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Summary — A reasonable objective for selection programs in small populations is the
maximization of response, with a restriction on the increase of inbreeding. This restriction
will be especially important when information on relatives is used for evaluation of
candidates for selection. To achieve this objective, different strategies have been proposed:
(i) to reduce the intensity of selection; (ii) to lower the weight given to family information
in an index below the optimal value; (iii) to restrict the variation of family size, (iv)
to make matings between the selected animals, so as to minimize the average coancestry
coefficient; and (v) to find a general solution using linear programing. These strategies have
been illustrated by genetic simulation of a simple example. The population consisted of 8
males and 8 females selected from 32 animals evaluated in each sex. The candidates were
evaluated by an index using information on the individual and its 7 sibs. Five generations
of selection were practised. It was concluded that there are several alternative strategies
which ensure that inbreeding is below the fixed level (5% per generation) without a
significant loss of response, in comparison with classical strategies, where inbreeding is
not restricted. A substantial reduction of inbreeding was found with the use of matings
having minimal coancestry. However, this reduction was due principally to a delay of
1 generation in the appearance of inbreeding. Linear programing was also efficient in
achieving these aims. It is, in principle, more flexible than the other strategies, but its
heavy cost of computation is a disadvantage, and, in practice, comparable results can
probably be obtained using much simpler strategies.

effective size / artificial selection / linear programing / computer simulation /
inbreeding

Résumé - Optimisation de la réponse a la sélection avec une restriction sur la
consanguinité — Une proposition raisonnable dans les programmes de sélection en petits
troupeauz est la mazimisation de la réponse avec une restriction sur l’augmentation de
la consanguinité. Cette restriction sera spécialement importante gquand l'information sur
les parents est considérée pour l'évaluation des candidats. Pour arriver & cet objectif,
différentes méthodes ont été proposées: (i) réduire l'intensité de la sélection; (i) ramener
le poids de Uinformation sur les parents en dessous de la valeur optimale dans un
indsce familial; (ii1) restreindre la distribution des tailles de famaille; (iv) réaliser des
accouplements entre les animaux sélectionnés avec un coefficient de parenté minimal; et
(v) appliqguer une solution générale avec l'utilisation de la programmation linéaire. Ces
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méthodes ont été illustrées par des simulations génétiques sur un ezemple. La population
était formée de 8 mdles et 8 femelles sélectionnés parmi 32 animaux évalués dans chaque
seze. Les candidats ont été évalués selon un indice comprenant l'information sur l'individu
et ses 7 fréres. Cing générations de sélection ont été réalisées. On est arrivé  la conclusion
qu’il existe plusieurs méthodes alternatives qui assurent une consanguinité en dessous de la
valeur firée (5% par génération) sans perte significative de la réponse en comparaison avec
les méthodes classiques, ot la consanguinité n’est pas restreinte. On a trouvé une réduction
substantielle de la consanguinité avec des accouplements de parenté minimale. Cependant
cette réduction a été due principalement au retard d’une génération dans 'apparition de
la consanguinité. La programmation linéaire a été efficace également pour arriver a ces
fins. Elle est, en principe, plus flexible que les autres méthodes, mais son cotit important
de calcul est un inconvénient, et, dans la pratique, des résultats similaires peuvent étre
probablement obtenus avec des méthodes beaucoup plus simples.

effectif génétique / réponse i la sélection / programmation linéaire / simulation
aléatoire / consanguinité

INTRODUCTION

The total number of individuals under control in an animal breeding program is
usually constrained by economic factors. The choice of effective population size
depends mainly on fertility and fecundity parameters, as well as on predictions
of response to selection. Of all the variables an animal breeder can manipulate,
population size is the one that has the widest range of consequences. In the short
term, it influences the selection differential, the inbreeding depression and the
reduction of genetic variance due to genetic drift. In the long term, it affects the
selection limit and the utilization of a new variation arising from mutation (see Hill,
1986, for a review).

