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Summary - A Bayesian analysis of a threshold model with multiple ordered categories
is presented. Marginalizations are achieved by means of the Gibbs sampler. It is shown

that use of data augmentation leads to conditional posterior distributions which are easy
to sample from. The conditional posterior distributions of thresholds and liabilities are
independent uniforms and independent truncated normals, respectively. The remaining
parameters of the model have conditional posterior distributions which are identical to
those in the Gaussian linear model. The methodology is illustrated using a sire model,
with an analysis of hip dysplasia in dogs, and the results are compared with those obtained
in a previous study, based on approximate maximum likelihood. Two independent Gibbs
chains of length 620 000 each were run, and the Monte-Carlo sampling error of moments
of posterior densities were assessed using time series methods. Differences between results
obtained from both chains were within the range of the Monte-Carlo sampling error.
With the exception of the sire variance and heritability, marginal posterior distributions
seemed normal. Hence inferences using the present method were in good agreement with
those based on approximate maximum likelihood. Threshold estimates were strongly
autocorrelated in the Gibbs sequence, but this can be alleviated using an alternative
parameterization.
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Résumé - Inférence bayésienne dans les modèles à seuil avec échantillonnage de
Gibbs. Une analyse bayésienne du modèle à seuil avec des catégories multiples ordonnées
est présentée ici. Les marginalisations nécessaires sont obtenues par échantillonnage de
Gibbs. On montre que l’utilisation de données augmentées - la variable continue sous-
jacente non observée étant alors considérée comme une inconnue dans le modèle - con-
duit à des distributions conditionnelles a posteriori faciles à échantillonner. Celles-ci sont
des distributions uniformes indépendantes pour les seuils et des distributions normales



tronquées indépendantes pour les sensibilités (les variables sous-jacentes). Les paramètres
restants du modèle ont des distributions conditionneLles a posteriori identiques à celles
qu’on trouve en modèle linéaire gaussien. La méthodologie est illustrée sur un modèle
paternel appliquée à une dysplasie de la hanche chez le chien, et les résultats sont com-

parés à ceux d’une étude précédente basée sur un maximum de vraisemblance approché.
Deux séquences de Gibbs indépendantes, longues chacune de 620 000 échantillons, ont été
réalisées. Les erreurs d’échantillonnage de type Monte Carlo des moments des densités a
posteriori ont été obtenues par des méthodes de séries temporelles. Les résultats obtenus
avec les 2 séquences indépendantes sont dans la limite des erreurs d’échantillonnage
de Monte-Carlo. À l’exception de la variance paternelle et de l’héritabilité, les distribu-
tions marginales a posteriori semblent normales. De ce fait, les inférences basées sur la
présente méthode sont en bon accord avec celles du maximum de vraisemblance approché.
Pour l’estimation des seuils, les séquences de Gibbs révèlent de fortes autocorrélations,
auxquelles il est cependant possible de remédier en utilisant un autre paramétrage.
modèle à seuil / analyse bayésienne / échantillonnage de Gibbs / chien

INTRODUCTION

Many traits in animal and plant breeding that are postulated to be continuously
inherited are categorically scored, such as survival and conformation scores, degree
of calving difficulty, number of piglets born dead and resistance to disease. An
appealing model for genetic analysis of categorical data is based on the threshold
liability concept, first used by Wright (1934) in studies of the number of digits in
guinea pigs, and by Bliss (1935) in toxicology experiments. In the threshold model,
it is postulated that there exists a latent or underlying variable (liability) which has
a continuous distribution. A response in a given category is observed, if the actual
value of liability falls between the thresholds defining the appropriate category. The
probability distribution of responses in a given population depends on the position
of its mean liability with respect to the fixed thresholds. Applications of this model
in animal breeding can be found in Robertson and Lerner (1949), Dempster and
Lerner (1950) and Gianola (1982), and in Falconer (1965), Morton and McLean
(1974) and Curnow and Smith (1975), in human genetics and susceptibility to
disease. Important issues in quantitative genetics and animal breeding include
drawing inferences about (i) genetic and environmental variances and covariances in
populations; (ii) liability values of groups of individuals and candidates for genetic
selection; and (iii) prediction and evaluation of response to selection. Gianola and
Foulley (1983) used Bayesian methods to derive estimating equations for (ii) above,
assuming known variances. Harville and Mee (1984) proposed an approximate
method for variance component estimation, and generalizations to several polygenic
binary traits having a joint distribution were presented by Foulley et al (1987). In
these methods inferences about dispersion parameters were based on the mode
of their joint posterior distribution, after integration of location parameters. This
involved the use of a normal approximation which, seemingly, does not behave
well in sparse contingency tables (H6schele et al, 1987). These authors found that
estimates of genetic parameters were biased when the number of observations per



