
Original article

Estimation of covariance components between
one continuous and one binary trait

H. Simianer L.R. Schaeffer2

Justus Liebig University, Department of Animal Breeding and Genetics, Bismarckstr.
16 D-6300 Giessen, FRG
2 University of Guelph, Department of Animal and Poultry Science, Guelph, Ontario N1G
2W1 Canada

(received 17 December 1987, accepted 14 October 1988)

Summary - A method is described to estimate variance and covariance components in a
multiple trait situation with one continuous and one binary trait. An underlying bivariate
normal distribution is assumed with one variable dichotomized on the observable scale
through a fixed threshold. A mixed linear model is applied to the underlying scale, and
Bayesian arguments are employed to derive estimation procedures for both location and
dispersion parameters. This leads to a nonlinear system of equations similar to the mixed
model equations for observations that have been transformed by a Cholesky decomposition
of the residual variance-covariance matrix so that the residual covariance between the two
transformed traits is zero, thereby simplifying construction of the multiple trait mixed
model equations. The procedures for estimating genetic variances and covariances and the
residual variance for the continuous trait are equivalent to restricted maximum likelihood
in the multivariate normal case. The residual correlation is estimated using a maximum
likelihood approach. Suitable computing strategies are indicated and a simulation study is
given to illustrate the use of the method. The impact of small subclass size on the estimates
is seen to be a serious drawback to the proposed method. Possible generalizations of the
method and potential problems in its practical application are discussed.
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Résumé - Estimation des composantes de la covariance entre un caractère continu et
un caractère binaire. On décrit une méthode pour estimer les composantes de variance et
de covariance, dans le cas de deu! caractères, l’un continu et l’autre binaire. On suppose
l’existence d’une distribution sous-jacente binormale, où l’une des variables ne présente
que deux états observables en fonction de sa valeur par rapport à un seuil fixe. On écrit
un modèle linéaire mixte pour les variables continues sous-jacentes, et l’on s’appuie sur
une approche bayésienne pour construire des estimateurs des paramètres de position et de
dispersion. On obtient un système d’équations non linéaires semblable aux équations d’un
modèle mixte; une simplification des équations est obtenue si la covariance résiduelle entre
les deux caractères est nulle, ce qui s’obtient en réalisant au préalable une décomposition de
Cholesky de la matrice des variances et covariances résiduelles. La procédure d’estimation
des variances et covariances génétiques, et de la variance résiduelle du caractère continu
est équivalente à celle d’un maximum de vraisemblance restreint dans le cas normal; la



corrélation résiduelle est estimée selon le principe du maximum de vraisemblance. On
indique des stratégies adaptées au calcul, et une simulation illustre l’utilisation de la
méthode. Cette méthode s’avère sensible à l’existence de petits nombres d’observations
dans certaines cellules. On discute les généralisations possibles de la méthode, ainsi que
les problèmes potentiels de son application pratique.
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INTRODUCTION

Discrete traits are predominant in certain areas of animal production, e.g., fertility,
prolificacy, viability and animal health. These traits are of increasing importance
since many producers are under quota systems and a means of increasing income
is to improve efficiency through these non-production traits. However, traditional
traits like milk yield, milk composition, growth and feed efficiency are still impor-
tant, and so are the relationships between the discrete and the traditional traits,
most of which are continuous. Non-linear procedures based on the threshold con-
cept (Dempster & Lerner, 1950) and Bayesian arguments have become available to
analyze categorical observations (Gianola & Foulley, 1983; Harville & Mee, 1984).
Bayesian methodology has been established as a general framework for the analysis
of any type of observation arising in animal production (Foulley & Gianola, 1984;
Gianola et al., 1986; H6schele et al., 1986, 1987; Foulley et al., 1987a, 1987b).