Furthermore, in a population under artificial selection, the effective population
size will be lower than that expected in a random-mating control population of equal
size because parents do not have an equal chance of contributing offspring to the
next generation, even if all pairs of parents contribute an equal number of progeny
to be measured (Robertson, 1961). Moreover, the efficient use of family information
by selection indices or BLUP methodology will lead to more individuals from the
best families being selected and, therefore, considerable reductions of population
size will follow.

Some problems related to the optimization of response in selection programs in
populations of finite size have been explored by Robertson (1960; 1970). Using the
infinitesimal model for the decay of genetic variability, he showed that if individual
selection is carried out from a constant number 2M of individuals scored per
generation, the maximum advance at the limit is achieved when the best half
is selected. He also showed that the proportion selected to give the maximum
cumulated gain after ¢ generations is a function of t/2M. Experimental checks
on the theory have been reported by Ruano et al (1975) and Frankham (1977).

Dempfle (1975) investigated the effect of within-family selection on selection
limits, showing that this method is more efficient than individual selection when
the heritability is very high, because of a relatively lower decay of the additive
variance during selection. This prediction was experimentally checked by Gallego
and Lopez-Fanjul (1983) and Butler et al (1984). In parallel, Toro and Nieto (1984)
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have proposed a simple method, called weighted selection, that also leads to higher
selection limits.

A different approach focuses attention on inbreeding depression, and several
methods have been proposed to minimize the rate of inbreeding in selection
programs; ie, by reducing selection intensity, by ignoring some family information,
or by imposing restrictions on family size, such as practising within-sire selection.
Other methods, such as minimum coancestry mating, may also be advisable (Toro
et al, 1988a).

The purpose of this work is to analyse the above methodologies and to discuss
some aspects of optimization of genetic progress when the acceptable level of
inbreeding is fixed e priori. Although there are other possible approaches, such as
maximizing cumulated selection gain in a given period of time, the approach taken
here is perhaps a more realistic one as, in practice, breeders choose an empirical
level of inbreeding such that the selected or reproductive traits will not be impaired
by an excess of consanguinity (Smith, 1969; Land, 1985).

These methodologies will be illustrated with a simple computer simulation
example.

Strategies of optimization in selection with restricted inbreeding

A selection program consists of 2 main steps: (1) ranking and choice of candidates;
(2) mating of selected animals. To attain the objective outlined above, these 2
aspects can either be considered separately or jointly. The first 3 strategies analysed
in this paper refer to step 1, the 4th to step 2 exclusively, while in the 5th strategy,
a general solution combining both steps is sought.

The breeding structure considered here is a closed population with k families,
each family contributing » males and n females as candidates for selection, and &
individuals are selected out of the M = kn eligible from each sex. In all strategies,
selection is based on a family linear index of the form:

I=(P-F)+\F-P)

where P, F' and P are the individual’s own performance, its family mean and the
population mean, respectively, and A is the weight given to family information.

Optimal selected proportion

The choice of an adequate proportion of selected individuals is the simplest way of
diminishing the level of inbreeding and it will not be discussed further. However,
it should be pointed out that the range of choice is limited if a balanced family
structure is to be maintained.

Optimal weight given to family information

The second alternative that can be considered is to ignore some family information
or, more strictly, to reduce the relative importance given to the family mean below
the value that maximizes the correlation between the index and breeding value. As
A decreases, the intrafamily (intraclass) correlation of index decreases (see eqn(2)
below) and, consequently, the effective population size will increase.
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Restriction on the distribution of family size

The third strategy that can be utilized to maintain a desired rate of inbreeding
is to impose some constraints on the number of selected individuals contributed
by different families, such as practising some kind of within-family selection with
respect to the index. Given a fixed number of families, with within-family selection,
the variance of family size is zero and the effective population size is maximum,
while with family selection, the rate of inbreeding and the variance of family size will
be maximum. Nevertheless, there is a wide range of intermediate selection methods
which differ in the magnitude of the variance of family size that can be imposed and,
apparently, this possibility has commonly been overlooked. All possible distributions
of family size are equivalent to all the possible forms of arranging k marbles (the
selected individuals) among k boxes (families), each of capacity n (maximum family
size). These arrangements will follow a multi-hypergeometric distribution.