combination of fixed and random levels in the model was smaller than 2, and
suggested that this may be caused by inadequacy of the normal approximation.
This problem can render the method less useful for situations where the number
of rows in a contingency table is equal to the number of individuals. A data
structure such as this often arises in animal breeding, and is referred to as the
’animal model’ (Quaas and Pollak, 1980). Anderson and Aitkin (1985) proposed a
maximum likelihood estimator of variance component for a binary threshold model.
In order to construct the likelihood, integration of the random effects was achieved
using univariate Gaussian quadrature. This procedure cannot be used when the
random effects are correlated, such as in genetics. Here, multiple integrals of high
dimension would need to be calculated, which is unfeasible even in data sets with
only 50 genetically related individuals. In animal breeding, a data set may contain
thousands of individuals that are correlated to different degrees, and some of these
may be inbred.

Recent reviews of statistical issues arising in the analysis of discrete data in
animal breeding can be found in Foulley et al (1990) and Foulley and Manfredi
(1991). Foulley (1993) gave approximate formulae for one-generation predictions of
response to selection by truncation for binary traits based on a simple threshold
model. However, there are no methods described in the literature for drawing
inferences about genetic change due to selection for categorical traits in the context
of threshold models. Phenotypic trends due to selection can be reported in terms of
changes in the frequency of affected individuals. Unfortunately, due to the nonlinear
relationship between phenotype and genotype, phenotypic changes do not translate
directly into additive genetic changes, or, in other words, to response to selection.
Here we point out that inferences about realized selection response for categorical
traits can be drawn by extending results for the linear model described in Sorensen
et al (1994).
With the advent of Monte-Carlo methods for numerical integration such as Gibbs

sampling (Geman and Geman, 1984; Gelfand et al, 1990), analytical approximations
to posterior distributions can be avoided, and a simulation-based approach to
Bayesian inference about quantitative genetic parameters is now possible. In animal
breeding, Bayesian methods using the Gibbs sampler were applied in Gaussian
models by Wang et al (1993, 1994a) and Jensen et al (1994) for (co)variance
component estimation and by Sorensen et al (1994) and Wang et al (1994b) for
assessing response to selection. Recently, a Gibbs sampler was implemented for
binary data (Zeger and Karim, 1991) and an analysis of multiple threshold models
was described by Albert and Chib (1993). Zeger and Karim (1991) constructed
the Gibbs sampler using rejection sampling techniques (Ripley, 1987), while Albert
and Chib (1993) used it in conjunction with data augmentation, which leads to
a computationally simpler strategy. The purpose of this paper is to describe a
Gibbs sample for inferences in threshold models in a quantitative genetic context.
First, the Bayesian threshold model is presented, and all conditional posterior
distributions needed for running the Gibbs sampler are given in closed form.
Secondly, a quantitative genetic analysis of hip dysplasia in German shepherds is
presented as an illustration, and 2 different parameterizations of the model leading
to alternative Gibbs sampling schemes are described.



MODEL FOR BINARY RESPONSES

At the phenotypic level, a Bernoulli random variable Yi is observed for each
individual i (i = 1, 2, ... , n) taking values yi = 1 or y2 = 0 (eg, alive or dead).
The variable Y is the expression of an underlying continuous random variable Ui,
the liability of individual i. When UZ exceeds an unknown fixed threshold t, then
Y = 1, and Y = 0 otherwise. We assume that liability is normally distributed, with
the mean value indexed by a parameter 0, and, without loss of generality, that it
has unit variance (Curnow and Smith, 1975). Hence:

where 0’ = (b’, a’) is a vector of parameters with p fixed effects (b) and q random
additive genetic values (a), and w’ is a row incidence vector linking e to the ith
observation.

It is important to note that conditionally on 0, the Ui are independent, so for
the vector U = {Ui} given 0, we have as joint density:

where !U(.) is a normal density with parameters as indicated in the argument. In
!2!, put WO = Xb + Za, where X and Z are known incidence matrices of order n
by p and n by q, respectively, and, without loss of generality, X is assumed to have
full column rank. Given the model, we have:

where <p(.) is the cumulative distribution function of a standardized normal variate.
Without loss of generality, and provided that there is a constant term in the model,
t can be set to 0, and [3] reduces to

Conditionally on both 0 and on Yi = y2, Ui follows a truncated normal
distribution. That is, for Yi = 1:

where I(X E A) is the indicator function that takes the value 1 if the random
variable X is contained in the set A, and 0 otherwise. For Yi = 0, the density is
§u; (w§ e, I) /V(-w§ e) I (Ui x 0) .

