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Summary - In a typical two stage procedure, breeding value prediction for calving ease
in a threshold model is conditioned on estimated genetic and residual covariance matrices.
These covariance matrices are traditionally estimated using analytical approximations. A
Gibbs sampler for making full Bayesian inferences about fixed effects, breeding values,
thresholds and genetic and residual covariance matrices to analyze jointly a discrete
trait with multiple ordered categories (calving ease scores) and a continuously Gaussian
distributed trait (birth weights) is described. The Gibbs sampler is implemented by
drawing from a set of densities - (truncated) normal, uniform and inverted Wishart -
making implementation of Gibbs sampling straightforward. The method should be useful
for estimating genetic parameters based on features of their marginal posterior densities
taking into full account uncertainties in estimating other parameters. For routine, large-
scale estimation of location parameters (breeding values), Gibbs sampling is impractical.
The joint posterior mode given the posterior mean estimates of thresholds and dispersion
parameters is suggested. An analysis of simulated calving ease scores and birth weights is
described.

dystocia / beef cattle / threshold model / Bayesian method / Gibbs sampling

Résumé - Analyse bayésienne des notes de difficultés de vêlage et des poids de
naissance. Dans une procédure typique à deux étapes, l’évaluation génétique pour la

diff’-cculté de vêlage dans un modèle à seuil est conditionnée par les matrices de covariance
génétiques et résiduelles. Ces matrices de covariance sont habituellement estimées au
travers d’approximations analytiques. On décrit l’échantillonnage de Gibbs permettant
d’effectuer des inférences bayésiennes complètes à propos des effets fixes, des valeurs

génétiques, des seuils, et des matrices de covariance génétiques et résiduelles, pour analyser
conjointement un caractère discret à catégories multiples ordonnées (note de difficulté de
vêlage) et un caractère continu gaussien (poids de naissance). L’échantillonnage de Gibbs
est assez simple à partir de densités de divers types : normale (tronquée), uniforme et
Wishart inverse. La méthode est utile pour estimer les paramètres génétiques à partir
de leurs distributions marginales a posteriori, après prise en compte des incertitudes
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concernant les autres paramètres. L’échantillonnage de Gibbs n’est pas faisable en routine
pour estimer les valeurs génétiques. On suggère le mode de la distribution conjointe a
posteriori, pour des valeurs des seuils et des paramètres de dispersion correspondant à
leurs moyennes a posteriori. On décrit une analyse de notes de difficulté de vêlage et de
poids de naissance simulés.

dystocie / bovins à viande / modèle à seuil / méthode bayésienne / échantillonnage
de Gibbs

INTRODUCTION

Calving ease is considered a calf trait and recorded subjectively as one of several
exclusive ordered categories. For example, for American Simmental cattle, calving
ease is scored as 1 (natural calving, no assistance), 2 (easy pull), 3 (hard pull)
or 4 (mechanical force or Cesarean). Calf size (birth weight) affects ease of birth:
the bigger the calf is, the more likely the birth will be difficult (Koger et al, 1967;
Pollak, 1975).

In this paper, we consider joint modeling of calving ease scores and birth weights
using the threshold model concept of Wright (1934). In a threshold model, an
underlying continuous variable is postulated for calving ease. A set of thresholds
divides this continuous variable into the discrete calving ease scores actually
recorded. Gianola (1982) and Gianola and Foulley (1983) considered Bayesian
analysis of single trait threshold models assuming known genetic variance. Harville
and Mee (1984) and Foulley et al (1987) gave approximate methods for variance
component estimation. Foulley et al (1983) developed a method to deal with a
binary trait and two continuous traits without allowing for missing data, while Janss
and Foulley (1993) extended the method to handle data with missing patterns. In
1990 at Cornell University, a system for routine sire evaluation of calving ease
scores and birth weights jointly allowing for all possible missing data framework
was implemented. This system assumed a sire-mgs (maternal grandsire) linear
model for the underlying scale; it predicts the frequency of unassisted births for
American Simmental cattle (Pollak et al, 1995 pers comm). This evaluation system
also assumed that genetic and residual covariance matrices and thresholds were
known. Variance components were estimated (Dong et al, 1991) by extension of
Foulley et al (1987). Hoeschele et al (1995) described further extensions of Foulley
et al (1983) and Janss and Foulley (1993) to a situation of one multiple ordered
categorical trait and several continuous traits.
A difficulty in estimating parameters under threshold models is that the like-

