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Summary — A quantitative trait under the control of a major gene plus a finite number
of genes with small effects was described using a stochastic model where number, size
and linkage between QTL may vary. Selection schemes defined by the selection criteria
(individual phenotype, major genotype and combination of both sources of information),
the population size and the selection intensities in male and female paths were considered.
Different genetic hypotheses were studied concerning the major gene effect, the number
of small quantitative loci and the linkage between genes. The ranking of the selection
schemes over 30 generations was performed with the following criteria: time taken for the
fixation of the favourable A allele at the major locus and differences between the cumulated
discounted gains obtained with each scheme. The interactions between the major gene and
the flanking QTLs were also studied. The main result was that the inclusion of major gene
information in selection schemes was mostly efficient in the medium and long term when
the gene was rare and recessive and in the medium term when it was rare and additive,
essentially due to a rapid fixation of the favourable A allele and to a limited risk of losing
it by genetic drift for a rare recessive gene.

major gene / QTL / selection / Monte-Carlo

Résumé — Inclusion de l’information & un locus majeur en sélection massale : un
modéle stochastique dans une petite population. Un caeractére quantitatif sous le
contréle d’un géne majeur et d’un nombre fini de génes 4 effets faibles est décrit d l'aide
d’un modéle stochastiqgue ot le nombre de QTL et leur liaison peuvent varier. Plusieurs
schémas de sélection, définis par leurs critéres de sélection (performance individuelle,
génotype au géne majeur ou combinaison des deux types d’information), la taille de
la population et lintensité de sélection pour les voies mdle et femelle, sont considérés.
Différentes hypothéses génétiques sont envisagées, concernant l’effet du géne majeur, le
nombre de QTL et la liaison entre locus adjacents. Le classement des schémas de sélection
sur 30 générations est effectué a l’aide des critéres suivants : le temps nécessaire & la
fization de l'alléle favorable A au locus majeur et les différences entre gains cumulés
actualisés obtenus avec chaque schéma. Les interactions entre le géne majeur et les
polygénes avoisinants sont également étudiées. Le principal résultat est que l'inclusion
de linformation relative au géne majeur dans les schémas de sélection est surtout efficace
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a moyen et long terme gquand le géne est rare et récessif, et a moyen terme quand il est
rare et additif. Cela est essentiellement di a une fization rapide de l’alléle favorable A et d
un risque limité de perte du géne par dérive génétique dans le cas d’un géne récessif rare.

géne majeur / QTL / sélection / Monte-Carlo

INTRODUCTION

Many models describing the evolution of genetic variability in response to selection
are based on the assumption that a trait is controlled by an infinite number of small
independent genes. Nevertheless, the evidence for a small number of QTL with
medium to large effects on quantitative traits is increasing in livestock (Mérat and
Ricard, 1974; Ollivier, 1980; Piper and Bindon, 1982; Le Roy et al, 1990; Tanksley,
1993). To take more advantage of this genetic variability for animal improvement,
specific evaluation methods and selection schemes should be applied (Smith, 1967;
Soller, 1978; Smith and Webb, 1981; Smith, 1982; Stam, 1986; Hoeschele, 1990;
Kennedy et al, 1990; McLaren et al, 1990; Sehested and Mao, 1992; Gibson,
1994; Ruane and Colleau, 1995; Whittaker et al, 1995; Larzul et al, 1997). These
papers pointed out the value of considering the major gene characteristics, ie, the
favourable allele initial frequency, and the type of genetic determinism (dominance
or additivity, allele effects). They also showed that the evolution of the polygenic
distribution depends on the way in which major gene information is taken into
account, with the extreme case where maximal extra-response due to a segregating
locus (in proportion of fixable locus effect) is obtained when counter-selecting the
major gene (Gibson, 1994).

This study attempted to achieve a more precise description of the coevolution,
due to selection, of the distribution of a major gene and of the other QTLs
controlling the selected trait. In the simulation, the genome of the individuals was
described using a stochastic model in which the polygenic inheritance was described
by a finite number of linked genes with additive effects. In particular, this model
allowed a precise study of the evolution of the genetic variance and the influence
of the major gene on its flanking QTLs. The effects of three selection methods,
for a trait measurable in the two sexes, were described. To simplify the genetic
interpretation of the results, these selection methods were all based on individuals’
phenotypes and differed by the way in which the major gene information was
included (or not) in the selection criterion. When it was included, the individual
genotypes at the major gene and the effects of each possible genotype on the trait
were suppposed to be known without error.

METHODS
Description of the model

The algorithm used, introduced by Hospital (1992) and further developed by
Fournet et al (1995), was based on a model which describes each individual of
the selected population by a finite set of QTLs with a finite number of alleles per
locus. The genome was made of identified chromosomes, in the sense that the QTLs
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are pooled in sets of equal size (the major gene being located in the middle of the
first set), independent from each other but with linkage within-set. Two sizes of
genome were simulated in order to study the critical influence of this parameter:
5 chromosomes with 2 QTLs on each (total = 10 QTLs) and 10 chromosomes
with 10 QTLs on each (total = 100 QTLs). The recombination rates between any
adjacent QTLs, including the major gene (except when the distance between the
major locus and the two neighbouring QTLs was varied), were kept identical (0.09)
in the two situations. No interference was assumed. In this work, the genes were
biallelic and the allele effects were given the values a or —a at any QTL except
the major locus. Genotypes in the first generation were given initial frequencies p;
of the favourable allele at each locus, these frequencies being drawn from a (0,1)
uniform distribution. Once these first generation genotypes had been simulated, the
polygenic genetic variance was calculated from:

L
> 2pi(1 - pi)o?
1=1

where L is the number of QTLs, and o the gene effect. The environmental
variance was adjusted in order to obtain a given within-major genotype heritability
h? =02 /(02 . +02)in the first generation of selection and added to the polygenic

variance agpol to obtain the within-major genotype residual phenotypic variance.