Invoking an infinitesimal model (Bulmer, 1971), the conditional distribution of
additive genetic values given the additive genetic variance in the conceptual base
population (Jfl) is multivariate normal:



where A is a q by q matrix of additive genetic relationships. Note that a can include
animals without phenotypic scores.
We discuss next the Bayesian inputs of the model. The vector of fixed effects b

will be assumed to follow a priori the improper uniform distribution:

For a description of uncertainty about the additive genetic variance, or a 2, an inverted
gamma distribution can be invoked, with density:

where v and S’ are parameters. When v = -2 and SZ = 0, [8] reduces to the
improper uniform prior distribution. A proper uniform prior distribution for Qa is:

where ka is a constant and a a 2m!’. is the maximum value which J£ can take a priori.
To facilitate the development of the Gibbs sampler, the unobserved liability U

is included as an unknown parameter in the model. This approach, known as data
augmentation (Tanner and Wong, 1987; Gelfand et al, 1992; Albert and Chib, 1993;
Smith and Roberts, 1993) leads to identifiable conditional posterior distributions,
as shown in the next section.

Bayes theorem gives as joint posterior distribution of the parameters:

The last term is the conditional distribution of the data given the parameters. We
notice that, for Yi = 1, say, we have

For Yi = 0, we have:

This distribution is degenerate, as noted by Gelfand et al (1992) because knowledge
of Ui implies exact knowlege of Yi. This can be written (eg, Albert and Chib, 1993)
as:



The joint posterior distribution [10] can then be written as:

where the conditioning on hyperparameters v and S’ is replaced by 0ama. when
the uniform prior [9] for the additive genetic variance is employed.

Conditional posterior distributions

In order to implement the Gibbs sampler, all conditional posterior distributions of
the parameters of the model are needed. The starting point is the full posterior
distribution !13!. Among the 4 terms in (13!, the third is the only one that is a

function of b and we therefore have for the fixed effects:

which is proportional to !U(Xb+Za, I). As shown in Wang et al (1994a), the scalar
form of the Gibbs sampler for the ith fixed effect consists of sampling from:

where xi is the ith column of the matrix X, and bi satisfies:

In !16!, X-i is the matrix X with the column associated with i deleted, and
b_i is b with the ith element deleted. The conditional posterior distribution of the
vector of breeding values is proportional to the product of the second and third
terms in !13!:

which has the form !(0,Acr!)!(u!b,a). Wang et al (1994a) showed that the
scalar Gibbs sampler draws samples from:

where zi is the ith column of Z, cii is the element in the ith row and column of

A-1 , /B B = (Qa)-1, and ai satisfies:

In [19], ci,-i is the row of A-1 corresponding to the ith individual with the
ith element excluded. We notice from [14] and [17], that augmenting with the
underlying variable U, leads to an implementation of the Gibbs sampler which is
the same as for the linear model, with the underlying variable replacing the observed
data.



For the variance component, we have from !13!:

Assuming that the prior for o,2is the inverted gamma given in !8!, this becomes:

and assuming the uniform prior !9!, it becomes:

Expression !21a! is in the form of a scaled inverted gamma density, and [21b] in
the form of a truncated scaled inverted gamma density.

The conditional posterior distribution of the underlying variable Ui is propor-
tional to the last 2 terms in !13!. This can be seen to be a truncated normal dis-
tribution, on the left if Yi = 1 and on the right otherwise. The density function of
this truncated normal distribution is given in !5!. Thus, depending on the observed
Yi, we have:

or

Sampling from the truncated distribution can be done by generating from the
untruncated distribution and retaining those values which fall in the constraint
region. Alternatively and more efficiently, suppose that U is truncated and defined
in the interval !i, j] only, where i and j are the lower and upper bounds, respectively.
Let the distribution function of U be F, and let v be a uniform [0, 1] variate. Then
U = F-1 !F(i) + v(F(j) &mdash; F(i))! is a drawing from the truncated random variable
(Devroye, 1986).

Albert and Chib (1993) also constructed the mixed model in terms of a hier-
archical model, but proposed a block sampling strategy for the parameters in the
underlying scale, instead. Essentially, they suggest sampling from the distributions
(Qa, a, blU) as (a!IU)(a, blU, J£), instead of from the full conditional posterior
distributions !15!, !18! and !21!, and they assumed a uniform prior for log(a2) in
a finite interval. To facilitate sampling from p(or2lU), they use an approximation
which consists of placing all prior probabilities on a grid of or2 values, thus making
the prior and the posterior discrete. The need for this approximation is question-
able, since the full conditional posterior distribution of (T has a simple form as
noted in [21] above. In addition, in animal breeding, the distribution (a, b[U, a a 2) is
a high dimensional multivariate normal and it would not be simple computationally
to draw a large number of samples.



