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Summary - An algorithm for computing marginal maximum likelihood (MML) estimates
of variance components in Poisson mixed models is presented. A Laplacian approximation
is used to integrate fixed and random effects out of the joint posterior density of
all parameters. This approximation is found to be identical to that invoked in the
more commonly used expectation-maximization type algorithm for MML. Numerically,
however, a different sequence of iterates is obtained, although the same variance component
estimates should result. The Laplacian algorithm is precisely DFREML (derivative free
REML) optimization when applied to normally distributed data, and could then be termed
DFMML (derivative-free marginal maximum likelihood). Because DFMML is based on
an approximation to the marginal likelihood of the variance components, it provides a
mechanism for testing hypotheses about such components via posterior odds ratios or
marginal likelihood ratio tests. Also, asymptotic posterior standard errors of the variance
components can be computed with DFMML. A Tierney-Kadane procedure for computing
the posterior mean of a variance component is also developed; however, it requires 2 joint
maximizations, and consequently may not be expected to perform well in many linear
and non-linear mixed models. An example of a Poisson model is presented in which the
null estimate commonly found when jointly estimating variance components with fixed
and random effects is observed; thus, the Tierney-Kadane procedure for computing the
posterior mean failed. On the other hand, the Laplacian method succeeded in locating the
mode of the marginal distribution of the variance component in a Bayesian model with
flat priors for fixed effects and variance components; that is, the MML estimate.

generalized linear model / marginal maximum likelihood / variance component /
mixed model / Laplacian estimation



Résumé - Estimation des composantes de variance par le maximum de vraisemblance
marginale dans des modèles mixtes de Poisson à l’aide de la méthode d’intégration
de Laplace. Un algorithme de calcul des estimées de composantes de variance par le
maximum de vraisemblance marginale dans des modèles mixtes de Poisson est présenté.
On utilise une approximation de Laplace pour éliminer par intégration les effets fixés et
aléatoires de la densité conjointe a posteriori de tous les paramètres. Cette approxima-
tion se montre identique à celle à laquelle il est fait appel dans l’algorithme plus classique
du type espérance-maximisation. Du point de vue numérique cependant, la séquence des
valeurs obtenues par itération est différente, bien que les mêmes estimées de composantes
doivent être obtenues. L’algorithme de Laplace est précisément l’optimisation de DFREML
(maximum de vraisemblance restreinte sans dérivée) quand on l’applique à des données
distribuées normalement, et pourrait dont être appelé DFMML (maximum de vraisem-
blance marginale sans dérivée). Parce que DFMML est basé sur une approximation de la
vraisemblance marginale des composantes de la variance, il fournit un moyen de tester
des hypothèses relatives à de telles composantes via des rapports de probabilités a pos-
teriori ou des tests de rapport de vraisemblance. De plus, des valeurs asymptotiques a
posteriori des composantes de variance peuvent être calculées au moyen de DFMML. Une
procédure de Tierney-Kadane pour calculer la moyenne a posteriori d’une composante de
variance est également présentée; elle requiert cependant 2 maximisations conjointes et,
en conséquence, on ne doit pas s’attendre à ce qu’elle donne de bons résultats dans beau-
coup de modèles linéaires et non linéaires. Un exemple de modèle de Poisson est donné,
dans lequel on obtient les valeurs nulles habituellement trouvées quand on estime conjointe-
ment des composantes de variance avec des effets fixés et aléatoires; ainsi, la procédure de
Tiernay-Kadane pour calculer la moyenne a posteriori échoue. En revanche, la méthode
de Laplace réussit à localiser le mode de la distribution marginale des composantes de
variance dans un modèle bayésien avec des a priori uniformes pour les effets fixés et les
composantes de variance, ie l’estimée du maximum de vmisemblance marginale.
composantes de variance / distribution de Poisson / modèle linéaires généralisé /
maximum de vraisemblance marginale / intégration de Laplace

INTRODUCTION

Non-linear models for quantitative genetic analysis of categorically scored pheno-
types have been developed in recent years (Gianola and Foulley, 1983; Harville
and Mee, 1984). In these models, it is assumed that the observed polychotomies
correspond to realizations of an underlying normal variate inside intervals of the
real line that are delimited by fixed thresholds. The mathematical link between the
underlying and the discrete scales is, thus, the probit function. Although threshold
models have been used for analysis of different types of discrete data (eg, Meijering,
1985; Weller et al, 1988; Weller and Gianola, 1989; Manfredi et al, 1991) counted
variates are probably better modelled using Poisson or related distributions such as
the negative binomial distribution. Non-linear Poisson models for counted variates,
eg litter size in swine and sheep, have been suggested by Foulley et al (1987), and
an application to prolificacy in the Iberian pig is given by P6rez-Enciso et al (1993).