This approach implies that initial heritability is constant for all cases studied
while the evolution of heritability along generations varies according to each case.
Various hypotheses were made on the major gene contribution (initial frequency
of the favourable allele A, level of dominance and difference (G4a—Gpp) between
homozygous genotypes). These are detailed below. The values of the three possible
genotypes were expressed in residual phenotypic standard deviation units and added
to the polygenic effects to give the genetic values of the individuals. Environmental
effects were randomly drawn from a Gaussian distribution N(0,02) and added to
genetic values to generate phenotypic values.

The generations did not overlap. As described below, the males and females
underwent steps of evaluation and directional selection. The selected individuals
were randomly mated, their gametes were formed by the parental chromosomes
going through meiosis and recombination, and the offspring genotypes were gen-
erated by pairing of the paternal and maternal gametes (see Fournet et al, 1995,
for technical details). The new-born individuals then replaced their parents and
went through the same steps, with the same cycle being performed until the 30th
generation of selection was reached. An entire run of 30 generations of selection was
performed 100 times for each case studied. The mean values for total genetic mean
and variance (ie, accounting for the major gene and the QTLs), total phenotypic
mean and variance, major gene frequency, QTL’s genetic mean and variance on the
chromosome carrying the major gene and on the non-carrier ones, were calculated
per generation over the 100 repetitions and screened out. This oligogenic model,
where genetic means and variances are calculated from genotypes at each locus,
accounted for the decrease of genetic variance due to changes in gene frequencies
and to disequilibrium between loci (Bulmer effect).
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Selection methods

Three different selection methods, depending on the way in which the major gene
information was included in the selection criteria, were considered. They were
chosen to be as simple as possible, in order to avoid any confusing parameter that
would make the results difficult to interpret. In particular, ‘Animal Model-BLUP’
techniques were not considered here; this point will be discussed in the Discussion
and conclusion.

Phenotypic selection: the male and female candidates were evaluated on the
basis of their own performances, with the best ones being selected as breeders. This
method was considered as the standard selection method, in which the major gene
information is ignored.

Genotypic selection: the candidates were selected first on their major genotypes
(AA first, then AB and possibly BB) and then, for the last genotype retained, on
their phenotype.

Combined selection: following Larzul et al (1997), the candidates were evaluated
on the expected genetic values of their offspring, calculated as the sum of the
offspring expected additive polygenic value and their expected value at the major
locus, accounting for the known major genotype of the candidate and for the
genotype distribution in the population of mates.

These selection methods were, respectively, called Sp, Sg and Sc.

Comparison criteria

Three criteria were chosen to compare the efficiency of the three selection methods.
— The time taken for the fixation of the favourable allele at the major locus
described by (1) the generation number when the A allele frequency reached 0.95,
and (2) the generation number upon complete fixation.

— The differences between the cumulative discounted gains obtained with combined
and phenotypic, combined and genotypic, genotypic and phenotypic selection
methods (expressed as a percentage of the cumulated discounted gain for the
standard phenotypic selection method). The cumulated discounted gain for a
selection method was given by:

C(ty, ) =§: (ﬁ)tﬂ

t=0

with ¢ the generation number, § the discounting rate (assumed to be 5% per
year), ts the length of the discounting period and P; the phenotypic response from
generation ¢ — 1 to ¢ for the given selection method. The choice of this comparison
criterion was supported by the fact that, whatever the selection method considered,
the favourable alleles would be fixed in the long term, but the dynamics of this
fixation and of the phenotypic means would differ from one scheme to another.
Discounting is a classical tool used by geneticists (Poutous and Vissac, 1962; Hill,
1974; Cunningham and Ryan, 1975; Smith, 1977; Miller and Pearson, 1979) for
taking into account the time when genetic gains are obtained and it has been
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applied to numerous selection schemes (Soller et al, 1966; Hinks, 1970; Danell et al,
1976).

Two situations were considered: in both cases 30 years of selection, but repre-
sented by either six generations of 5-year olds (cattle) or 30 generations of 1-year
olds (rabbit, poultry).

— The differences between total genetic response obtained after 30 years with each
selection method were also given.

The statistical significance of all the comparisons presented between methods
(except time to fixation) was evaluated with a Student’s ¢-test, using the standard
deviations for each parameter over the 100 repetitions of the simulation.

Cases studied

In the first part of the study, a population of 192 individuals (half males, half
females) was simulated. Twenty five percent of the males and 50% of the females (24
males and 48 females) were selected as parents for the next generation. A ‘within-
major genotype’ heritability of 0.25 was assumed for the selected trait. The ranking
of selection methods was studied for various values of the parameters defining the
major gene, and for the two numbers of QTLs, in order to test the sensitivity of
this ranking to the characteristics of the genome.