Minimum coancestry matings

Following a different approach, Toro et al (1988a) have emphasized the utility of
2 methods to minimize inbreeding in selection programs. The first is minimum
coancestry mating (MC), where matings are chosen to minimize average pairwise
coancestry coefficients between males and females in the selected group. The second
is a method proposed by Toro and Nieto (1984), which is called “weighted selection”
and is fully explained in the article. Both methods were evaluated (Toro et al,
(1988a) by computer simulation and it was concluded that the first is the most
promising in the short term and, therefore, it will be the only one considered here.

Mate selection; a general solution for the maximization
of genetic progress under restricted inbreeding

It is desirable to have a general solution that could incorporate the main features
of the methods previously described. Such a solution can be obtained by means of
linear programing techniques. If ¥ males and k females are to be selected out of M

available from each sex, we must choose the best k pairs among the k! []\Z] [ Akl]

possible mating combinations; “best” meaning that we seek to maximize genetic
progress while maintaining the rate of inbreeding below a certain value.

The problem can be solved using integer linear programing algorithms which is
reduced to find a X = [z5](¢,7 = 1, M) matrix, where z;; represents a decision
variable indicating whether the ¢*" male and the j* female are (z;; = 1) or are
not (z;; = 0) to be selected and mated. Such a matrix is chosen to maximize the
expected genetic progress:

1 1 &
z= —-Z:L‘ij(ai +6,-) - — Z(&i +6j)
2k ij 2M ij

where @; and @; are the best available estimates of the breeding values of the 5*!
sire and the j*® dam, respectively, subject to the following restrictions:
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(i) z:; = 0 or 1 (for all values of 4, 7)
M
(ii) Z Ti; = k
ij

M
(iit) Ewij < 1 (for all values of j)

i
M

(iv) Z z;; < 1 (for all values of )
J

M
(V) Zzijfij/k S F+ AF

ij
where F', AF and f;; are, respectively, the population mean inbreeding coefficient in
generation ¢, the maximum rate of increase permitted, and the coancestry coefficient
between the i*" male and the j*" female. Restrictions (iii) and (iv) simply indicate
that a male or a female will be mated only once at maximum, ie, there are no
half-sibs.

METHODS
Prediction of selection response and inbreeding

The value of A that maximizes correlation between value and index score, assuming
an infinite population, is:
_ (1-=p)A—7+2rn)
(1-7)1-p+2pn)
where r = 0.50 for full-sib families, and p is the intraclass phenotypic correlation.
The selection intensity for finite populations under selection was obtained from
the tables in Hill (1976), using the appropriate intrafamily (intraclass) correlation
of the index, p;, given by
pr = (’\2+1)(P+(1—p)/2n+p) 2
(AN +1)(p+(1-p)/2n+1)

Expected responses were obtained from standard methods (Falconer, 1981), and
N, from Burrow’s (1984) formula, that is strictly valid only for 1 generation,

2(2M - 1)
2n -1

op

Ne = R(aa PI) (3)

and
R(e, pr) = [1+ (Fa(za, p1) — (1 — 0?))(k — 1) /ka?] !

where « is the proportion selected, and Fa(z4, pr) is the conditional probability that
2 standardized normal variables with correlation p; do not exceed the truncation
point, . The probabilities were obtained from the tables in Gupta (1963), but
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can also be computed by the numerical integration methods described in Ducrocq
and Colleau (1986).

Expected F' values for generation ¢ were obtained using Crow and Kimura's
(1970) formula

1
Ft = Ft—l (4)

e

In the case of fixed family size (3" strategy), selection response can be approxi-
mately predicted by assuming that selection has occurred in 2 distinct steps. First,
families are ranked according to their mean index values, the best family(ies) are se-
lected and, in a second step, the best individual(s) from each family is(are) selected
according to their previously fixed contribution. Since the between- and within-
family components are uncorrelated, the total response (R) can be split up into
2 parts, those due to family (Ry) and within-family (R,,) selection, respectively.
Thus, if we denote by c;, the number of selected individuals of each sex contributed
by the *! family (0 < ¢; < n)

R =R+ R, =ighlos +i,ho,

where o is the standard deviation, as defined in Falconer (1981), and subscripts f
and w refer to family and within family, respectively. The intensities of selection,
iy and i, are

k 1 k

’if = ZS,-ci/k = E ZSic,-
i=1 i=1

T 55 SLTES 3 3
i=1 J=1 i=1 j=1

where S; is the it order statistic from k independent normal variables and S} is

the 5*P order statistic from an n-dimensional normal distribution with correlation
equal to —1/(n — 1), obtained from Owen (1962) and Owen and Steck (1962).