The model of Foulley et al (1987) requires knowledge of variance components, so
these must be estimated somehow. Animal breeders have used restricted maximum
likelihood (REML) to estimate genetic variances for a wide array of economically



important traits. This is not entirely satisfactory for discrete characters because
REML relies on the assumption of multivariate normality; the degree of robustness
of this method to departures from normality has not been sufficiently studied.
Further, unless there is a large amount of statistical information in the data about
the variance parameters, the sampling performance of REML when applied to
discrete traits may be unsatisfactory, as suggested by the simulation study of
Tempelman and Gianola (1991).

The procedure for estimating variance components suggested by Foulley
et al (1987) in their Poisson model is marginal maximum likelihood (MML). In
a Bayesian context with flat priors for variances and fixed effects, this method gives
as point estimates the components of the mode of the marginal posterior distribu-
tion of all variance components (Foulley et al, 1990). With normal data, MML is
identical to REML. With discrete traits, such as in the Poisson model of Foulley
et al (1987), approximations to MML must be used, because the exact integration
of nuisance parameters (fixed and random effects) out of the joint posterior distri-
bution is onerous. In Foulley et al (1987), the posterior distribution of fixed and
random effects, given the variance component, is approximated by a multivariate
normal process when computing MML estimates.

The objective of this paper is to describe another approximation to marginal
maximum likelihood estimation of variance components in a Poisson mixed model
based on Laplace’s method of integration, as suggested by Leonard (1982) for

calculating posterior modes, and by Tierney and Kadane (1986) for computing
posterior means. A model with a single variance component is considered in
the present study, and the relationship of Laplacian integration to derivative-
free methods for computing REML with normal data is highlighted. A numerical
example is presented.

THE POISSON MIXED MODEL

Foulley et al (1987) employ a Bayesian approach to make inferences in a Poisson
mixed model. Given a location parameter vector, 0, the conditional distribution
f ( ) of a counted variate y2 is assumed to be Poisson.

where e denotes the natural exponent, n is the number of observations, and Ai is
the Poisson parameter for observation i. By definition, the Poisson parameter must
be positive; however, the transformation qj = ln Aj, defined as the canonical link
function for Poisson variables (McCullagh and Nelder, 1989), can take any value
on the real line. Foulley et al (1987) introduce the linear relationship

where 9’ = 91 u’l, and wi = [x’, zi! is the ith row of the n x (p + q) incidence
matrix W = [X, Z]. X and Z are known incidence matrices of dimensions n x p
and n x q, respectively, that associate the location vectors PPX 1 and u9 x 1 to each



observation. Under the Poisson model, the mean and variance of an observation,
given 0, is equal to the Poisson parameter Ai. Hence, the residual variance in this
model is precisely Aj .
The vectors P and u are distinct in the following sense. Typically, the elements

ofp pertain to levels of fixed effects such as herd, year and season, whereas those of
the vector u pertain to &dquo;random&dquo; effects of the animals being recorded and of their
known relatives. In a Bayesian context, a flat prior density is assigned to p and a
multivariate normal prior distribution is assumed for u (Foulley et al, 1987). If u
is a vector of breeding values,

Above, A is a matrix of additive relationships, and Jfl is the additive genetic
variance.