lihood or marginal posterior distributions do not have closed forms and approx-
imations are used. With the help of Monte Carlo methods, in particular Gibbs
sampling (Geman and Geman, 1984; Gelfand et al, 1990), these approximations
are no longer needed. Wang et al (1993, 1994a,b) described making Bayesian in-
ferences in a univariate linear model in an animal breeding context using Gibbs
sampling. Sorensen et al (1994) demonstrated how inference about response to se-
lection in a linear model can be made. Berger et al (1995) applied the methods of
Sorensen et al (1994) and Wang et al (1994b) to analyze a selection experiment of
Tribolium. Jensen et al (1994) and Van Tassell (1994) extended the procedure to
model maternal effects, while Van Tassell and Van Vleck (1996) further expanded



the scope to multitrait linear models. Bayesian analysis of univariate thresholds via
Gibbs sampling in an animal breeding context was recently described by Sorensen
et al (1995) by extending Albert and Chib (1993). For a binary trait, Hoeschele and
Tier (1995) compared frequency properties of three variance component estimators:
mode of approximate marginal likelihood (Foulley et al, 1987), marginal posterior
mode and mean via Gibbs sampling. Jensen (1994) analyzed simulated data of
one binary trait and one continuous trait via Gibbs sampling under a Bayesian
framework. Wang et al (1995) gave a Bayesian method to analyze one multiple or-
dered categorical trait and one continuous trait with Gibbs sampling. Van Tassell
et al (1996) presented Bayesian analysis of twinning and ovulation rate using Gibbs
sampling.

The purpose of this paper is to extend the work of Sorensen et al (1995) and
Wang et al (1995) to one multiple ordered categorical trait (calving ease) and one
continuous trait (birth weight) with all possible missing patterns of data under a
Bayesian setting via Gibbs sampling. A set of full conditional posterior densities
will be derived in closed form facilitating straightforward implementation of Gibbs
sampling. Simulated data are analyzed to illustrate the methodology.

MODEL

Let Ylo be a vector of birth weights (BW), with o denoting observed record, and
Y20 be calving ease scores (CE, recorded as one of four scores (1 = no assistance,
2 = easy pull, 3 = hard pull and 4 = mechanical force or Cesarean), Ulo = Ylo
and U2o be the corresponding underlying variable for observed calving ease scores,
which is also known as augmented ’data’ (Tanner, 1993). A sir!mgs model used
for the American Simmental calving ease sire evaluation (Quaas, 1994) is assumed
on the underlying scale (an animal model can be assumed by appropriately defining
terms):

where ai is sire effect (direct), and mmgs is maternal grandsire effect (1/4 direct
BV plus 1/2 maternal BV) and elo and e20 are residual effects. AgeDam is age of
dam effect and CG is contemporary group effect. Note that maternal effects for BW
are not modeled for the Simmental population because the maternal contribution
to the total genetic variance was found to be negligible (Garrick et al, 1989). In
matrix notation:

For reason of easy identification of conditional posterior distribution of the residual
covariance matrix later, augmented data are further expanded to include residuals
associated with missing data. Denote U’ = [U!o e!m]’ U’ = !U2o e!m]’ el =
lelo e’m] and e’ = !e2o e!m], where elm and e2m are residuals associated with the



missing BW and CE, with m denoting missing records, respectively. Then [1] can
be written as

where U contains Ul and Uz, W is composed of the design matrices - Xis, Zis
and rows of zeros associated with missing data, e contains location parameters
131, 132, aI, a2 and mz, and e, the residuals el and ez, with all the elements properly
ordered and matched. For U, we assume

where R is a block diagonal matrix containing n submatrices of residual covariances
(Ro) for the record(s) of a particular animal with dimension 2, ie, R = Ro &reg; 1,,
if the data are sorted by animal and trait, and n is the number of animals with at
least one trait recorded.
A uniform prior distribution is assigned to [3is, such that (eg, Gianola et al, 1990;

Wang et al 1994a)

which is similar to treating 0 as fixed in a traditional sense. We assume for the bull
effects (genetic):

where a contains al, a2 and m, q is the number of bulls (sires and mgs), G = Gol8iA
with Go = Igij 1, i, j = 1, 2, 3, the covariance matrix among three genetic effects for
a particular animal and A is the numerator relationship matrix among sires and
mgs.