The effective population size for a constant distribution of family size was
obtained from Crow and Denniston’s (1988) formula,

8k —4
2+ o}
where of is the variance of family size.

N, =

Simulation methods

In the genetic simulations, the trait was assumed to be controlled by 100 biallelic
additive loci, with equal effects and initial frequencies, spaced with recombination
rates of 0.50. The genotypic (additive) values per locus were 4, 3 and 2 for the AA,
Aa and aa allelic combinations, respectlvely The mmal frequency of the A allele
was 0.50, implying an additive genetic variance 0% = 50. Phenotyplc values were
obtamed simply by adding a random normal deviate of variance o2 to the genotypic
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values, corresponding to heritabilities of 0.10 (0% = 450) and 0.30 (¢% = 116.66),
respectively. Genetic values were independent of environmental effects.

In the example considered, the number of families, k, was 8, with n = 4
individuals of each sex per family. Five generations of selection were performed
and the desirable maximum rate of inbreeding imposed was 5% per generation.

The performance of the linear programing strategy was carried out introducing
the MIF integer programing subroutines (Land and Powell, 1973) in the genetic
simulation program. In order to simplify the problem, the best 16 males and the
16 best females (out of the 32 eligible) were considered. This was done to facilitate
computing, but it is intuitively appealing since, in practice, as suggested by Smith
(1969), it would be better to use unscored individuals, than individuals which are
below average. The number of runs was 400, except in the integer programing
method in which, in order to save computing time, 50 replicates were run.

RESULTS
Optimal weight given to family information

Table I presents the theoretically predicted genetic progress (Rg) and the inbreed-
ing coefficient (Fg) attained after 5 generations of selection, for different values
of A and the 2 values of heritability considered (A* = 0.10 and 0.30). Notice that
A = 0 means unrestricted within family selection; ie, that an individual is selected
solely according to its deviation from family mean, and thus, each family can con-
tribute between 0 and min(n, k) individuals (Dempfle, 1988), and A = 1 phenotypic
individual selection. Optimum A values obtained from eqn(1) are also included in
the lower row of the Table. It is interesting to notice that the relationship between
Rg and A follows a law of diminishing returns; ie, a change in A from 0 to 1, or
from 1 to 2, results in an important increase in response, whereas, a change from
3 to 4 results in practically no progress, and, more importantly, further increments
in X are even expected to reduce response. This is because, as A gets larger, the
increasing correlation between the index and breeding value is overcompensated by
the reduction in the intensity of selection and, consequently, A,, does not give the
maximum response. In parallel, expected inbreeding coefficients (Fg), computed
from eqn(4), steadily increase with A. Considering jointly Rg and Fg values, it can
be seen that values of A = 3 (h? = 0.10) and A = 2.5 (h% = 0.30) should be chosen
in order to restrict the increment in inbreeding below 5% per generation.

The above prediction for Fg is strictly valid for only 1 generation and applies
solely to neutral genes which affect neither fitness nor the trait under selection, and
which are not linked to genes affected by selection. In successive generations, there
will be a cumulative effect on the variance of family sizes up to a limiting factor of
4 (Robertson, 1961) but, at the same time, there will be a reduction in the genetic
variance and changes in other parameters such as py acting in the opposite direction.
In order to check the adjustement of the predictions, genetic simulations were
performed. The results, R, and F,, also appear in Table 1. In general, disagreement
between observed and expected values for both response and inbreeding becomes
larger as A increases. This should be taken into account when predictions on possible
advantages of using family information are made (Toro et al, 1988b). However, they
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Table I. Expected and observed cumulative selection response, Rg and R, and inbreeding
coefficient (%), Fg and F,, after 5 generations of selection, as a function of the weight
given to family information, A. The initial additive variance was 50.