If the dispersion parameter Jfl is unknown, it can be estimated from its marginal
posterior distribution so as to provide a parametric empirical Bayes approach to
joint estimation ofp and u. When the prior density assigned to U2 is flat, then the
mode of the marginal posterior distribution of Jfl is identical to the maximum of
the marginal likelihood of or2. 

u

The unknown parameters are thus!i, u, and ou . In animal breeding applications,
often p + q > n. For example, in ’animal’ models with a single observation
per recorded individual, the dimension of u is often greater than the number of
observations, that is, q > n. This leads to a highly parameterized model. When the
elements of u are strongly intercorrelated, a potentially low degree of orthogonality
can seriously slow down convergence of Monte Carlo Markov Chain methods, such
as Gibbs sampling, as a means of estimating marginal densities, modes, or means
(Smith, 1991). Under these conditions, approximating the marginal density of U2 u
by Laplacian integration procedures may be attractive from a numerical point of
view.

ESTIMATION OF THE VARIANCE COMPONENT FROM THE
MODE OF ITS MARGINAL POSTERIOR DISTRIBUTION

We first assume that, conditionally on 8, the observations are independent, following
a Poisson distribution as in [1]. Let id = [01’er2l, = [p’,U,,a2j’ represent all

parameters of interest. Assigning a flat prior to the variance component Qu and
to p, such that the joint prior density of tl is proportional to that of u, we can write
the log of the joint posterior density ofp, u, and or2 as

where 7r(u E&dquo;) is a multivariate normal density function. Further,



Because !E&dquo;! = IAQu! = !A!(<r!)!, and A does not depend on the parameters, it
follows that [5] is expressible as:

The joint posterior density of the full parameter set can be written as:

where p(0 ) !u, y) is the posterior density of 0, given that the variance components
are known, and p(o,2 u y) is the marginal density of the variance parameter.

Define:

to be the mode of the joint posterior density of 0, given Qu, and

Ignoring third and higher order terms, the asymptotic approximation is then made
that

which is also used by Foulley et al (1987) to obtain approximate MML. In order to
compute [8a], these authors employ the Newton-Raphson algorithm, which can be
shown to lead to the iteration:

where [t] indicates iterate number,

is a residual. Note that R-lv = {(Yi - Ài) / Ài} can be interpreted as a residual vector
expressed in units of residual variance, or relative to the mean of the conditional
distribution of the observations. It can also be shown that:

Note that the solution to system (9J, which resembles Henderson’s mixed model
equations, and the negative Hessian [10) are both a function of or2 U.



Whe wish to find the mode of the marginal distribution of Jfl (or maximum
of the marginal likelihood of the data) by recourse to Laplacian integration, as in
Leonard (1982). Now:

A second-order Taylor series expansion of the log joint posterior density about
0, at a fixed au gives:

Employing [13] in [12] and letting pA(.) denote an approximate density,

Using this in [11] and recalling that 9 ! 1 o,2, y is approximately normal,

Taking logs of [15], and using [6], we note that apart from a constant,

where Aj = exp {wi9a} is computed from the mode of the joint posterior density of
p and u, given Qu. One can find the posterior marginal mode of Jfl by establishing
a grid of points of {Qu, LA(Q! ! y)} and then interpolating with a second order
polynomial as in Smith and Graser (1986).

It is interesting to note that if the data were normally distributed, the algorithm
just described reduces to that suggested by Graser et al (1987), or DFREML (Meyer,
1989). Hence, Laplacian integration provides a generalization of DFREML to a class
of non-linear models that could be termed DFMML.



VARIANCE COMPONENT ESTIMATION FROM
THE POSTERIOR MEAN

Theory

The posterior mean is an attractive point estimator; from a decision theory
viewpoint, it can be shown to minimize expected posterior quadratic loss (Lee,
1989). The mean of the marginal posterior distribution of the variance component
can be written as:

where !2! is the space of the entire parameter vector. In this section we consider
developments for computing posterior means presented by Tierney and Kadane
(1986) and derived in detail by Cantet et al (1992); these are extensions of Laplacian
procedures introduced by Leonard (1982).

Let:

The posterior mean of the variance component can then be represented as

Note that the denominator assures that the joint posterior integrates to one
when the integration constant in the joint density is ignored. Define:



The negative joint Hessians above can be written as:

The upper left blocks in both negative Hessians pertaining to the vector of
location parameters, 0, are as in [10]. The remaining terms are:

Further:

so that

Tierney and Kadane (1986) approximate the numerator and denominator in [19]
via the second order Taylor series expansions



Using [22a] and [22b] in [19], the posterior mean is approximately

This approximation has been deemed to be highly accurate. The errors of the
approximations to the integrals in the denominator and the numerator in [19] are of
order 0(n-1). This would also be the order of the error incurred when approximating
the joint posterior by a normal distribution. However, the leading terms in the
2 errors are nearly identical and cancel when the ratio in [19] is taken (Tierney and
Kadane, 1986), thereby leading to an error term that is proportional to 0(n-2).