Initial frequency of the favourable allele

The initial frequency of the favourable allele A fg(A) at the major locus was given
the values 0.1, 0.5 or 0.9.

Mode of inheritance

Three kinds of genetic determinism at the major gene were tested: additivity of the
two alleles A and B, dominance of the A allele, dominance of the B allele.

Effect of the major gene

The difference between the mean values of the two homozygotes (Gaa-Gpp) was
assumed to be 1, 2 or 3 within-major genotype phenotypic standard deviations.

In the second part of the study, the evolution of the ranking of the three
selection methods with parameters defining the population management (size of
the population and selection intensity) was studied, for three cases only, chosen as
the most informative after the previous comparison: a recessive favourable allele,
with initial frequencies of 0.1 or 0.5, and a rare additive favourable allele at the
major locus. For all cases, a medium effect (20p) was given to the major gene. Two
population sizes N (192 and 480 individuals) and for each size, two proportions p
of selected males (25 and 6.25%), were tested, with a small and a large polygenic
genome. The proportion of selected females remained equal to 50%.
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RESULTS
Characteristics of the genome

100 QTLs and a major gene

The results differed widely depending on the major gene effect, genetic determinism
or initial frequency of the favourable allele, as illustrated in figure 1a and b showing
the evolution of the phenotypic response in the three selection methods, with an
initial A allele frequency of 0.1, respectively, for a gene of large effect (Gaa—
Gpp = 30p) with A recessive (fig 1a) and for a gene of moderate effect (Gaa—
Ggp = lop) with A dominant (fig 1b). The ranking of the selection methods
varied with the type of major gene, with Sg being the better method and Sp the
worst in the first situation, and the contrary in the second case. As S¢ was always
intermediate between the other two methods, results presented in the following
tables will focuse on Sp and Sg.

For a higher initial frequency, the differences between methods were less striking,
and vanished when fq(A) was 0.9. Thus the discussion will focus more on results
obtained with an initial frequency of 0.1.

Table I shows the time taken for the fixation of the favourable allele in all the
situations studied. For phenotypic selection, fixation speed increased with the initial
frequency and the major gene effect. When considering an initial A allele frequency
of medium to high, whatever the effect of the gene, a recessive favourable allele
was easier to select than an additive one, itself easier to select than a dominant
one: if A is dominant, AB animals are eliminated in the genotypic method, they
are ranked as AA and kept in the phenotypic method and have a good chance of
being chosen in the combined method, while maintaining a high percentage of the
B allele in the population as compared with the genotypic selection. The time taken
to reach fixation was thus very long when A was dominant, due to the fact that
only individual information was used, a well known result in population genetics
(Falconer, 1981; Larzul et al, 1997).

When considering a low initial A allele frequency, the fixation of the A allele was
easier for an additive allele than a dominant one, itself easier than a recessive one,
as expected. The recessive A allele was difficult to select due to the risk of losing it.
Indeed, the proportion of AA genotypes was almost zero and AB was rare in the
first generations and if the polygenic values of the few heterozygotic animals were
low, these animals could be eliminated at the beginning of the selection process in
the phenotypic selection method. This phenomenon was observed in the case of a
large major gene, where the mean A allele frequency reached a plateau at 0.91: 9%
of the runs showed a loss of the favourable major allele. The dynamic aspect of this
fixation process can be outlined. In the first generations, the favourable A allele
had a random risk of being lost due to its low frequency. If and when the A allele
was not lost, its frequency followed the evolution described previously for medium
to high frequency. The fixation process of the favourable allele at the major locus
then depended on the combination of both phenomena, the risk of being lost in the
beginning and the rapid fixation after.
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Fig 1. Response to selection (R) in three selection methods: (a) for a rare recessive major

gene of large effect (3op); (b) for a rare dominant major gene of small effect (1op). ¢ Sp,
] S(;, » Sc.

In genotypic selection, the time taken to reach fixation depended only on the
initial frequency of the A allele. The fixation was always very fast (in generation
4 for a low initial frequency and in generation 1 for fg(A) = 0.9).

Generally, the ranking of the selection methods concerning time to fixation was
Sa, Sc and Sp (fig 2a and b, concerning the same cases as fig 1a and 1b). The other
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Table I. Generation when the favourable A allele is 95% fixed (completely fixed) for
phenotypic (Sp) and genotypic (Sg) selection methods; 100 QTLs, 24 males and 48 females
selected among 96 candidates of each sex.

Initial frequency Selection A and B additive A dominant A recessive
of A method

Gaa-Gpp = 30p

0.1 Sp 5(7) 19 (nf)®  0.925 at generation 30°
Sa 4(4) 4(4) 4 (4)
05 Sp 3(5) 17 (nf) 2(3)
Sa 2(2) 2(2) 2(2)
0.9 Sp 1(3) 11 (nf) 1(2)
Sa 1(1) 1(1) 1(1)
Gaa-Gpp = 20p
0.1 Sp 7(11) 18 (nf) 0.89 at generation 30
Sg 4(4) 4(4) 4(4)
0.5 Sp 3(7) 17 (uf) 3(4)
Sg 2(2) 2(2) 2(2)
0.9 Sp 1(5) 11 (nf) 1(2)
Sa 1(1) 1(1) 1(1)
Gaa-Gpp = lop
0.1 Sp 13 (22) 28 (nf) 0.824 at generation 30
Sa 4(4) 4(4) 4(4)
0.5 Sp 7(17) 22 (nf) 5(9)
Sq 2(2) 2(2) 2(2)
0.9 Sp 2(12) 14 (nf) 1(5)
Sa 1(1) 1(1) 1(1)

2 nf = not fixed. ® fq(A) = 0.925.

striking point on these two figures was the genetic lag in polygenic response during
the first generations when selecting first on the major gene (Sg): selection pressure
was put only on the major gene, and hardly any genetic gain was obtained on the
QTLs. This polygenic lag was recovered in the case of a rare recessive favourable
allele (fig 2a) but not in the situation of a rare dominant A allele (fig 2b).