MULTIPLE ORDERED CATEGORIES

Suppose now that the observed random variable Y can take values in one of C
mutually exclusive ordered categories delimited by C + 1 thresholds. Let to =

- oo, tc = +oo, with the remaining thresholds satisfying t1 ! t2... < tC-1 -
Generalizing [3]:

Conditionally on A, Yi = j, tj-1 and tj, the underlying variable associated with
the ith observation follows a truncated normal distribution with density:

Assuming that o, a, 2 b and t are independently distributed a priori, the joint
posterior density is written as:

where p(Ulb, a, t) = p(Ulb, a). Generalizing [12], the last term in [25] can be
expressed as (Albert and Chib, 1993):

All the conditional posterior distributions needed to implement the Gibbs sam-
pler can be derived from !25!. It is clear that the conditional posterior distributions
of bi, ai and u2 are the same as for the binary response model and given in (15!,
[18] and !21!. For the underlying variable associated with the ith observation we
have from !25!:

This is a truncated normal, with density function as in !24!.
The thresholds t = (tl, t2, ... , tC-1) are clearly dependent a priori, since the

model postulates that these are distributed as order statistics from a uniform
distribution in the interval [tminitmax]. However, the full conditional posterior
distributions of the thresholds are independent. That is, p(tj It-j, b, a, U, ol a 2, Y) =
p(tj I U, y), as the following argument shows. The joint prior density of t is:



where T = {(h, t2,&dquo;’, tc-dltmin ! / x t2 ! ... ! tC-1 v tmax) (Mood et al,
1974). Note that the thresholds enter only in defining the support of p(t). The
conditional posterior distribution of tj is given by:

which has the same form as !26!. Regarded as a function of t, [26] shows that, given
U and y, the upper bound of threshold tj is min (U I Y = j +1) and the lower bound
is max(UIY = j). The a priori condition t E T is automatically fulfilled, and the
bounds are unaffected by knowledge of the remaining thresholds. Thus tj has a
uniform distribution in this interval given by:

This argument assumes that there are no categories with missing observations.
To accommodate for the possibility of missing observations in 1 or more categories,
Albert and Chib (1993) define the upper and lower bounds of threshold j, as
minfmin(UIY = j + 1), tj+d and as max{max(U!Y = j),tj-’11, respectively. In
this case, the thresholds are not conditionally independent. The Gibbs sampler is
implemented by sampling repeatedly from !15!, !18!, !21!, [24] and (28!.

Alternative parameterization of the multiple threshold model

The multiple threshold model can also be parameterized such that the conditional
distribution of the underlying variable U, given 0, has unknown variance 0’ instead
of unit variance. The equivalence of the 2 parameterizations is shown in the

Appendix. This parameterization requires that records fall in at least 3 mutually
exclusive ordered categories; for C categories, only C-3 thresholds are identifiable.
In this new parameterization, one must sample from the conditional posterior
distribution of o, e 2. Under the priors [8] or (9!, the conditional posterior distribution
of Jfl can be shown to be in the form of a scaled inverted gamma. The parameters
of this distribution depend on the prior used for ae 2 If this is in the form (8!, then

where, SSE = (U - Xb - Za)’ (U - Xb - Za), and v, and Se are parameters of the
prior distribution. If a uniform prior of the form [9] is assumed to describe the prior
uncertainty about u . 2, the conditional posterior distribution is a truncated version
of [29] (ie [21b]), with ve = -2 and S,2 = 0. With exactly 3 categories, the Gibbs
sampler requires generating random variates from !15!, (18), (21!, [24] and [29], and
no drawings need to be made from !28!.



EXAMPLE

We illustrate the methodology with an analysis of data on hip dysplasia in German
shepherd dogs. Results of an early analysis and a full description of the data can
be found in Andersen et al (1988). Briefly, the records consisted of radiographs of
2 674 offspring from 82 sires. These radiographs had been classified according to
guidelines approved by FCI (Federation Cynologique Internationale, 1983), each
offspring record was allocated to 1 of 7 mutually exclusive ordered categories.

The model for the underlying variable was: 
.

where ai is the effect of sire i (i = 1, 2, ... , 82; j = 1, 2,... , ni). The prior
distribution of /! was as in [7] and sire effects were assumed to follow the normal
distribution:

The prior distribution of the sire variance (Qa) was in the form given in !8!, with
v = 1 and S2 = 0.05. The prior for t2, ... , t6 was chosen to be uniform on the
ordered subset of [f, = -1.365, f7 = +00!5 for which ti < t2 < ... < t7, where
fl was the value at which t1 was set, and f7 is the value of the 7th threshold.
The value for fl was obtained from Andersen et al (1988), in order to facilitate
comparisons with the present analysis. The analysis was also carried out under the
parameterization where the conditional distribution of U given 0 has variance a 2
Here, Qe was assumed to follow a prior of the form of !8!, with v = 1 and SZ = 0.05
and t6 was set to 0.429. Results of the 2 analyses were similar, so only those from
the second parameterization are presented here.