Computational considerations

Consider the ratio of integrals in [19], and the maximize_rs, ! and 4* in [20a] and
[20b]. Computing the denominator entails evaluating L(!), which is equivalent to
maximizing the joint log-posterior density in [6]. Likewise, computing the numerator
would entail the same procedure, except that log(a!) is added to the log joint
posterior.

From [6], it follows that:

Setting the first derivatives to zero leads to expressions:

which would be used in conjunction with system [9] (evaluated at the ’current’
values of Jfl) to obtain the joint posterior mode. We obtained estimates of 0’ u 2
equal to zero in several simulation tests of this algorithm, when applied to Poisson
models. This implies that the joint density is maximum when Jfl = 0. As noted
by Lindley and Smith (1972), Harville (1977), Thompson (1980), and Gianola and
Fernando (1986), joint maximization of a joint posterior density with respect to
fixed and random effects and the variance components in a linear model, often leads
to a sequence of iterates for the latter converging towards zero. Harville (1977)
attributed the problem to ’severe dependencies’ between u and Jfl (clearly, the
conditional distribution of ulE,, depends on o, u 2). As noted by Gianola et al (1990),



the problem also arises when searching for the mode of p(p, uly) or p(uly) where
any ’dependency’ would be eliminated by integration of Qu. In general, the problem
does not occur when informative priors are employed for a!. H6schele et al (1987)
also found that many of their variance component iterations were drifting towards
zero when using a first order algorithm for maximizing the joint posterior density
in threshold models.

It is instructive to contrast the log of the joint posterior density in [6], L(!),
with the approximate marginal density of a 2, LA (U2ly), in [16]. Apart from the
constant terms, these 2 functions differ in that in [16], half the value of the log of
the determinant of the negative Hessian matrix is subtracted. Ritter (1992) views
this as an important ’width or variance adjustment’ in the estimation of or from
its marginal distribution; this supports the claim made by O’Hagan (1976) that
marginal modes are better estimators than joint modes.

Because the Tierney and Kadane (1986) approximation to the posterior mean
fails whenever <7! goes to zero in the joint maximization algorithm, alternative
strategies must be sought. One possibility would be to evaluate the approximate
marginal density of the variance component as in [16] and then compute the
posterior mean by cubic spline fitting (deBoor, 1978) or by Gaussian quadrature
involving ’strategic’ evaluation points of o,2 U.

NUMERICAL EXAMPLE

Data on embryo yields within a nucleus scheme were simulated with a Poisson
animal model according to procedures given in Tempelman and Gianola (1991).
The underlying mean on the log scale was log(4). Two ’fixed’ factors, one with 5
levels and the other with 20 levels were generated from a N(0, 0.10) distribution on
the canonical log scale. Additive genetic effects were generated from a N(0, 0.05)
distribution for a base population of 16 sires and 128 cows. Cows were superovulated
and mated at random to outside sires also drawn at random from the population at
large. The numbers of embryos produced per cow was a drawing from the Poisson
distribution, with the value of its parameter depending on the fixed effects and
the additive genetic value of the female in question. Sex ratios in the embryos was
50: 50, and sexes were assigned at random, using the binomial distribution. Male
embryos were discarded, and the genetic value of female embryos was obtained as:

where as is the breeding value of an outside sire, aD is the breeding value of the
donor cow, and zo - NiiD(0,1). The female embryos were ’raised’ (probability
of survival to an embryo collection was 0.70), and mated at random to nucleus
sires, to produce a new generation. Records on embryo yields obtained from these
matings were simulated as before. Thus, information on embryo yields was available
on foundation cows and their surviving female progeny. The simulation involved a
’natural selection’ process because donor cows without embryos recovered left no
progeny at all, whereas donor cows with higher embryo yields left more female

progeny.



