihood required the same integration effort but depended on
only one variable and was easier to maximize, provided that good b and a values
were available. These values were obtained by the maximization of f (b, a, slY, &dquo;y =

9), with the parameter y estimated by the maximization of the preceding marginal
likelihood. This defined an iterative process: fblY, b = b, a = a) was maximized,



giving an estimate of y to be used in the calculation of f (b, a, slY, &dquo;( = !), which
was maximized to obtain b and The estimates b and 6i were used again to
calculate a new function f (-ylY, b = b, a = a), which was maximized to obtain a
new y. At convergence, the y value was expected to be close to the one that would
maximize f(&dquo;(IY).

The numerical integration of the sires was performed using the NAG (1991)
subroutine D01BAF. The maximization of fblY, b = b, a = a) was obtained
by the NAG (1991) subroutine E04ABF. The maximization of f (b, a, slY, y = 17)
was obtained by a Newton-Raphson algorithm. The solutions of the system were
obtained by absorbing the equations corresponding to sire effects, taking advantage
of the diagonal structure of the corresponding matrix of second derivatives. The
final solutions for fixed effects and sire effects were obtained by maximizing
f (b, a, s!Y, y = after convergence for y.

RESULTS

Convergence of the algorithms

Maximizing the logarithm of the likelihood alone by a Newton-Raphson algorithm
was very fast. Six iterations were usually required. The square root of the ratio of the
squared difference of the logarithm of the likelihood between two iterations and the
squared value of this likelihood was less than 10-13 and the same criterion applied
to the solutions of fixed effects and sire was less than 10-15. The convergence of
the y parameter of the gamma function of the a priori density of sires was also fast.
The maximization algorithm found the new parameters in usually eight calls to the
function. The iterations between the two functions maximized were stopped when
the parameter y was known with an accuracy of 0.01.

Choice of the model

Three causes of involuntary culling were retained from the results of table I: calendar
year, age and age at first start. The interaction between age and age at first start was
removed. The introduction of ’level of performance’ effect, the voluntary cause of
culling, greatly increased the likelihood. The parameter estimates presented below
are those obtained with a sire model after convergence for 7.

Distribution of the length of jumping life

The ’a’ parameters (survival in time interval), ’age’ effects and ’age at first start’
effects can only be combined in certain ways. Survivor function, density function
and hazard function were reconstructed for each class of age at first start. For

example, probability of remaining 3 years in competition for a horse that started
at 5 years old was the combination of survival at 3, age 8, first start 5.

Figure 1 diplays the density function for horses differing in age at their first start.
For those horses that started at younger ages (4-5 years), the curve is quite flat
during the first years of competition (equal probability, 8%, of remaining 1-7 years





in competition). In contrast, when horses began after 6 years, the density function
always decreased and the slope increased with the age at first start.

The survivor function curves (fig 2) never overlapped: the probability of still
competing after any number of years in competition was always greater for horses
that started the competition earlier. However, the phenomenon was not strong
enough for the probability of still being alive at a given age to remain higher for
horses that started earlier, because the number of years in competition was higher
for horses that started earlier. The probability of still remaining after 5 years in
competition was 59, 53, 45 and 41%, for horses beginning at 4, 5, 6 and 7 years
old, respectively, ie, for horses at 8, 9, 10 and 11 years old. At 10 years of age,
the probability of still remaining was 43, 44, 45 and 50% for horses beginning at
4, 5, 6 and 7 years old, respectively, ie, after 7, 6, 5 and 4 years in competition.
The half-lives (50% of horses still present in competition) decreased with age at
first start from 6.1 years for horses starting at 4, to 3.5 for horses starting after
8 years (table II). The decrease was greatest between horses starting at 4 years old
and those starting at 5 years old (0.8 year) and reduced to 0.1 year between 8 and
9 years old at first start.

The hazard function curves (fig 3) were increasing and the increase acceler-
ated in the last years. This acceleration was in two steps: the first after 4 years in



competition and the second, more rapid one, after 9 years. The culling rate was
smaller for horses that began earlier.

’Year’ effect

The ’calendar year’ effect was assumed to represent the variation in population size
owing to herd management. Jumping is becoming more and more popular and the
number of horses entering a show increased by 7% per year. The climatic variations
and the evolution of management technology may also influence the length of
competitive life. However, the censoring process explained the major part of the



variations and the preceding influences were hidden. Indeed, when the true date of
culling of a horse were not known, he was considered as having failed when he did
not appear between his last year of performance and the last year of recorded data.
In case of a temporary interruption, the probability of appearing again decreased
when the last year of performance approached the last year of data recording. This
explains the higher relative culling rate for recent years (1.3 for 1989 and 1.6 for
1990). On the other hand, the first calendar years only included data from young
horses, with a lower expected culling rate. This explains the low relative culling rate
for 1972-1975 (0.6-0.8). Therefore, the year effects were likely to be more closely
related to the structure of the data set than to environmental factors and were

consequently difficult to interpret.