The values of the cumulated differences of discounted gains between selection
methods are presented in tables II and III.

For the long run (table II), rather small differences were observed between Sg
and Sp, except for a favourable A allele rare and recessive where, as explained
before, including the major gene information meant avoiding the risk of losing
the favourable allele. In this situation, the selection methods ranked from Sg to
Sp, with a superiority of the genotypic selection method over standard phenotypic
selection significant at the 1% level, less important when decreasing the effect of
the major gene. On the contrary, the phenotypic method Sp was found to be
better than the other methods for a ‘small’ major gene with A allele additive or
dominant, with much smaller differences. In this case, the largest difference was



Inclusion of major gene information in selection schemes 43

0 =/ : _—
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Generation number

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Generation number

Fig 2. Polygenic genetic mean (G) and A allele frequency (q) in three selection methods:
(a) for a recessive major gene of large effect (3op); (b) for a rare dominant major gene of
small effect (1op). G: ¢ Sp, m S, & Sc; ¢: ¢ Sp, 0 Sa, a Sc.

found between phenotypic and genotypic methods, the combined method being
intermediate. This suggests that the effort made for the fixation of the favourable
allele at the major locus, resulting in a polygenic lag in the genotypic selection
method, was too expensive given the weak gain due to the major gene.
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Table II. Differences between genotypic and phenotypic selection in cumulative dis-
counted gains, in percentage of the phenotypic method, with a discounting rate of 0.05
and 30 generations of selection; 100 QTLs, 24 males and 48 females selected among 96
candidates of each sex.

Initial frequency A and B additive A dominant A recessive

of A

Gaa-GBB = 30p

0.1 —0.7% -2.1% 24.0%
NS *k *kk

0.5 —0.9% —-1.6% 0.7%
NS ** NS

0.9 -0.5% -1.0% -0.1%
NS NS NS

Gaa—Gpp = 20p

0.1 -1.4% -3.2% 17.1%
NS Kk *okk

0.5 -1.6% —2.6% 0.7%
NS * NS

0.9 —-1.5% -1.1% -0.2%
NS NS NS

Gaa—Gpp = lop

0.1 —4.7% —6.8% 8.1%
* KAk Kk

0.5 —2.6% -5.3% -1.0%
NS *k NS

0.9 —0.9% -1.2% -1.3%
NS NS NS

NS not significant. ** Significant at the 5% level. *** Significant at the 1% level.

The contrasts between Sg and Sp were enhanced when considering the short
run (table ITIT) and were generally in favour of the genotypic method, but with a
lower significance level: the superiority over the phenotypic method was 168, 105
and 34% for a rare recessive major gene with decreasing effect (3, 2 or 1 op). For a
low initial frequency, whatever the effect of the major gene, the value of Sg versus
Sp was high for the recessive case, medium for the additive case and low to negative
for the dominant case (table III). This was directly linked to the fixation rate of
the A allele (see fig 2b). When the initial frequency was 0.9, the superiority of Sg
over Sp was medium to low when A was additive, almost zero for A recessive and
medium to weakly negative for A dominant. The relative superiority of combined
selection over phenotypic selection was less striking than the relative superiority of
genotypic selection over phenotypic selection, but the trend was the same.

In conclusion, the results obtained in the medium and long term showed the
same tendency, with Sg being valuable not only for the recessive case but also
for the additive one in the medium term. The differences in total genetic response
between Sg and Sp, expressed in percentage of Sp, are presented in table IV. It
can be noted that in some cases, Sg yielded better polygenic genetic responses than
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Table III. Differences between genotypic and phenotypic selection in cumulative dis-
counted gains, in percentage of the phenotypic method, with a discounting rate of 0.05
and six generations of selection; 100 QTLs, 24 males and 48 females selected among 96
candidates of each sex.

Initial frequency A and B additive A dominant A recessive

of A

Gaa-Gpp = 3op

0.1 9.7% 1.5% 167.7%
NS NS **

0.5 1.7% 3.1% —-0.1%
NS NS NS

0.9 8.2% -1.1% 0%
NS NS NS

Gaa-Gpp = 20p

0.1 14.1% 0.8% 105.0%
NS NS *k

0.5 3.2% —2.4% —0.5%
NS NS NS

0.9 0.9% —2.6% 0.1%
NS NS N

Gaa-Gpp = lop

0.1 12.4% —-4.2% 33.8%
NS NS NS

0.5 2.1% -10.9% -1.7%
NS NS NS

0.9 1.4% —4.2% 0.8%
NS NS NS

NS not significant. ** Significant at the 5% level. *** Significant at the 1% level.