A RE Ro FE Fo
R? =0.10 0 6.64 6.26 12.86 10.65
1 13.80 11.74 13.63 14.65
2 17.22 13.79 19.32 21.45
3 18.45 15.27 23.81 26.28
4 18.80 . 14.97 26.87 30.03
5 18.88 14.89 28.98 32.39
6 18.85 " 14.88 30.48 34.37
7 18.77 14.46 31.55 35.06
6.33 18.83 15.00 30.85 34.52
h? =0.30 0.0 12.16 11.81 12.86 10.06
1.0 23.72 16.87 15.38 12.97
1.5 26.14 19.62 19.08 17.22
2.0 27.27 21.62 22.24 25.06
2.5 27.65 21.50 24.71 26.90
3.0 27.73 . 21.73 26.64 29.06
3.5 27.68 21.70 28.14 30.08
4.0 27.57 21.36 29.36 31.94
3.73 27.64 21.09 28.71 31.92

Standard errors ranged from 0.24 to 0.28 (R,), and from 0.16 to 0.43 (Fo).

confirm expectations in the sense that the largest response was obtained with a A
value below the optimum in infinite populations (eqn(1)). Since inbreeding was
larger than expected, and differences between observed responses for A > 1 were
small, perhaps in practice, a value of A = 2 should be chosen for both heritabilities.

Restriction on the distribution of family size

In the example, there are as many as 15 different distributions of family size, and
they are shown in Table II. Case 1 corresponds to family selection (with respect to
the index), in which the best families for each sex were selected, each contributing 4
individuals. In case 2, families were ranked according to their 4 individual means for
each sex, and the 4 full-sibs belonging to the best family were selected. Then, the
remaining families were ranked again by the means of their best 3 individuals and
the 3 individuals from the best family were selected. Finally, the best individual from
a remaining family was chosen. The same logic applies to the following cases. Case
15 is obviously the well-known within-family selection, with respect to the index.
For the sake of comparison, the optimum combined selection method is included in
the last row of the Tables.
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Table II. Expected and observed cumulative selection response, Rgp and R,, and
inbreeding coefficient (%), Fg and Fy, after 5 generations of selection, as a function of
family size. The initial additive variance was 50, h% = 0.10.

Case Distribution of Rg R, Fg F
family size
1 44000000 17.42 12.77 42.76 41.40
2 43100000 18.17 13.94 35.81 35.88
3 42200000 17.87 13.85 33.26 33.88
4 42110000 17.78 14.85 30.59 31.94
5 33200000 17.30 13.72 30.59 31.17
6 33110000 17.21 14.34 27.80 28.60
7 41111000 16.38 13.48 27.80 28.62
8 32210000 16.91 14.99 24.87 26.56
9 32111000 16.24 14.32 21.79 24.06
10 22220000 14.91 12.66 21.79 22.89
11 22211000 14.85 13.18 18.57 20.24
12 311111060 14.23 12.78 18.57 20.17
13 22111100 13.56 12.22 15.20 16.81
14 21111110 10.83 9.65 11.66 13.27
15 11111111 5.90 5.54 7.96 9.18
Opt. 18.83 15.00 30.85 34.52

Standard errors ranged from 0.21 to 0.32 (Ro), and from 0.16 to 0.43 (F,).

Table III. Expected and observed cumulative selection response, Rg and R,, and
inbreeding coefficient (%), Fg and F,, after 5 generations of selection, as a function of
family size. The initial additive variance was 50, h? = 0.30.