Gibbs sampler and post Gibbs analysis

The Gibbs sampler was run as a single chain. Two independent chains of length
620 000 each were run, and in both cases, the first 20 000 samples were discarded.
Thereafter, samples were saved every 20 iterations, so that the total number of
samples kept was 30 000 from each chain. Start values for the parameters were, for
the case of chain 1, o,2= 2.0, Qa = 0.5, t2 = -0.8, t3 = -0.5, t4 = -0.2, t5 = 0.1. For
chain 2, estimates from Andersen et al (1988) were used, and these were Jfl = 1.0,
or = 0.1, t2 = -1.05, t3 = -0.92, t4 = -0.62, t5 = -0.34. In both runs, starting
values for sire effects were set to zero.

Two important issues are the assessment of convergence of the Gibbs sampler,
and the Monte-Carlo error of estimates of features of posterior distributions. Both
issues are related to the question of whether the chain, or chains, have been run
long enough. This is an area of active research in which some guidelines based
on theoretical work (Roberts, 1992; Besag and Green, 1993; Smith and Roberts,
1993; Roberts and Polson, 1994) and on practical considerations (Gelfand et al,
1990; Gelman and Rubin, 1992; Geweke, 1992; Raftery and Lewis, 1992) have been
suggested. The approach chosen here is based on Geyer (1992), who used time series
methods to estimate the Monte-Carlo error of moments estimated from the Gibbs
chain. Other approaches include, for example, batching (Ripley, 1987), and Raftery



and Lewis (1992) proposed a method based on 2-state Markov chains to calculate
the number of iterations needed to estimate posterior quantiles.

Let Xl, ... , X&dquo;, be elements of a single Gibbs chain of length m. The m sampled
values, which are generally correlated, can be used to compute features of the
posterior distribution. In our model, the Xs could represent samples from the
posterior distribution of a sire value, or of the sire variance, or of functions of these.
Invoking the ergodic theorem, for large m, the posterior mean can be estimated by

and the variance of the posterior distribution can be estimated by

(Cox and Miller, 1965; Geyer, 1992). Similarly, a marginal posterior distribution
function, F(Z) = P(X < Z), can be estimated by

which means that F(Z) is estimated by the empirical distribution function. All
these estimators are subject to Monte-Carlo sampling error, which is reduced by
prolongation of the chain.

Consider the sequence g(X1),..., g(Xm), where g(.) is a suitable function, eg,
g(X) = X or g(X) = l!X!Z!, and let E(g(X)) = p. The lag-time auto-covariance
of the sequence is estimated as:

where

is the sample mean for a chain of length m, and t is the lag. The auto-correlation
is then estimated as Tm(!)/!m(0). The variance of the sample mean of the chain is
given by

which will exceed y(0)/m if q(t) > 0 for all t, as is usual. Several estimators of the
variance of the sample mean have been proposed (Priestley, 1981), but we chose one
suggested by Geyer (1992), which he calls the initial positive sequence estimator.



Let Fm(t) = $m(2t) + fim(2t + 1), t = 0, 1, .... The estimator can then be written
as

where t is chosen such that it is the largest integer satisfying fm (I) > 0, i = 1, 1 ... t.
The justification for this choice is that r(i) is a strictly positive, strictly’decreasing
function of i. If Xl, X2, ... X&dquo;, are independent, then Var(í1m) = q(0) /m. To obtain
an indication of the effect of the correlation on Var(í1m), an ’effective number’ of
independent observations can be assessed as jm = 5m(0)/ Vâr(í1m)’ When the

elements of the Gibbs chain are independent, !m = m.

RESULTS

Estimates of the empirical distribution function of various parameters of the model
for each of the 2 chains of the Gibbs sampler are shown in figures 1-5. For exam-
ple, figure 2 shows that there is a 90% posterior probability that the sire variance
lies between 0.065 and 0.14, and the median of this posterior distribution is slightly





under 0.10. Similarly, figure 3 indicates that there is 90% posterior probability that
heritability in the underlying scale (h2 = 4J£ / (J£ + Jfl ) ) lies between 0.24 and 0.49,
and the median of the posterior distribution is 0.35. Although this distribution is
slightly skewed, the estimate of the median agrees well with the ML type estimate
of heritability of 0.35, reported in Andersen et al (1988). Figure 4 depicts estimates
of distribution functions for the mean (J1) and for each of 3 sire effects (al, a2, a3).
Figure 5 gives corresponding distributions for 2 threshold parameters (t2, and t3).
The figures fall in 3 categories. The distribution functions obtained from chains 1
and 2 coincide for each of the variables Qa, h2, al, a2 and a3, where the sire effects