Sp. As it will be shown later, this can be attributed to smaller loss of polygenic
variance in the Sg method. No significant differences were observed, neither in the
QTLs nor in the total genetic response. This result was obtained probably because,
whatever the selection method used, the favourable allele at the major gene would
be fixed in the long term. But the fixation process differs in timing (as shown in
fig 2a), leading to a higher phenotypic response in the first generations in Sg, and
the comparison of discounted cumulative genetic gains enables this difference to be
demonstrated.

Generally, as shown in figures la and b, 2a and b, Sg provided, in the first
generations, a higher phenotypic response than Sp and S¢, due to a faster fixation
of the favourable allele. This was obtained without loss of polygenic variance, these
variances remaining very close in the three methods over the 30 years (fig 3a and b),
but at the expense of a polygenic lag which was not always recovered (fig 2b).
Moreover, polygenic variance might be higher in Sg, due to the lack of selection
in the first generations, individuals with poor polygenic values being retained: in
table V, the polygenic variance remaining in Sg at generation 5 (this generation
being chosen to compare the remaining variances just after the fixation of the A
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Table IV. Differences of cumulative genetic responses (for the polygenic part and total)
between genotypic and phenotypic selection methods, in percentage of the phenotypic
method, for 30 generations of selection; 100 QTLs, 24 males and 48 females selected
among 96 candidates of each sex.

Initial frequency Selection A and B additive A dominant A recessive

of A method

Gaa—-Gp = 3op

0.1 Polygenic 4.2% —0.8% 0.8%
Total -1.2% -1.6% 3.2%

0.5 Polygenic -0.5% -1.5% 1.2%
Total —0.6% -1.5% -0.1%

0.9 Polygenic 0.4% -3.3% -0.1%
Total —0.4% —0.4% —0.1%

Gaa-Gpp = 20p

0.1 Polygenic 1.9% 3.1% 2.9%
Total -1.5% —2.1% 2.3%

0.5 Polygenic -1.7% 0.6% 0.7%
Total -0.8% -0.7% 0.6%

0.9 Polygenic -1.7% -3.1% 1.2%
Total -1.0% -0.1% 0.1%

Gaa—Gpp = lop

0.1 Polygenic -3.3% -1.9% 1.5%
Total —4.5% —3.8% —0.6%

0.5 Polygenic 0.2% —2.6% -0.6%
Total -1.1% -2.0% —0.8%

0.9 Polygenic -0.5% —4.0% —-1.4%
Total —0.5% -0.3% —0.6%

All differences are not significant.

allele in Sg) was 1.4 and 4.4% higher than the genetic variance obtained with
Sp at the same generation, for the cases corresponding, respectively, to figure 2a
and b. This might explain the faster evolution of polygenic response observed in
Sg after fixation of the major gene (fig 2a and b), although these differences were
not significant.

The influence of the major gene on the flanking QTLs was studied more precisely
with the deviation between polygenic genetic gain on the chromosome carrying
the major gene and on the non-carrying ones, expressed as a percentage of the
total polygenic gain. The differences observed (table VI) between the two kinds of
chromosomes were globally very weak (no statistically significant differences were
found).

For the genotypic selection method, the positive difference of gains obtained on
the non-carrier chromosomes relative to the chromosome carrying the major gene
depended only on the initial frequency of A, increasing when fg(A) was lower, due
to a longer time taken for fixation and a higher polygenic lag on the chromosome
carrying the major gene. Indeed, this selection method first concentrated on the
fixation of an A allele, which could involve the fixation of unfavourable alleles at
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Fig 3. Polygenic variance relative to generation 0 (V) in three selection methods: (a) for
a rare recessive major gene of large effect (3op); (b) for a rare dominant major gene of
small effect (1op). ¢ Sp, m Sg, & Sc.
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Table V. Differences in polygenic variance, at generation 5, between the genotypic
selection method Sg and the phenotypic method Sp, expressed in percentage of the
phenotypic method; 100 QTLs, 24 males and 48 females selected from 96 candidates of
each sex.

Initial frequency A and B additive A dominant A recessive

of A

Gaa-Gpp = 3op

0.1 4.4% 1.3% 1.4%

0.5 -1.8% 2.1% -1.8%
-1.3% 1.9% -1.2%

Gaa-Gpp = 20p

0.1 2.9% 3.7% 2.4%

0.5 -1.7% 1.0% 1.1%

0.9 0.1% 1.1% 0.0%

Gaa-Gpp = lop

0.1 0.1% 4.4% 1.6%

0.5 —2.8% 1.9% 1.2%

0.9 1.8% 2.5% 1.0%

All differences are not significant.

the flanking QTLs. Since the QTLs were not selected during these first generations,
the fixation of unfavourable alleles at the QTLs on the chromosome carrying the
major gene was not due to the Bulmer’s effect but was produced by the genetic
linkage between the major gene and the flanking QTLs (hitch-hiking).

For phenotypic and combined selection methods, interactions appeared between
the effect and the allelic dominance of the major gene. When the gene effect was
large, the maximal difference was observed for A recessive, then A dominant and
finally A additive, the opposite being found for a smaller QTL. The difference
decreased when the initial frequency increased. This was due to an earlier fixation
of the A allele when fg(A) was higher, with the chromosome carrying the major
gene and the non-carrier ones behaving identically after the fixation.

Ten QTLs and a major gene

The same study was performed for a small polygenic genome (10 QTLs). In general,
the trend was the same for 100 and 10 QTLs, whatever the comparison criteria
considered. Therefore, results presented here for 10 QTLs are not as detailed as for
the 100 QTLs situation.