To describe prior uncertainty about Go, an inverted Wishart distribution (John-
son and Kotz, 1972; Jensen et al, 1994; Van Tassell and Van Vleck, 1996) is assigned

with density



where Sg is the location parameter matrix; vg is the scalar shape parameter (degrees
of belief); Sg = E(GoiSg, Vg). A large value of vg indicates relative certainty that
Go is similar to Sg; a small value, uncertainty, ie, a relatively flat distribution. (The
subscript 3 of IW indicates the order of the covariance matrix.) Similarly for Ro,

The final parameters are the thresholds: t = (tl, t2, t3), with to = -00 and

t4 = oo. These are assumed to be distributed as order statistics from a uniform
distribution in the interval !tm;n, tmax] (Sorensen et al, 1995):

where I(.) is an indicator function and

c = 4 in our case, the number of categories.
Applying Bayesian theorem, the joint posterior density of all the parameters

including the augmented data (8, t, Go, Ro, elm, U2) given the observed data
(Y’ = !Yio!’io!) and prior parameters, assuming prior independence of t, Go and
Ro is:

Combining terms in [8]:



if both BW and CE observed

if only BW observed

if only CE observed

with wli and/or W2i the incidence vectors associated with 81 and/or 02 for the ith
animal’s record(s), respectively.

The first term in [8], p(Y2oIU2o, t), has a degenerate density (Albert and Chib,
1993; Sorensen et al, 1995):

where I(.) is an indicator function. For example, for a particular CE score (= k),
we have

One way to ensure identifiability of parameters is to set constraints. Assuming
full column rank for the incidence matrix W, two constraints need be specified.
Usually, one threshold and the residual variance for CE on the underlying scale
are set to 0 and 1, respectively (Harville and Mee, 1984). An equivalent parame-
terization (Sorensen et al, 1995) is to fix two thresholds and to estimate the CE
residual variance. We followed the latter because it allows easy specification of the
conditional density of Ro. The two parameterizations, though equivalent, may not
yield the same joint posterior density owing to different sets of priors specified.

Inference about location and dispersion parameters will be based on the joint
posterior density [9], or on their respective marginal posterior densities. For

example, if interest of inference is on the location parameters, we need to integrate
out all other parameters in [9] other than e to obtain its marginal posterior density:



Similarly, inference about Go is based on:

These densities cannot be derived analytically. Monte Carlo methods, such as Gibbs
sampling, draw samples from !9!. Such samples, if considered jointly, are from the
joint posterior distribution or, viewed marginally, from an appropriate marginal
posterior distribution. Inferences can be based on these drawn samples. Inferences
about functions of parameters, such as heritabilities and genetic correlations, can
be made based on transformed samples.

Fully conditional posterior densities (Gibbs sampler)

The Gibbs sampler consists of a set of fully conditional posterior densities of
unknown parameters in the model, ie, the conditional density of a parameter given
all other parameters and the data. These can be derived from the joint posterior
density [8] or !9! .

For location parameters (0), we keep terms in [8] that are functions of 0 such
that:

where S2 = L ! G_1 A -1 ’ with blocks of Os corresponding to j3 (Gianola et al,
lo Gol(&A-11, l

1990). This is a normal density, so

where 6 satisfies Henderson’s mixed model equations (MME) (Henderson, 1973,
1984):

To sample a subvector or a scalar of 0, rewrite the MME as



where C = {CZ! }, i, j = 1, 2, ... , N, is the coefficient matrix of the MME, with Cjjs
as blocks of C, and b = {bi}, i = 1, 2,..., N is the corresponding right-hand. The
conditional posterior distribution for the location parameters is:

vi - Ciil, ei and Oj are subvectors, possibly scalars, of 0 and 0-i is e with Oi
deleted. If Oi is a scalar, [15] is the scalar version of the sampler for the location
parameters (Wang et al, 1994a). Note the similarity of [15.1] to an update in (block)
Gauss-Seidel iteration. It may be advantageous to sample a subvector jointly to
speed up convergence of Gibbs chain. For example, sampling all genetic effects for
an animal may reduce serial correlations among Gibbs samples (Van Tassell, 1994;
Garcia-Cortes and Sorensen, 1996).