al, a2 and a3 pertain to 3 males with 31, 5 and 158 offspring, respectively. A small
deviation between chains 1 and 2 is observed for Jfl and J1, and a larger deviation is
observed for the threshold parameters (fig 5). The Gibbs sequence for the threshold
parameters showed very slow mixing properties. For example, for threshold 2,
the autocorrelations between sampled values were 0.785, 0.663 and 0.315, for lags
between 5, 10 and 50 samples, respectively. The reason is that the sampled value
for a given threshold is bounded by the values of the neighbouring underlying
variables U. If these are very close, the value of the threshold in subsequent
samples is likely to change very slowly. Under the parameterization where 1 of the
thresholds is substituted by the residual variance, the autocorrelations associated
with the lags above, between samples from the marginal posterior distribution of
e 2, were 0.078, 0.064 and 0.032, respectively. Another scheme that may accelerate
mixing is to sample jointly from the threshold and the liability. For sire effects, lag
autocorrelations were close to zero.

A comparison between marginal posterior means (average of the 30 000 samples)
estimated from the 2 chains is shown in table I. The difference between chains 1
and 2 is in all cases within Monte-Carlo sampling error, which was estimated within
chains, using [34]. The ’effective number’ of observations uJm for the means of

marginal posterior distributions is close to 30 000 for or a 2, al, a2 and a3, but is
about 3 000 for Qe and p and between 200 and 400 for t2, ... , ts.

The marginal posterior distributions for J1, t2, ... , t5, al, a2, a3 are well approxi-
mated by normal distributions. The posterior means and standard deviations of
these marginal distributions can be compared to estimates reported in Andersen et
al (1988), who used a 2-stage procedure. The authors first estimated variances using
an REML-type estimator (Harville and Mee, 1984). Secondly, assuming that the
estimated variances were the true ones, fixed effects and sire effects were estimated
as suggested by Gianola and Foulley (1983). For example, for the 3 sires with 158, 31
and 5 offspring respectively, the 2-stage procedure yielded estimates of sire effects
(approximate posterior standard deviations) of 0.30 (0.09), 0.17 (0.17) and -0.093
(0.26), respectively. The present Bayesian approach with the Gibbs sampler, yielded
estimates of marginal posterior means and standard deviations for these sires of
0.304 (0.088), 0.177 (0.166), and -0.092 (0.263), respectively (table I).

DISCUSSION

We have described a Gibbs sampler for making inferences from threshold models
for discrete data. The method was illustrated using a model with unrelated sires;







here likelihood inference with numerical integration is a competing alternative. For
this model and data, marginal posterior distributions of sire effects are well ap-
proximated by normal distributions. On the other hand, with little information per
random effect, eg, animal models, the normality of marginal posterior distributions
when variances are not known is unlikely to hold. A strength of the Bayesian ap-
proach via Gibbs sampling is that inferences can be made from marginal posterior
distributions in small sample problems, without resorting to asymptotic approxi-
mations. Further, the Gibbs sampler can accommodate multivariately distributed
random effects, such as is the case with animal models, and this cannot be imple-
mented with numerical integration techniques.

It seems important to investigate threshold models further, especially with sparse
data structures consisting of many fixed effects with few observations per subclass.
This case was studied by Moreno et al (manuscript submitted for publication)
in the binary model, where they investigated frequency properties of Bayesian
point estimators in a simulation study. They showed that improper uniform prior
distributions for the fixed effects lead to an average of the marginal posterior
mean of heritability which was larger than the simulated value. They obtained
better agreement when fixed effects were assigned proper normal prior distributions.
The use of ’non-informative’ improper prior distributions is discouraged on several
grounds by, among others, Berger and Bernardo (1992), as this can lead to improper
posterior distributions. It seems that the disagreement between simulated and
estimated values in Moreno et al is due to lack of information and not due to

impropriety of posterior distributions. Thus, the bias persists, though smaller,
when all parameters of the model are assigned proper prior distributions (Moreno,
personal communication). It is clear that as the number of fixed effects increases,
for a constant amount of observations, a larger proportion of fixed effect levels will



contain data falling into only one of the 2 dichotomies. There is no information in
the data (in the Fisherian sense) to estimate these fixed effects and the likelihood
is ill-conditioned. In the case of these sparse data structures, the choice of the prior
distribution for the fixed effects may well be the most critical part of the problem.
This needs to be studied further.

Data augmentation in the Gibbs sampler led to conditional posterior distribu-
tions which are easy to sample from. This facilitates programming. We have noted
though, that threshold parameters have very slow mixing properties, and this is
probably related to the data augmentation approach used in this study (Liu et

al, 1994). With our data, the parameterization in terms of the residual variance
resulted in smaller autocorrelations between samples of Qe than between samples
of the thresholds. A scheme that is likely to accelerate mixing is to sample jointly
from the threshold and liability. This step may necessitate other Monte-Carlo sam-
pling techniques such as a Metropolis algorithm (Tanner, 1993), since sampling is
from a non-standard distribution. Alternative computational strategies and param-
eterizations of the model may be more critical with animal models. Here, there
is typically little information on additive genetic effects, and these are correlated.
These properties slow down convergence of the Gibbs chain.