The time taken for the fixation of the favourable allele at the major gene was
nearly the same between the two genomes. The chance of losing the favourable allele
at the major gene when rare and recessive was only slightly higher with 10 QTLs as
compared to the 100 QTLs case. Indeed, the risk for AB animals to be eliminated
due to a possible low polygenic value, as explained for 100 QTLs, was higher with
10 QTLs as the polygenic part of the genome was smaller. The difference however
remains small (1-2%).
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Table VI. Observed deviation, at generation 30, between polygenic genetic gain on
the chromosome carrying the major gene and non-carrier chromosomes (expressed in
percentage of the total genetic gain over 30 generations), for phenotypic (Sp) and genotypic
(Sg) selection methods; 100 QTLs, 24 males and 48 females selected from 96 candidates
of each sex.

Initial frequency Selection A and B additive A dominant A recessive

of A method

Gaa—Gpp = 3op

0.1 Sp 1% —5% -10.6%
Sa 7% 7% 7%

0.5 Sp 3.7% 1.3% 0.7%
Sg ~2.9% ~2.9% ~2.9%

0.9 Sp 4.3% -2.5% 0.7%
Sa 0.2% 0.2% 0.2%

Gaa—-Gpp = 20p

0.1 Sp -1% —-1.7% —4.4%
Sa 7% 7% 7%

0.5 Sp 1.4% 1.6% —-0.1%
Sq ~2.9% -2.9% ~2.9%

0.9 Sp 3.7% —1.4% 0.8%
Sc 0.2% 0.2% 0.2%

Gaa—-Gpp = lop

0.1 Sp —4.3% ~1.9% 0.05%
Sa % 7% 7%

0.5 Sp 2.2% -1.2% 1.5%
Sa ~2.9% —2.9% —2.9%

0.9 Sp 0.2% -1.7% 2.8%
Sa 0.2% 0.2% 0.2%

The cumulated differences of discounted gains between the selection methods,
for a long term objective, showed a higher superiority of the genotypic method over
the phenotypic method with 10 QTLs than for 100 QTLs (26.6, 19.8 and 13.6% for
10 QTLs versus 24.0, 17.1 and 8.1% for 100 QTLs, respectively, for a major gene of
3,2 and 1 op with a rare recessive A allele). This is consistent with the preceding
remark about the time taken for fixation: if the risk for the favourable allele at
the major locus to be lost is higher with a small polygenic genome, then a rapid
fixation with the genotypic method is more valuable.

When considered in the medium term, the superiority of the genotypic method
followed the same trend as with 100 QTLs: the superiority of this method over the
phenotypic method was essentially found for a rare recessive allele at major locus,
but in the case of 10 QTLs, was extended to the case of a recessive major gene
with intermediate initial frequency (Cgp is 6.9% for 10 QTLs against —0.5% for
100 QTLs, see table III).

Results concerning the differences in polygenic variance between methods and
the behaviour of the QTLs flanking the major locus, with 10 QTLs, were very
similar to those with 100 QTLs, and so are not discussed.
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Population management

The main conclusion of the first part of this study was that taking account of
the major gene information was mostly efficient for a rare recessive major allele,
whatever the size of the polygenic genome. Indeed, the genotypic selection method
allowed for a rapid fixation of the favourable allele at the major locus, whereas
selection based on the phenotype could lead to this allele being lost.

The second part of the study, aimed at testing the effect of the population
management parameters, such as population size and selection intensity, was then
based on this case of a rare recessive major allele, with a medium gene effect
(2 op). Two other situations were investigated: a recessive favourable allele at a
major locus with intermediate initial frequency, because the simulation of a small
genome pointed out the value of the genotypic method in this case also, and a rare
additive A allele at a major locus, in order to enable a comparison with results in
the literature, in which additivity was the most frequent assumption. The following
results are presented and discussed for the case of a small polygenic genome (10
QTLs), because the results for 100 QTLs were less pronounced, although very
similar.

The results on the time taken for the fixation of the favourable allele showed that
the risk of losing a rare recessive favourable allele with the phenotypic selection
method was lower when decreasing the selection intensity and increasing the
population size. This risk also appeared in the combined selection method for a rare
additive favourable allele when the selection pressure was strong and the population
size small. The risk of losing the favourable allele at the major gene then depended
on a combination between the quantity of favourable alleles in the population and
the capacity of the selection method used to pick up the available alleles.

The differences between methods in cumulated discounted gains, when consid-
ered for 30 generations, were appreciable only for a rare recessive favourable allele
at the major gene. The superiority of the genotypic method over the phenotypic
method was the same (around 19%) for any value of N and p except for a large
population strongly selected, where this superiority was only 12.6%. In fact, the
genetic variability in this case seemed to be large enough and used with sufficient
intensity to achieve good progress with the phenotypic selection method, thus re-
ducing the value of the genotypic method. This hypothesis was supported by the
fact that the highest phenotypic gain was observed for this combination of NV and p.

The same phenomenon was pointed out when considering this comparison
criterion for 6 generations, with an extension to the case of a small population
strongly selected. The superiority of Sg over Sp, whatever the population size,
was found to be lower, although widely positive, when the selection intensity was
higher (around 60% for p = 6.25% against 100% for p = 25%). This was not
surprising as the strong selection intensity provided high genetic progress in the
first generations, the loss of genetic variability due to the selection (and even more
in the small population) being not sensitive enough, at the 6th generation, to reduce
this progress.