From !9!, the full conditional posterior density of the genetic covariance matrix, as
in Gaussian linear models (Jensen et al, 1994; Van Tassell and Van Vleck, 1996), is

Similarly, the fully conditional posterior density of the residual covariance
matrix is

Now we proceed to derive the full conditional posterior densities of the underlying
variable for CE, UZo, used in !15! and of the missing residuals, elm and e2m, needed



for SSe in !17!. From [8], in general,

These distributions depend on which combination of records is observed for a
calf: BW only, CE only or both BW and CE. For a particular calf, if a BW is
observed (Ulo,i = Yl.,i) but CE is not, we need only to sample e2m,i for CE, the
distribution is only involved with p(UI8, Ro), which follows a univariate normal
distribution with density:

where 0(.) is a normal density function; /-t = belo,i = b(ulo,i - w!i8¡); w12 is the

incidence vector associated with A1; Q2 = r22 - rî2/rll; b = r12/rl {r2!} = Ro.
If both BW (Uli = Yii) and CE (Y2i = k)) are observed, then only U2o,i needs

to be sampled,

This is in a form of univariate truncated normal (TN) distribution such that

with tk-1 < U20,i ! tk, where p = w!i82 + b(U1o,i - w!0i), ! as in [18] and w21
is the incidence vector associated with 82.

If only a CE (Y2i = k) is observed, then both elm,i and U20,1 need to be sampled
from a truncated bivariate normal, ie,



Finally, the conditional posterior distribution of a threshold is uniform (Albert
and Chib, 1993; Sorensen et al, 1995), if CE is not missing:

if CE is missing.
As mentioned previously, for t = (tl, t2, t3), there is only one estimable threshold,

which to estimate is arbitrary. We took:

Note that tl < t2. If only three categories of CE scores are available, there is
no need to estimate thresholds under this parameterization. If the fourth category
was rare, it would be tempting to combine scores into three categories to avoid
estimating thresholds.

GIBBS SAMPLING AND POST-GIBBS ANALYSIS

Densities [15]-[18] (or [19] or [20]), and [21] (or [21.1]) constitute the Gibbs

sampler for our model. Gibbs sampling repeatedly draws samples from this set
of full conditional posterior distributions. After burning-in, such drawn numbers
are random samples, though dependent, from the joint posterior density !9!. Let
the Gibbs samples of length m for a particular parameter, say for the direct genetic
variance component gll for BW, be x = {xi}, i = 1, 2 ... , m. An estimate of the
mean of the marginal posterior density, p(gnIY), is:

and the posterior variance can be estimated by:

Modes and medians can also be used to estimate location parameter of a posterior
density (Wang et al, 1993), though usually requiring more Gibbs samples because
the density needs to be estimated first. Both estimators of [23] and [24] are subject to



Monte Carlo errors. Because the Gibbs samples are correlated, one way to estimate
Monte Carlo errors is to adopt standard time series analysis techniques as suggested
by Geyer (1992) and used by Sorensen et al (1995).

ROUTINE GENETIC EVALUATION

The preceding sections describe a Bayesian analysis via Gibbs sampling for infer-
ences about all the parameters in the model including fixed effects, (functions of)
breeding values, genetic and residual covariance matrices, and thresholds based
on marginal posterior densities. This is sensible because all uncertainties in esti-
mating other parameters are taken into account when inference is made about a
particular parameter of interest, say for the breeding value of a sire. However, it is
computationally expensive to carry out large scale analyses routinely. A practical
compromise is to estimate covariance matrices and thresholds using a full Bayesian
analysis via Gibbs sampling once and subsequently to estimate location parameters
based on conditional densities of location parameters given the estimated dispersion
and threshold parameters. As data accumulate, covariance matrices and thresholds
are reestimated. Explicitly, we suggest a two-stage procedure that might be useful
for a large scale routine genetic evaluation program:

1) Estimate Go, Ro and t using mean (mode or median), based on their
respective marginal posterior densities, p(Go!Y), p(RoIY) and p(t!Y), via Gibbs
sampling, dropping prior parameters Sg, Se, V9 and Ve in notation for convenience;
and

2) Estimate location parameters based on the following conditional density:

which is an approximation to the corresponding marginal density:

if the marginal density, p(t, Go, Ro !Y), is symmetric or peaked (Box and Tiao, 1973;
Gianola and Fernando, 1986). In other words, if there is sufficient information in
the data to estimate Go, Ro and t well, then [25] is a good approximation to !26!.
This would be the case if the data set is one of the national data bases, for example,
the American Simmental data set. Note that the underlying variable for CE (U20)
and the residual vector associated with the missing data (eim and e2m) have been
integrated out of the joint posterior density !9!; that W matrix no longer contains
blocks of Os corresponding to the missing data, however, the same notation is kept
below. Note also that o and m denoting observed and missing data are dropped
from the notation because missing data no longer play a role.