Case Rg R, Fg Fo
1 24.48 18.85 42.76 40.61
2 26.17 20.17 35.81 35.06
3 25.93 20.77 33.26 32.75
4 26.03 20.38 30.59 31.77
5 25.35 20.53 30.59 30.79
6 25.45 20.84 27.80 28.48
7 24.29 19.95 27.80 29.31
8 25.21 20.42 24.87 26.26
9 24.49 20.66 21.79 24.19

10 22.27 18.86 21.79 21.74

11 22.71 19.21 18.57 20.15

12 21.89 18.86 18.57 20.47

13 21.13 19.08 15.20 17.89

14 17.51 16.28 11.66 13.44

15 10.81 10.56 7.96 9.23

Opt. 27.64 21.09 28.71 31.92

Standard errors ranged from 0.17 to 0.27 (R,), and from 0.16 to 0.43 (Fy).
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The expected genetic progress, Rg, and inbreeding coeflicient, Fg are shown in
Tables II and III. As is well known, within-family selection leads to a poor genetic
progress but, as soon as the worst families are not allowed to reproduce, response
quickly increases (cases 13 and 14), although none of the fifteen cases gives Rg,
as large as that for A > 3 in Table I. This is because selection acts independently
on within- and between-family genetic variation in this strategy, and therefore,
selection will be less efficient than with unrestricted family size.

As expected, Fg decreased as the distribution of family size became more
uniform. In case 8, inbreeding was maintained below the maximum desired level,
with a reduction in response of less than 10%, with respect to the optimum.

The agreement between observed response (R, ), obtained by genetic simulation,
and expected results (Rg) was better in those cases in which the variance of family
size was small. In case 9, the desired inbreeding is maintained, with a reduction in
response of about 5%, with respect to the optimum combined selection (lower row).

Minimum coancestry matings

The observed genetic progress attained during the first 5 generations of selection,
both with random, Rg, and minimum coancestry matings, Ryc, together with
the corresponding inbreeding coefficients, Fr and Fjps¢, are shown in Table IV
(Aop was used). The selection response obtained was similar in both cases, as
expected in a strictly additive model. However, minimum coancestry matings
dramatically reduced inbreeding, compared with random mating. Nevertheless, it
should be noted that this reduction was mainly due the one generation delay in the
initial appearance of consanguinity.

Table IV. Observed cumulative selection response after 5 generations of selection with
random mating, Rg, minimum coancestry mating, Rarc, and mate selection, Rys,
together with t reir respective inbreeding coefficient (%) Fr, Farc and Fusg. The initial
additive variance was 50. :

Generation Rp Ryo Rys Fp Fuyeo Fys
h? =0.10

1 3.71 3.86 2.76 8.49 0.00 3.01
2 6.58 6.53 5.74 15.89 8.54 7.87
3 9.48 9.08 8.53 22.54 14.10 13.56
4 12.27 11.98 11.64 28.88 19.08 18. 73\
5 15.00 14.10 14.45 34.52 24.08° 5 23.77""
h? =0.30

1 5.26 5.65 4.96 7.87 0.00 3.03
2 9.54 9.64 9.90 14.44 7.21 8.00
3 14.51 16.68 14.38 21.01 12.48 13.19
4 17.43 17.79 18.49 26.43 17.03 17.81
5 21.09 21.34 22.31 31.92 21.78 22.92

Standard errors in the fifth generation ranged from 0.23 to 0.28 (Rg and R MC)» 0.80
(Rps) and 0.40 (Fg, Fye and Fiuys).
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Mates selection

Table IV shows the observed response, Ry s, and the inbreeding coefficient, Fis.
It can be seen that, while conforming with inbreeding restrictions, response was not
smaller than that attained under the optimum unrestricted scheme, Rg.

DISCUSSION

It is generally accepted (Hill, 1985; 1986) that the importance of population size
in a selection program depends on the time horizon in which the breeder operates.
If we are only interested in the first few generations, it matters little and selection
should be as intense as possible. As the time horizon increases, larger population
sizes will be needed in order to compensate for inbreeding depression and the loss of
useful genes initially present in the population. Although the influence of a limited
population size on selection response has been extensively studied (Hill, 1985; 1986),
there are no general equations that can be used to predict either the inbreeding
coefficient or cumulative response to selection in intermediate generations, and
they would probably require information on the distribution of gene effects and
frequencies that is not likely to be available. Recent results derived by Keightley
and Hill (1987), Chevalet (1988) and Verrier et al (1988) could be of importance in
this context.