The differences between the genetic variances in the methods accounting for
the major gene information, and in the standard situation, seemed sensitive to
population size and selection intensity, although no significant difference was



Inclusion of major gene information in selection schemes 51

observed. In the case of a rare recessive favourable allele at the major locus, where
the method S appeared to be the most appropriate, the polygenic variance at
generation 5 was higher when the selection intensity was lower. This phenomenon
may be explained by observing the way in which QTLs are selected during the
early generations. With a 25% selection rate, all the AA (1%) and AB (18%)
animals belonging to the first generation are retained, with polygenic selection
occurring only for the BB animals (with a 6/81 selection rate). This lack of selection
in carrier genotypes preserves the polygenic variability. On the contrary, with a
6.25% selection rate even the AB are selected with a selection rate of 5.25 over 18
applied to a small AB subpopulation, while, in the phenotypic selection method,
the candidate population (the whole population) is much larger, thus leading to
a smaller decrease in the polygenic variability. The polygenic variance in method
Sc was then, respectively, only 0.9% higher and 2.8% lower than in method Sp
for N = 192 and N = 480 when p = 6.25%, against 11.1 and 13.3% higher when
p = 25%.

The last parameter studied was the deviation between polygenic genetic gains on
the chromosome carrying the major gene and the non-carrier ones. In the three cases
of genetic determinism studied, and whatever the selection method, the observed
deviation ranged from the situation where the selected individuals were very few
(N =192, p = 6.25%), with a polygenic gain lower on the chromosome carrying
the major gene, to the situation where they were the most numerous (N = 480,
p = 256%), with a polygenic gain higher on the chromosome carrying the major gene
(see table VII). The first part of the study had concluded that there was a slight
negative influence of the major gene on the flanking QTLs, due to hitch-hiking
phenomena during the fixation of the major gene. This effect seems to be more
pronounced when selection intensity is higher and population size is smaller. On the
contrary, in a large population rather weakly selected, the selection pressure applied
to the chromosome carrying the major gene is lower with respect to non-carrier
ones. The genetic variability conserved on this chromosome during the generations
taken for the fixation of the major gene is higher and leads to a higher gain on this
chromosome between the fixation and generation 30. But once again, the observed
differences were not significant.

This phenomenon should vary with the recombination rate (r). To test this
hypothesis, the change of the observed deviation in polygenic gain between the
chromosome carrying the major gene and the non-carrier chromosomes with the
recombination rate was studied (see fig 4). The behaviour of the difference was
clearly sigmoid, with positive values (higher polygenic gain on the chromosome
carrying the major gene) for intermediate recombination rates (0.01-0.2), and
negative values elsewhere. During the first generations before A fixation, very
little selection pressure was put on the QTLs linked to the major locus, with all
chromosomes carrying the A allele being selected. For very small recombination
rates, the hitch-hiking effect explains the loss of favourable QTLs linked to the B
allele. For intermediate distances, recombinations occur and all the alleles at these
QTLs are kept, without selection. When the recombination rate is higher than 20-
30%, selection is possible on these QTLs but, due to residual linkage with the major
locus, itself submitted to a strong selection pressure, this selection affects only a
subsample of the available alleles at the QTLs, thus reducing the gain. Finally,
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Table VII. Observed deviation, at generation 30, between polygenic genetic gain on
the chromosome carrying the major gene and non-carrier chromosomes in the phenotypic
method Sp and genotypic method S (expressed in percentage of the total genetic gain
over 30 generations); 10 QTLs, G44-Gpp = 20p, 50% females selected.

Initial frequency of A Selection N =192 N =192 N =480 N =480
Mode of inheritance ~ method p=25% p=62% p=2% ©p=6.2%

0.1 Sp —0.6% -2.7% 5.1% —0.5%
A recessive Sa 0.4% -6.0% 3.4% 0.2%
0.5 Sp 2.3% —0.8% 4.6% 3.6%
A recessive Sa 1.6% —2.0% 4.8% 3.5%
0.1 Sp 0.1% -1.5% 3.5% -0.3%
A additive Sa 0.4% —6.0% 3.4% 0.2%

for r = 0.5, the QTLs and the major gene were independent and no difference in
polygenic gain was found between the chromosome carrying the major gene and
the non-carrier ones, as expected.
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Fig 4. Change in the deviation in polygenic gain between the chromosome carrying
the major gene and the non-carrier ones (expressed in percentage of the gain on non-
carriers) with the recombination rate between the major gene and the 2 QTLs on the
same chromosome (total of 10 QTLs), in three selection methods. ¢ Sp, m Sg, & Sc.



Inclusion of major gene information in selection schemes 53

DISCUSSION AND CONCLUSION

Our objective was to study the value of a new type of modelling in the evaluation
of selection methods including major gene information and to describe in which
conditions the information on a major gene was useful and how it could bring a
higher response. The use of a stochastic model describing polygenic inheritance by
a finite number of QTLs, and locating the major gene on a distinct chromosome,
allowed an original approach to the subject. To achieve this study, hypotheses were
made concerning the selected trait (measured in both sexes), the accuracy of the
knowledge on the major genotype (supposed known without error) and the selection
method used {one-stage selection based on individual performances). The results
presented above are valid under these assumptions, and possible changes of the
main conclusions when departing from these hypotheses are then to be discussed.