The joint posterior mode of [25] can be considered as point estimates for e,
which is also known as maximum a posteriori, or MAP for short (Gianola and



Foulley, 1983). There are at least two ways to compute the MAP estimates:
expectation-maximization (EM) (Zhao, 1987; Quaas, 1994, 1996) and Newton-
Raphson (Gianola and Foulley, 1983; Foulley et al, 1983).

The EM iteration equation (Quaas, 1996) is:

where the coefficient matrix is exactly the same as that in the usual MME with
S2 containing Go 1 &reg; A-’ and blocks of Os corresponding to the fixed effects, the
superscript in [27] indicates iteration number, and U’ _ 1 ut 1 fit 21 - For a particular
record, with Y2i = k,

if both BW and CE observed

if only CE observed

if both BW and CE observed

if only CE observed

with b as in [18],

The Newton-Raphson iteration equation (Janss and Foulley, 1993; Quaas, 1994,
1996; Hoeschele et al, 1995), following closely the notation of Quaas (1996), is:

where, for a particular record,

with p as in [28.1],

Q as in !28.2!, Pk as in [28.3!, and

Structurally, R in [29] is the same as R in [2] but consisting of Ro matrices as

specified by:



with b as in [18] and rn the residual variance of BW. It is clear that Ro depends on

0, t, Ro and Y; thus it is record specific. If an animal is missing BW or CE, flo 1
is a scalar: -y or rill, respectively.
A Bayesian analog of the Beef Improvement Federation measure of ’accuracy’ of

a bull’s genetic prediction (BIF, 1990) is:

If information contained in the data conflicts with prior belief, then posterior
variance could be larger than prior variance resulting in a negative accuracy. This
is peculiar to a frequentist, particularly to a producer, why after collecting data on
his animal, the uncertainty about his animal’s BV has increased! Posterior variances
of breeding values are usually approximated, based on large sample theory, by the
inverse of Fisher’s (expected) information matrix or by the inverse of negative
Hessian matrix. The latter approximation is:

where l = log{[25]}. This is the inverse of the coefficient matrix of [29]. Note
that [27], the inverse of the coefficient matrix used for EM, is not a large sample
approximation to the posterior variance matrix of (25!, or, at least, not a very good
one. We shall return to this point in the numerical example section below.

NUMERICAL EXAMPLE

A data set representing continuous BW and discrete CE scores with ordered
categories, 1-4, of ’Simmental calves’ was simulated and analyzed to illustrate the
methodology.

Model

The records were simulated under the sire-maternal grandsire model [1]. Model
equations for the kth calf with ith bull as sire and jth bull as maternal grandsire
were

for BW with only direct effects and CE underlying variable with both direct and
maternal effects, respectively. The random vectors [alk, a2k , m2k] were drawn from
a N(0, Go) distribution, ie, bulls were unrelated. Similarly !2lijk e2zjk] - N(0, Ro).
Parameter values were similar to previous estimates from the Simmental data (Dong
et al, 1991). A residual correlation of 0.6 and a genetic correlation matrix,



were scaled to obtain Ro and Go. Assuming the phenotypic SD for BW was nine
units and hbw = 0.4 ! afl! = 1/4 x 0.4 x 81. The CE components, aa2 and am2’

were assumed equal and computed by solving h!e = 2a x 2 4a2 + x a e2 2 for a; = !a2 2 = a;’ . 2
2Q! -I- Uez

The residual SD which establishes the scale of U2 was set to ten to be comparable
with BW; hfl! = 0.2. The dispersion matrices were

As found in previous analyses of Simmental data (Zhao, 1986, 1987; Quaas et al,
1988), thresholds were equally spaced at 1 SD intervals: ti = 0, t2 = 10 and t3 = 20.