The methods described in this paper can be adapted easily to draw inferences
about genetic change when selection is for categorical data. Sorensen et al (1994)
described how to make inferences about response to selection in the context of the
Gaussian model. In the threshold model, the only difference is that observed data
are replaced by the unobserved underlying variable U (liability). In order to make
inferences about response to selection, the parameterization must be in terms of an
animal model.

REFERENCES

Albert JH, Chib S (1993) Bayesian analysis of binary and polychotomous response data.
J Am Stat Assoc 88, 669-679

Andersen S, Andresen E, Christensen K (1988) Hip dysplasia selection index exemplified
by data from German shepherd dogs. J Arcim Breed Genet 105, 112-119

Anderson DA, Aitkin M (1985) Variance component models with binary response: inter-
viewer variability. J R Stat Soc B 47, 203-210

Berger JO, Bernardo JM (1992) On the development of reference priors. In: Bayesian
Statistics IV (JM Bernardo, JO Berger, AP Dawid, AFM Smith, eds), Oxford Univer-
sity Press, UK, 35-60

Besag J, Green PJ (1993) Spatial statistics and Bayesian computation. J R Stat Soc B
55, 25-37

Bliss CI (1935) The calculation of the dosage-mortality curve. Ann Appl Biol 22, 134-167
Bulmer MG (1971) The effect of selection on genetic variability. Am Nat 105, 201-211
Cox DR, Miller HD (1965) The Theory of Stochastic Processes. Chapman and Hall,

London, UK
Curnow R, Smith C (1975) Multifactorial models for familial diseases in man. J R Statist

Soc A 138, 131-169
Dempster ER, ,Lerner IM (1950) Heritability of threshold characters. Genetics 35, 212-236
Devroye L (1986) Non-Uniform Random Variate Generation. Springer-Verlag, New York,
USA



Falconer DS (1965) The inheritance of liability to certain diseases, estimated from the
incidence among relatives. Ann Hum Genet 29, 51-76

Federation Cynologique Internationale (1983) Hip dysplasia-international certificate and
evaluation of radiographs (W Brass, S Paatsama, eds), Helsinki, Finland

Foulley JL (1993) Prediction of selection response for threshold dichotomous traits.
Genetics 132, 1187-1194

Foulley JL, Manfredi E (1991) Approches statistiques de 1’evaluation g6n6tique des
reproducteurs pour des caract6res binaires 4 seuils. Genet Sel EvoL 23, 309-338

Foulley JL, Im S, Gianola D, H6schele I (1987) Empirical Bayes estimation of parameters
for n polygenic binary traits. Genet Sel Evol 19, 197-224

Foulley JL, Gianola D, Im S (1990) Genetic evaluation for discrete polygenic traits
in animal breeding. In: Advances in Statistical Methods for Genetic Improvement of
Livestock (D Gianola, Hammond K, eds) Springer-Verlag, NY, USA, 361-409

Gelfand AE, Hills SE, Racine-Poon A, Smith AFM (1990) Illustration of Bayesian
inference in normal data models using Gibbs sampling. J Am Stat Assoc 85, 972-985

Gelfand A, Smith AFM, Lee TM (1992) Bayesian analysis of constrained parameter and
truncated data problems using Gibbs sampling. J Am Stat Assoc 87, 523-432

German S, Geman D (1984) Stochastic relaxation, Gibbs distributions and Bayesian
restoration of images. IEEE Trans Pattern Anal Machine Intelligence 6, 721-741

Gelman A, Rubin DB (1992) A single series from the Gibbs sampler provides a false sense
of security. In: Bayesian Statistics IV (JM Bernardo, JO Berger, AP Dawid, AFM
Smith, eds), Oxford University Press, UK, 625-631

Geweke J (1992) Evaluating the accurracy of sampling-based approaches to the calculation
of posterior moments. In: Bayesian Statistics IV (JM Bernardo, JO Berger, AP Dawid,
AFM Smith, eds), Oxford University Press, UK, 169-193

Geyer CJ (1992) Practical Markov chain Monte Carlo (with discussion). Stat Sci 7, 467-511 l
Gianola D (1982) Theory and analysis of threshold characters. J Anim Sci 54, 1079-1096
Gianola D, Foulley JL (1983) Sire evaluation for ordered categorical data with a threshold

model. Genet Sel Evol 15, 201-224
Harville DA, Mee RW (1984) A mixed-model procedure for analyzing ordered categorical

data. Biometrics 40, 393-408
H6schele I, Gianola D, Foulley JL (1987) Estimation of variance components with quasi-

continuous data using Bayesian methods. J Anim Breed Genet 104, 334-349
Jensen J, Wang CS, Sorensen DA, Gianola D (1994) Marginal inferences of variance and

covariance components for traits influenced by maternal and direct genetic effects using
the Gibbs sampler. Acta Agric Scand 44, 193-201