The first conclusion of this study is that the value of including information on
the individual genotypes at a major locus in a one-stage selection scheme, when
the selected trait is measured in both sexes, remains very small in 95% of the cases
studied. However, and that is the second conclusion to be underlined in this work,
the inclusion of major gene information can provide extra-gain in the medium and
long term when the favourable allele at the major locus is rare and recessive and in
the medium term when it is rare and additive. This is in good agreement with the
results of Larzul et al (1997). They also found a higher superiority of the combined
method over phenotypic selection for the recessive case with fg(A4) of 0.1, with
values of 120, 80 and 20% for a decreasing effect of major gene and h? 0.25. These
values are to be compared with 71, 28 and 5% in our model (results not presented),
where the size of the population is reduced (thus diminishing the initial available
genetic variability) and the selection intensity is lower (the variability is thus less
intensively exploited). In the two models, the differences were clearly found to be
lower for A additive and even more for A dominant. Taking account of the major
gene information essentially leads to a faster fixation of the favourable allele, at
the expense of a genetic lag in the selection of flanking QTLs but without loss of
polygenic variance. These results partially agree with Gibson (1994) for the additive
case in the long term situation, where the phenotypic selection method is always
superior to other selection methods.

Our study also shows that, although the number of loci used to simulate
polygenic inheritance is below the threshold required to represent the infinitesimal
model (1600 QTLs for De Boer and Van Arendonk, 1995, or 1000 QTLs for Fournet
and Elsen, 1996), no large differences are found between the results of the two
simulated genomes (10 and 100 QTLs).

For a rare recessive favourable allele at the major locus, the value of the genotypic
selection method is also to diminish the risk of losing the favourable A allele by
genetic drift. The second part of the study provided evidence of this risk in a small
population strongly selected, and the rapid fixation of the A allele enabled by the
genotypic method prevented this risk.

As a general conclusion, excluding this case of a recessive favourable allele, the
value of including major gene information is small. This result was obtained in the
case of individual selection on a trait expressed and measurable on the male and
female candidates.
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(1) The efficiency of the methods studied, as an alternative to a standard selection
programme, might be higher when selected traits are not expressed in both sexes
(milk yield for dairy bulls) or not measurable in the live animals (carcass quality in
pigs), as shown in recent studies concerning marker-assisted selection (Kashi et al,
1990; Meuwissen and Van Arendonk, 1992; Brascamp et al, 1993; Meuwissen and
Goddard, 1996; Ruane and Colleau, 1996).

(2) The accuracy of the information on major genotypes might also temperate
the conclusions of this study. Here we have assumed the major genotype to be
known without error. If the major genotype had been estimated given marker
information, the extra-gain due to the inclusion of this information would have
been less important, due to the risk of error in the estimation.

(3) The nature of the selection schemes used for the comparison may modify
the strength of our conclusions. Gibson (1994) and Larzul et al (1997) show that
the effect of including major gene information is lower in the case of progeny test
than in individual phenotypic selection. This may be due to a better knowledge of
genetic value when including information on relatives. Larzul et al (1997) proposed
this explanation when comparing the responses obtained with selection on own
performance (scheme I} and with selection on progeny test (scheme II): the extra-
gain due to the inclusion of major gene information is higher in scheme I than in
scheme II.

Gibson (1994) also compared these two schemes, and the differences, although
in disfavour of the inclusion of major gene, were less important when selecting
on progeny test than on individual performance. These two examples allow us to
conclude that the advantage obtained in our work in favour of the inclusion of
major gene information would have been less striking if information on relatives
had been included in the selection criterion, in the case of a progeny test scheme
for example, or when increasing the quantity of information used for the estimation
of the breeding values, as in the schemes suggested by Kinghorn et al (1993) and
Janss et al (1995).

To complete these conclusions, and in order to evaluate how the cumulated
discounted gain obtained in the genotypic selection method, for the most favourable
case (ie, a rare and recessive favourable allele at the major locus, considered
for six generations of selection), would change when compared to a more precise
evaluation method (eg, animal model BLUP), the simulation of a selection method
based on true genetic values was performed. So, a new selection method was
constructed on the basis of the combined selection method (described in Selection
methods), but in which the expected genetic values in the offspring were now
calculated from the true polygenic genetic value of the parents and from the
expected genetic value at the major locus depending on the parents’ genotypes.
The comparison between the genotypic and the new combined selection methods,
when based on the true genetic values in the favourable case of a rare and recessive
allele of large effect at the major locus, showed an extra-gain of 48.0% in favour
of the genotypic method relative to the new combined method, against 56.4%
in the previous comparison with the combined method based on the individual
phenotypes. This difference of about 16 percentage points of extra-gain between
the two situations constitutes the upper bound of the decrease in extra-gain of the
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method Sg obtained when using an animal model. We can then consider that our
results would still hold in this situation of genetic evaluation.

Finally, the intermediate ranking of the combined selection may be surprising.
This ranking was probably due to the fact that in this method the candidates
were not selected on the presence of the major gene but on its effects. A dynamic
selection method, ie, the choice of a varying selection strategy, depending on the
frequency of the major gene throughout the generations of selection, might be the
optimal solution.
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