Corresponding to !65% unassisted births of Simmental calves out of 2-year-old
dams (unpublished data):
p2 = -!’’(0.65) = -3.8532. Thus, Pk = «){tk-/-l2)/ae2}-«){tk-l -/-l2)/ae2} =
0.6500, 0.2670, 0.0744 and 0.0085, for k = 1, 2, 3, 4, respectively. For BW, !,1 = 85.
Calving ease scores were assigned such that Y2zj£ = k if tk_1 < U2ijk < tk.

Design

There were 75 bulls in three batches of 25. Bulls in the first batch were MGS of
the calves sired by bulls in the second batch; bulls 26-50 had two progeny from
daughters of each of the first 25 bulls. Likewise, bulls 51-75 (third batch) had two
progeny from daughters of each of the second 25 bulls (second batch). Thus bulls
1-50 were each MGS of 50 calves; bulls 26-75 were each sires of 50 calves; only
bulls 26-50 (second batch) were both sires and MGS. There were a total of 2500
calves, each with a BW and a CE score.

Gibbs sampling

Priors for 1-1, t and Ro were uniform while that for Go was the inverted Wishart
in [5] with Sg a diagonal matrix of the genetic variances used for simulation and
vg = 5. The latter ’slightly informative’ prior was adopted because during initial
testing of the programs, a nearly singular SSg would cause the sampler to crash.
The last Go would look reasonable but would have an effectively zero eigenvalue.
The informative prior was incorporated to ensure (SSg + Sg) was positive definite.
Subsequently, the problem was found in the simulation program where both h 2
were almost zero; Go was nearly singular! The safeguard, however, was left in the
program.

The initial dispersion matrices were diagonal matrices of the variances used for
simulation, bull effects were null and the average BW was assigned to !1. Thresholds
and p2 were computed from the observed frequencies: p2 = 10 x !-!-1(Cl)! and
tk = 10 x [-t-’(Ck) - !-1(Cl)! where Ck is the observed cumulative frequency of
scores 1 through k, k = 1, 2, ... 3. The values for tl (= 0) and t2 were fixed; t3 was

estimated. Initial values are displayed in table I.





From these starting values the parameters were repeatedly sampled in the

following order: U2ijk from [19], t3 from (21!, (J-L1 p2) jointly from [15], (a12 a2i m2)
jointly from (15], Go from IW3(SSg+Sg, 75+5), (16), and Ro from IW2(SSe, 2 500-
3), (17!. Each bull’s three effects were sampled jointly as were the two ps. Most of
the results to be presented came from a single chain of 10 500 samples; all summary
statistics were computed from the last 10 000. We feel a single chain of this length
is sufficient to demonstrate the procedures but would probably not suffice for a real
application. A few references will be made to results from replicated Gibbs chains
and replicated data. Our purpose here, however, was not to study Monte Carlo
error, single long chain versus multiple short chains nor the small sample properties
of posterior means; no systematic study was carried out on these replications.
Comparisons of frequentist properties of estimators of certain parameters are found
in Jensen (1994) and Hoeschele and Tier (1995).

The most time consuming step was sampling the CE underlying variables. This
was due partly to the number of these but also because of the way the truncated
normals in [19] were generated, ie, normals were sampled until one was obtained
within the range determined by the CE score. The time for a complete cycle could
almost triple; this variability was entirely due to generating the truncated normals.
A more efficient truncated normal generator might be necessary for a large data set
in which the probability of some categories is very small, eg, a score of four for a
heifer calf out of a mature dam. In several million records, there will be a handful
of these and they will cause problems.

Joint conditional posterior modes

Joint posterior modes of p and the bull effects given t, Ro and Go [25] were
computed by both the EM [27] and Newton-Raphson [29] algorithms. The values
of t, Ro, and Go were fixed at the estimates of their posterior means from the
Gibbs sampler. Starting values were the same as in the Gibbs sampler. Iteration
was continued until logio of the maximum absolute change of any bull effect was
< -10 at which point the modal estimates of p and bull effects computed by the
alternative algorithms differed by < 10-l0.

NUMERICAL RESULTS

Visual inspection of plots of parameters (or functions of parameters) against sample
number suggests that a burn-in of 500 cycles was probably unnecessary (eg, fig 1).
The parameters in figure 1 were chosen to illustrate the markedly different patterns
observed as a result of correlations among sequential Gibbs samples. There were
marked differences among parameters in these serial correlations (table II) which
were particularly high for the threshold, t3, and also for the CE residual variance,
r22. In contrast, mixing for the other rij, all 9ij and the bull effects was much more

rapid. However, overall convergence of a Gibbs chain is tied to parameters with
slow mixing properties. In another words, one cannot declare that a Gibbs chain is
converged for some parameters but not others.