’Number of starts’ effect

The relative culling rate associated with the ’number of starts’ effect always
decreased when the number of events increased (fig 4). This effect was only
estimated with the auxilary model in order to obtain a correct adjustment for
the level of performance. A high number of starts was probably not the reason for
high longevity but rather an indication of good health and of the desire to continue
jumping competitions. The ’number of starts’ effect was moderate at 4 years old. It
was more pronounced for horses aged 6 years and more. The effect was not linear:
the decrease in the culling rate was more pronounced for a small numbers of starts.

’Level of performance’ effect

After 6 years of age, the influence of the level of performance was clear: the better
the horse, the greater his chance of continuing in competition (fig 5). The only
exception was the slightly higher relative culling rate of horses with a performance
rate higher than 130 but this difference was not significant. Horses that did not
earn money had a strongly higher relative culling rate. A horse without earnings
was 1.9 times more likely to be culled than an average horse with a performance
rate between 90 and 100. This latter horse was 1.6 times more likely to be culled
than a horse with a performance rate of 120-130. These results were expressed in
terms of half-lives. For example, a horse that began the competition at 6 years old
and had a performance level of 80-90 each year had a 1.5-year shorter half-life than
a horse with a performance rate between 100 and 110 (5.4 versus 3.9 years). Owing
to the large magnitude of performance effect, functional stayability is very different
from true stayability. At 5 years old, the only significant difference concerned non-
earning horses and good horses, with a smaller relative culling rate for the latter
ones. The other horses had a similar relative culling rate. At 4 years old, the relative
culling rate decreased as performance level increased but to a smaller extent than
at 6 years old.

Breed effect

The relative culling rates of the three breeds of riding horses were very close: 0.90 for
the Selle Fran!ais, 0.91 for the Anglo-Arab, 0.87 for the Cheval de Selle. The only



significant difference was between Anglo-Arab and Cheval de Selle: an Anglo-Arab
horse was 1.05 times more likely to be culled than a Cheval de Selle.

Thoroughbred and Trotteur Franqais typically start out as race horses and some
of the unsuccessful ones later become jumpers: more than 50% of them began
jumping at 6 years old. This new function was better tolerated by the Trotteur
Frangais, whose relative culling rate was close to the Anglo-Arab (not significantly
different), than by the Thoroughbred, which had a 1.26 times higher probability of
being culled than the Trotteur F!an!ais. Two causes might explain this difference:
either a prior racing career is less detrimental to a jumping career for trotters than
for Thoroughbreds or trotters have a greater innate ability for tolerating the rigors
of jumping competition.

Ponies and Arabs did not have jumping as a first objective and their high relative
culling rate (1.2) might be the expression of their occasional use in competitions
for horses.

Sire effect

The estimate of the y parameter was 38.73. The expectation and variance of
w = exp(s) were 1 and 0.0258, respectively, and the expectation and variance
of s were - 0.0130 and 0.0261. A phenotypic variance of the trait was needed to



provide a corresponding heritability. This variance was difficult to define because
the design of the explanatory variables was also dependent on time. In order to
provide an estimate, taking into account age at record and age at first start effects,
the variance of Log(t) varied from 0.5511 to 0.6023 according to the age at first
start. The corresponding heritability was near 0.18. The mean of the distribution of
the sire effects was -0.0273, and the standard deviation was 0.0485. The maximum
was 0.2037 and the minimum was -0.3490. For example, the half-life difference
between the progeny of the best and the worst sires was more than 2 years, if they
started at 5 years old (respectively, 6.9 and 4.5 years). This difference was 0.4 year
between offspring from a sire at +1 standard deviation and -1 standard deviation
from the mean. The ratio of their hazards was 1.1. The genetic variability of the
trait appeared to be particularly interesting. The heritability estimation was rather
high compared to that obtained in dairy cattle (8.5%) by Ducrocq (1988b).

To provide an estimate of the genetic relationship between length of competitive
life and jumping capacity, the correlation between breeding value estimates of sires
for the two traits was computed. The sire breeding values for jumping capacity were
obtained by an index based on the performances of the progeny. The correlation
was -0.06, ie, close to zero or slightly favorable, between functional stayability,
adjusted for level of performance, and jumping ability.