Small herds are found in many situations and in some cases it has been
increasingly popular to advocate the use of family information in their genetic
evaluation; eg, in selection for prolificacy in pigs (Avalos and Smith, 1987), or
MOET schemes in cattle and sheep (Smith, 1988a). Nevertheless, the inclusion
of information from relatives has some undesirable consequences, as previously
emphasized by Toro et al (1988b) and Dempfle (1988). First, discrepancies between
theoretical and actual rates of responses steadily grow with the complexity of the
family index utilized because of the increasingly correlated structure of the index
values causing a lower than expected response. Second, the rate of inbreeding will be
higher than that obtained with simpler methods, because the probability of selecting
related individuals is higher. Additionally, the reduction of genetic variance due to
generation of linkage disequilibrium, the so-called “Bulmer effect” (Bulmer, 1971),
is greater when the accuracy of selection increases.

A reasonable proposal for these small herds is to maximize genetic progress,
-while imposing at the same time a restriction on the rate of inbreeding. Here,
we have explored several possibilities of attaining this goal and have illustrated
them with a simple example. The most obvious one (ie, to increase the proportion
selected) is not an easy task if a balanced population structure is to maintained.
A more flexible strategy is to reduce the weight given the family information and,
as has been shown, a considerable reduction in inbreeding can be attained with
little loss in response. In more complex situations, such as with BLUP evaluation,
a deliberately overestimed heritability could be used in evaluating the animals,
since the higher the heritability, the smaller the weight given to information from
relatives. In this case, records should be first corrected for fixed effects using the
appropriate parameters. The third strategy considered, imposes a restriction on the
distribution of family size by fixing its variance. In the example, a distribution of
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family size (case 9) has been found that meets our objective, while maintaining the
desired level of inbreeding and attaining an observed response of 95%, with respect
to the optimum. A drawback of this method is that, if the number of families is large
and the number of selected males and females differ, it can become an extremely
tedious task to find the optimum situation. In practice, another shortcoming could
arise since the number of selected offspring left by each family cannot always be
completely controlled. An additional advantage of these “within-family” selection
methods is the slower decrease of the genetic variance, as shown by Dempfle (1975)
for classical within-family selection and, therefore, the long-term response will be
expected to increase.

Another course of action that can be taken, is to practice minimum coancestry
matings. This is especially valuable when family index selection is used. Since
an important fraction of the inbreeding reduction arises from the delay in the
appearance of consanguineous matings, its usefulness will be greater in the short
term, whereas, in the long term, its effectiveness may well be reduced. Anyway,
a substantial reduction in the final inbreeding was attained in our 5 generation
example.

Finally, the use of integer linear programing can provide a general solution
for the selection and mating policy, regardless of population structure, evaluation
method, or selection intensity, as previously suggested by Jansen and Wilton (1984),
Smith and Allaire (1985) and Kinghorn (1987). In this context, genetic evaluation
should be made using the best available technique, namely, the animal model, and
individuals and matings should be chosen to conform to the inbreeding restriction.
Unfortunately, both processes are very demanding from the computation point
of view and, in pratice, similar results can probably be obtained using some
of the simpler methods outlined. The results that can be obtained with integer
programing depend critically on AF, the restriction on inbreeding imposed in a
specific program. Thus, if AF is large, only the best animals (regardless of their
genetic relationship) will be chosen, and the results will not differ from those
obtained with conventional, random-mating systems. On the contrary, if AF is kept
at a very low value, the less related animals (which are not necessarily the best)
would to be selected. This case would be similar to that of minimum coancestry
mating (among the preselected best-half animals). The advantage of the general
strategy, therefore, is expected to be greater at intermediate values of AF. In
practice, breeders design the structure of the population in order to maintain the
rate of inbreeding below the desired level. For example, Smith (1988b) has suggested
that the size of a MOET nucleus unit should be such that the level of inbreeding
is similar to that attained in a national program (0.005 per year).

In some situations, it can be argued that the aim of a selection program should be
to increase the accumulated selection response up to a fixed time, regardless of the
inbreeding coefficient, because those lines will eventually enter a program of regular
crossing. The most appropriate course of action in such cases would be to estimate
a value of N, giving the maximum response in a fixed number of generations, and
subsequently to apply some of the outlined strategies.
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