Estimates of posterior means and SDs are presented in table I. The parameters
involving the continuous trait, BW, were reasonably close to the values used to



simulate the data. This was not the case, however, for the parameters affecting CE.
The dispersion parameters, especially, were markedly smaller than the ’true’ values.
Too much cannot be made of this from a single sample and we cannot conclude
that such a pattern is a consequence of using the marginal posterior mean as an
estimator. It is quite possible that it is a matter of identifiability. For example,



neither tk nor aú is identifiable but (tk - tk_1)/Q!e is identifiable. The ’true’
thresholds were equally spaced 1 residual SD apart; analogous functions of tl, t2
(fixed) and the posterior means of t3 and r22 are 0.996 and 0.954, quite close to the
’true’ values. Likewise, estimated heritabilities and genetic correlations, table III,
differed considerably less from the ’true’ values than did the (co)variances.

For this small example precise estimates of the marginal posterior densities were
not attempted. Coarse histograms were examined; most were slightly skewed away
from zero; in figure 2 are typical examples. None were ’peaked’ in the eyes of the
authors.

Though the EM and Newton-Raphson algorithms both gave the same values for
the joint conditional modes of [25], there was a marked difference in the pattern of
convergence: linear versus quadratic (fig 3). The EM algorithm took six times as
many rounds, but elapsed times were close: EM < two times longer. For a large,
field data application it is questionable as to which algorithm will be faster; we do
not expect a large difference. While EM is easier to code, approximations of SDs
are not a by-product as they are if the Hessian is computed.

Correlations among bull effects are presented in table IV. The joint modes given
the posterior mean estimates of t3, Go and Ro, [25], were very highly correlated





to the marginal posterior means of [26] despite the posterior densities for t3
and dispersion parameters being neither symmetric nor particularly peaked. The
similarity of marginal mean and joint conditional mode is graphically illustrated for
the CE-D effect in figure 4. The regression of mode on mean is slightly greater than
unity, 1.08, reflecting the greater spread of modes when there is no uncertainty in
thresholds nor dispersion parameters. This was seen for all three bull effects.

Correlations, within bull batch, were also computed between true and estimated
(mode or mean) bull effects. These correlations caused debate among the authors.
The Bayesian amongst us was not sure how to interpret them whereas the lapsed
frequentists had no difficulty whatsoever: a big number is good; a small number
is not so good. Except for CE-D for batch 1 bulls and CE-MGS for batch 3 bulls
where the estimation came entirely from correlated information, these correlations
seem satisfyingly large. Of some interest was the observation that the correlations
between true and estimated direct effects, both BW and CE-D, were a bit higher for
the batch 3 bulls than for the batch 2 bulls. Both had 50 progeny but the latter also
had 50 grandprogeny. What seems to be adding information from grandprogeny,
apparently, is noise. This could be due to sampling, though the same pattern was
seen in three independent samples of simulated data.

The posterior SD were also examined. These were approximated in three ways:
from the coefficient matrix of the MME used in EM [27!, from the Hessian used in
Newton-Raphson [29] and by Gibbs sampling. In applications these are sometimes
used interchangeably but they are not, of course, the same. The first is the posterior
SD of p(elU 1, Û2, G_o, R_o) or the frequentist’s standard error of prediction (SEP)
for BLUP p(elU 1, -f J2, Go, Ro) note that this assumes the CE underlying variable
is observed. The second is the large sample approximation of the joint posterior
SD given t3, Go and Ro. The last is the marginal posterior SD, subject to Monte



Carlo error. These are plotted for the bulls’ BW effects in figure 5. It is immediately
obvious that the first behaves quite differently to either of the latter two. The former
depends only on Go, Ro and the information that is available, hence a different
value for each of the three batches of bulls. The second also depends on Go and Ro
(and t3,) but also on j!, âl, â2 and m2 minimally, hence the values vary a bit but
noticeably so only for the bulls with progeny. (Considerably more variation was seen
for the CE effects and the SDs were larger, in general, reflecting the fact that U2 was

not actually observed.) In marked contrast, the marginal posterior SD are all over
the place. This is not just due to Monte Carlo error, see figure 6 where results from
two independent Gibbs samples are plotted. It is due to the dependence of the SD on
the posterior means. This is shown graphically in figure 7. Presumably this pattern
is due primarily to the uncertainty of the dispersion parameters. Heuristically, a
bull with average progeny BW will have zero â1k regardless of the value of (or
uncertainty about) hbw whereas the uncertainty about (SD) alk for a bull whose

progeny BW depart markedly from average will depend on uncertainty about hbw.