DISCUSSION AND CONCLUSION

This preliminary study identified some of the main factors influencing length of
competitive life for jumping horses. The length of jumping life remains a trait
difficult to define, because of the ’amateur’ status of this sport on the one hand and
because of the availability of data on the other.
An annual measure is in good agreement with the seasonal organization of

competitions. However, is the criterion of a year’s worth of performances really
satisfied when the horse starts in only a few events? An alternative would be to
require a minimum number of starts. Another possibility would be to define the time
scale in terms of number of starts. To answer these questions accurately, genetic
and phenotypic correlations have to be estimated between these different measures
of the same trait with a multiple trait approach.

The data do not provide the exact date of the culling decision. The reason for
the absence of horses from show jumping is not known, and is always considered
as a true failure. This makes the interpretation of the ’year’ effect unclear. In fact,
the probability of being culled is dependent on the censoring probability. The closer
the date of censoring, the higher is the probability for a horse to be considered as
failed, because this horse does not have the opportunity to temporarily interrupt
his jumping career. To minimize this problem, a better description of the censoring
process is needed.

The characterization of the influence of jumping capacity also addresses sev-
eral problems. It is not possible to clearly distinguish the respective proportions
attributable to stayability and jumping ability in the relationship between annual
earnings, number of starts in the year and length of active life within a year. The
log(earnings) is indeed correlated with the number of starts, but also with the spe-
cific ability for jumping. This correlation is equal to 0.70 for horses aged 6 years and
more. Moreover, this relation is not linear, but rather a logarithmic one. The num-
ber of starts is related to the length of life in the time interval considered (the mean
number of starts for horses failing in a year is 7.3, against 15.6 for horses alive).
And the jumping ability is also related to the number of annual starts: the better
a horse is, the more he is used. The solution proposed here divides the influence
of jumping ability on longevity between total earnings and the number of starts.
Some other strategies are possible, based on earnings per start (correlation of 0.35
with the number of starts from 6 years old) possibly regressed on the number of
starts, or based on different measures of sport capacity according to the number
of starts. It remains critical to test the validity of each model. The likelihoods are
always larger when the effect of the number of starts is included (the likelihood of
the model with starts and earnings is better than with earnings alone) because the
number of starts is a partial measure of time spent in the year and, consequently,
of the existence of a culling. But the number of starts does not determine culling,
it is only a consequence of culling. On the other hand, not adjusting for the level of
performance would change the trait analyzed and increase its heritability because
it would then approach the heritability of jumping ability, which is a major factor
of length of competitive life. Finally, to confirm the genetic correlation between
jumping ability and functional stayability, a multiple trait model is needed with a
simultaneous estimation of the sire effects.



Nevertheless, the main results of this study are encouraging. The expected life of
horses that began jumping early is the highest. The percentage of horses found at
9 or 10 years, the optimal age for performance, is almost constant, whatever their
age of first start (4, 5 or 6 years). Good young horse management, with good rules
for the competition of young horses that restricts the number of events, has no
adverse effect on the length of their life, and produces horses with a better jumping
capacity (Tavernier, 1992). According to the genetic correlation between early and
mature performance (Tavernier, 1992), it is important to favor early selection of
horses in competition on their early performances. A large majority (83%) of horses
begins competition between 4 and 6 years of age: 40% at 4 years, 28% at 5 years
and 15% at 6 years. The better stayability of horses that begin at 4 years of age is
not only due to the benefit of their youth (the hazard function is increasing) but
their relative culling rate becomes smaller, at the same age and until 13 years old,
than that of horses that began at 5 years and especially at 6 years (differences after
13 years old are difficult to interpret because the standard deviations of estimates
are large owing to the small size of the remaining population). Horses that began
competition early have a true advantage that could be explained in two ways: either
horses began at an early age because they showed good growth and health, or their
learning of show jumping was better in the specific events for young horses, which
then guarantees a long life. To reach his optimal capacity a horse has to learn the
difficult sport of jumping, involving a long training period. He also needs to preserve
his physical strength.

IMPLICATION

From a genetic improvement point of view, the length of jumping life is difficult
to include in the selection objective: the heritability is low and the time needed
to obtain enough information on the progeny of a sire is long (a fully informative
observation is obtained when a horse has failed). Nevertheless, according to the ge-
netic correlation obtained between length of competitive life and jumping capacity,
selection on jumping is not expected to decrease the robustness of the horse.

Moreover, sires with poorer breeding values for the length of their jumping
life may be detected. A medical and practical analysis of such a sire may reveal
particular diseases and favor their genetic study. An evaluation of breeding value
with an animal model, in addition to the present evaluation on performances
(earnings), will also give important information for selecting stallions following their
own jumping performance.
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