Liu JS, Wong WH, Kong A (1994) Covariance structure of the Gibbs sampler with
applications to the comparisons of estimators and augmentation schemes. Biometrika
81, 27-40

Mood AM, Graybill FA, Boes DC (1974) Introduction to the Theory of Statistics. McGraw-
Hill, NY, USA

Morton NE, McLean CJ (1974) Analysis of family resemblance. III. Complex segregation
of quantitative traits. Am J Hum Genet 26, 489-503

Priestley MB (1981) Spectral Analysis and Time Series. Academic Press, London, UK
Quaas RL, Pollak EJ (1980) Mixed-model methodology for farm and ranch beef cattle

testing programs. J Anim Sci 51, 1277-1287
Raftery AE, Lewis SM (1992) How many iterations in the Gibbs sampler? In: Bayesian

Statistics IV (JM Bernardo, JO Berger, AP Dawid, AFM Smith, eds), Oxford Univer-
sity Press, UK, 763-773

Ripley BD (1987) Stochastic Simulation. John Wiley & Sons, NY, USA



Roberts GO (1992) Convergence diagnotics of the Gibbs sampler. In: Bayesian Statistics
IV (JM Bernardo, JO Berger, AP Dawid, AFM Smith, eds), Oxford University Press,
775-782 <

Roberts GO, Polson NG (1994) On the geometric convergence of the Gibbs sampler. J R
Statist Soc B 56, 377-384

Robertson A, Lerner IM (1949) The heritability of all-or-none traits: viability of poultry.
Genetics 34, 395-411 1

Smith AFM, Roberts GO (1993) Bayesian computation via the Gibbs sampler and related
Markov chain Monte-Carlo methods. J R Stat Soc B 55, 3-23

Sorensen DA, Wang CS, Jensen J, Gianola D (1994) Bayesian analysis of genetic change
due to selection using Gibbs sampling. Genet Sel Evol 26, 333-360

Tanner MA (1993) Tools for Statistical Inference. Springer-Verlag, NY, USA
Tanner MA, Wong WH (1987) The calculation of posterior distributions by data augmen-

tation. J Am Stat Assoc 82, 528-540
! Wang CS, Rutledge JJ, Gianola D (1993) Marginal inferences about variance components

in a mixed linear model using Gibbs sampling. Genet Sel Evol 21, 41-62
Wang CS, Rutledge JJ, Gianola D (1994a) Bayesian analysis of mixed linear models via

Gibbs sampling with an application to litter size in Iberian pigs. Genet Sel Evol 26,
91-115

Wang CS, Gianola D, Sorensen DA, Jensen J, Christensen A, Rutledge JJ (1994b)
Response to selection for litter size in Danish Landrace pigs: a Bayesian analysis. Theor
Appl Genet 88, 220-230

Wright S (1934) An analysis of variability in number of digits in an inbred strain of guinea
pigs. Genetics 19, 506-536

Zeger SL, Karim MR (1991) Generalized linear models with random effects: a Gibbs
sampling approach. J Am Stat Assoc 86, 79-86

APPENDIX

Here it is shown that there is a one-to-one relationship between 2 chosen param-
eterizations of the threshold model, and that they lead to the same probability
distribution.

As a starting point assume that the conditional distribution of liability is:

where e = (bl, ... , bp, al, ... aq), bl is an intercept common to all observations, and
associated with C categories there are thresholds ti, i = 0, 1, ... , C, with to = -oo
and tc = oo. We assume that the p fixed effects are estimable. In order to make the

parameters identifiable, in what we call the standard parameterization, we define:

Note that by setting fl = 0, then tl = 0. In terms of this parameterization, the
conditional distribution of liability is:



There are p + q + C &mdash; 1 identifiable unknown parameters which are:

In the alternative parameterization, one can define Ui = aiJi, such that:

where 8 = a,6,a2 = a2U2,g, = i ll, and tl = fl. The number of identifiable
parameters is of course the same as before. In this paper we chose to set tc_1 = f2,
where f2 > fl is an arbitrary known constant.

The probability distributions are given by:
P(Y = !0, t) = P(0-l < Ui s t! !0, t) = P(Tj-l < Ui s t! !0, t) (since the

relationship between (0, t) and (0, t) is one-to-one) = P(t!_1 < Ui ! t! !0, t) _
P(Yi = j!0,t). 

_

Finally we notice that h2 = h2.
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