DISCUSSION AND CONCLUSIONS

Following closely the work of Sorensen et al (1995), we have extended the Gibbs
sampling scheme to make full Bayesian inferences about location, dispersion, and
thresholds from modeling one multiple ordered categorical trait (CE) and one con-
tinuous variable (BW) with the possibility of missing patterns of data. Inferences



about genetic and residual covariance matrices and thresholds are based on their
respective marginal posterior densities in a unified fashion without analytical ap-
proximations, in contrast to traditional methods based on approximations (Foulley
et al, 1987; Harville and Mee, 1984).

Our model can be expanded to include heterogeneous variances in a similar way
as for linear models (Gianola et al, 1992). Foulley and Gianola (1996) expanded
a log-linear structural model to describe heterogeneous variances (Foulley et al,
1990; San Cristobal et al, 1993) to a single-trait threshold model. This idea can be
extended to model heterogeneous variances in our situation as well.

It is advantageous to estimate location parameters including fixed effects and
breeding values jointly with dispersion parameters because uncertainties in esti-
mation of dispersion parameters can be taken into account, particularly in small
populations. However, in real genetic evaluation systems with data sets of millions
of records, joint modeling may be neither possible nor necessary. With good esti-
mates for dispersion parameters and thresholds from the joint posterior density [9]
from large data sets, we argue that the conditional posterior density of location
parameters [25] with such estimated dispersion parameters as fixed values is a good
approximation to the marginal posterior density of location parameters !26!. In our
numerical example the joint mode of [25] approximated well the marginal posterior
means of [26] even though the dispersion parameters were not very well estimated.



The posterior SD of [26], however, was not well approximated by the inverse of the
coefficient matrix of [27] or [29]. The latter are large sample approximations; our
data were not numerous.

A main purpose of the data augmentation used in the paper was to result in
fully conditional posterior distributions of parameters in standard recognizable
forms such that samples were easily drawn. We chose to augment the underlying
variables of observed CE (U2o) and the residuals associated with missing BW and
CE (elm and e2m)l the whole augmented data vector was (e!m U!oe!m)’ Another
way is to augment the underlying variables of observed CE (U2o) and that of
missing CE (U2m), and continuous data corresponding to missing BW (Yl,r,); the
whole augmented data vector is (Y!m!2o!2m)- Sorensen (1996) gave a parallel
treatment of the problem under the latter data augmentation. In general, the
whole design matrix W is considered to be fixed. In other words, the design vector
wi associated with an observed or a missing (either BW or CE) calf record is
assumed to be either fully or partially known and fixed. Our approach to data



augmentation was, implicitly, equivalent to treating wis associated with missing
BW and CE as random and to assigning uniform priors to them, and integrating
them out of the joint posterior density, as opposed to Sorensen (1996) in which the
joint posterior density was conditioned on those wis of missing BW and CE. We
conjecture that our approach has computational advantages while not sacrificing
theoretical simplicity, particularly when the missing data rate is high. For example,
for American Simmental, about 1/3 of the records have either BW or CE missing.
It is clear also that other combinations of data augmentation are possible, such as
(elmU2oU2m) (Y!m U!oe!m) or (eime2oezm). If no data augmentation is used, fully
conditional distributions of certain parameters may not be in recognizable forms
and alternative sampling procedures such as rejection sampling need to be used.
Zeger and Karim (1991) presented algorithms for a single trait threshold model
without data augmentation.

There is a danger in using improper priors in a Bayesian analysis. In a linear
model setting, some improper priors induce improper joint posterior densities even
though the fully conditional posterior densities are well defined (Hobert and Casella,
1996). We do not know whether or not the uniform priors we used in the numerical
example for p, t and Ro will induce a proper joint posterior density !9!. The fact
that no difficulties were encountered in analysis does not necessarily mean that [9]
was suitable. The safe way may be to use a noninformative but proper prior in an
analysis.
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