In the simulation, p = 24 (25 levels of fixed effects minus 1 dependency)
and q = 242 (16 sires, 128 dams and 98 surviving progeny). The mode of the
approximate marginal density of or was located employing [16]. An iterative
quadratic fit led to o,2= 0.0347 as maximum, and the approximate log marginal
density is depicted in figure 1, with a cubic spline fitted through the iterates. The
EM-type algorithm of Foulley et al (1987) gave a modal value of or = 0.0343.
Convergence criteria of the 2 algorithms were not directly comparable, thereby
contributing to some of the discrepancy between the 2 estimates.

As noted previously, the Tierney and Kadane (1986) approach gave Jfl = 0 as
the value of the variance component that maximized the joint density. To illustrate,
the log joint density [6] was evaluated at the ’current’ value of or2 (and of the
resulting solution to system (9)) during iteration and the plot is shown in figure 2.
Clearly, u2 = 0 would be the maximizer, giving a density value of plus infinity. The
degeneracy of this log density highlights the importance of the Hessian adjustment
in [16].

DISCUSSION

The Laplacian procedure for finding the mode of the marginal posterior distribution
of a single variance component in a Poisson mixed model was found to be analogous
to ’derivative-free’ methods employed for computing REML estimates of variance
components in a mixed linear model (Smith and Graser, 1986; Graser et al, 1987).
In fact, if Laplacian marginalization is applied to variance estimation with normally
distributed data in a Bayesian model with flat priors for fixed effects and variance
components, this would yield precisely derivative-free REML. This is because the



Laplacian integration is then exact. Although a single variance component was
considered in this paper, the algorithm generalizes in a straightforward manner to
a Poisson model with several variances, and one obtains MML estimates of variance
components. Because of the analogy noted above, we suggest DFMML (derivative-
free marginal maximum likelihood) as a generic term for this algorithm, since the
procedure extends beyond the class of mixed linear models.

The Laplacian technique used for finding the mode of the marginal posterior
distribution of Qu is theoretically, although not numerically, equivalent to the EM-
type algorithm suggested by Foulley et al (1987). In order to obtain the mode of
the marginal distribution of Qu these authors employ the relationship:

Using the approximation [13] in [25], we obtain:



The first term of [26] is obtained by differentiating [6] with respect to <r!, with

At and u replaced by the numerical quantities, Ài and u respectively. Then

where Cuu is the random by random block of the inverse of the conditional negative
Hessian [10]. Finally, setting [27] to zero and solving for Qu gives the iteration.

which is precisely the algorithm of Foulley et al (1987). It is important to note
that the algorithm developed in this paper in connection with [16] is numerically
different from [8], ie, a different sequence of iterates is to be expected. However,
within the limits of numerical precision, as determined by the local curvature of the
marginal log likelihood, convergence to the same maximum should be attained, as
verified in the numerical application discussed previously.

Application of the Laplacian procedure to the threshold model of Gianola and
Foulley (1983) and Harville and Mee (1984) is straightforward. One would simply
replace the log-likelihood and the conditional Hessian given in this paper by the
corresponding terms in,the threshold model. For multidimensional problems, ie,
more than one variance parameter, procedures suggested for DFREML by Meyer
(1989) such as the simplex or quasi-Newton algorithms could be used. Optimization
procedures that incorporate information on the vector of first derivatives and on
the function to be optimized would be expected to be most useful.

Approximate posterior standard errors for the variance components may be
computed using a quadratic fit of the log posterior density near the mode as in
Graser and Smith (1987). The computation of the log-posterior densities allows also
to construct marginal likelihood ratio tests, or posterior odds ratios, for assessing
the importance of different sources of genetic and environmental variation.

Harville (1977) asserted that the posterior mode is an attractive estimator, being
less sensitive than the mean to the tails of the posterior density. However, under
a squared-error loss, the posterior mean is optimum. Unfortunately, the Laplacian
procedure of Tierney and Kadane (1986) for computing the posterior mean would
be expected to fail in many instances. Joint maximization should work well when
there is a large amount of information on each random effect, eg sire models, but
not in animal models. Hence, alternative numerical procedures should be sought
for computing posterior means. Further enhancements to marginal estimation of
parameters involving Laplacian integration are given by Kass and Steffey (1989)
and Leonard et al (1989).
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