Observation structures that include both continuous and binary traits have
been discussed as far as the estimation of genetic and environmental effects is
concerned (Foulley et ad., 1983). The objective of this paper is to present a method
for the estimation of dispersion parameters of the joint distribution of continuous
and binary traits. A simulation study was conducted to study the effects of small
subclass size on parameter estimates.

MODEL AND DATA STRUCTURE

Each animal is recorded for two different traits. Let y.il be the continuous trait 1

(e.g., milk yield) for the i-th animal, and let ci be the response for binary trait 2
(e.g., mastitis), which is either 1 or 0. Categories of response for the binary trait
are assumed to be mutually exclusive and exhaustive. Observations for trait 1 form
the s x 1 vector yi, and the observations for the binary trait can be represented
as an s x 1 vector, c’= (cl, c2, ..., c,)’, where ci = 0 if no disease is observed,
otherwise ci = 1.

A non-observable underlying continuous variate, Yi2, is assumed, and Yil and

y22 follow a multivariate normal distribution. According to the threshold concept
(Dempster & Lerner, 1950), y22 can be thought of as liability to contract the disease.
Only if the value of y22 exceeds a fixed threshold on the underlying scale, does animal
i show the disease.

Let y2 be an s x 1 vector containing Yi2 for animals 1 to s, then the linear
bivariate model in matrix notation is



where :

pj = p x 1 vector of fixed effects for trait j,
uj= q x 1 vector of additive genetic effects for trait j,
ej= s x 1 vector of residuals for trait j,
X = s x p incidence matrix corresponding to Pj,
Z = s x q incidence matrix corresponding to uj,
p = the number of levels of all fixed effects, and
q = the number of additive genetic effects, which could be greater than or equal

to s.

The expectations and variance-covariance matrices of the random variables are:

where:
G = 2 x 2 additive genetic variance-covariance matrix,
A = q x q additive genetic relationship matrix,
R = 2 x 2 residual variance-covariance matrix,
I = s x s identity matrix,
* = direct (Kronecker-) product,

gjj= additive genetic variance of trait j,
r!! = residual variance of trait j,
912 = additive genetic covariance between traits 1 and 2, and
pe = residual correlation between traits 1 and 2.

The unknown parameters are the location parameters,

and the dispersion parameters

The residual variance structure is a function of only two parameters, because Yi2 is
a conceptual variable and, therefore, an arbitrary value for r22 can be chosen.

Note that this model assumes that every animal is observed for both traits and
that the same model applies to each trait.

METHODS OF INFERENCE

Assume that P has a flat prior distribution (i.e., nothing is known a priori about the
elements of !), and that u has a multivariate normal distribution with expectation
null and variance-covariance matrix equal to G * A. The vectors P and u are a



priori assumed to be independent. The joint posterior distribution of all unknowns
can be written as:

where f (Y) is the joint prior density of the dispersion parameters (Foulley et al.,
1987a).

Estimation of location parameters

Integrating T out of (2) would hardly be possible, as was pointed out by Gianola
et al. (1986). An alternative is to replace !y by some value, -y!t!, so that

as elaborated by Foulley et al. (1983). Ignoring the superscript [t] and assuming
that there is only one continuous and one binary trait and that both traits are
described by the same model, then following the arguments of Foulley et al. (1983),
the residual variance of the conceptual variable is chosen to be:

and therefore:

For lp, < 1. R is positive definite and a lower triangular matrix T exists, so that
TT’ = R. T-1 is used to perform a Cholesky transformation to remove the residual
covariance between transformed variables where

Let the tilde symbol, -, above a variable indicate that same variable on the
transformed scale, then

for i = 1 to s, and similarly for elements ofp, u, and e. On the transformed scale,
variances and covariances are

Foulley et al. (1983) show that under multivariate normality

where x’t and z’ are rows of X and Z pertaining to animal i,



and the residuals on the transformed scale are uncorrelated, one can proceed as
in a single binary trait analysis, a simplication of (Gianola & Foulley, 1983) from
several categories to two, computing

where 0(.) and 4)(.) are the density and distribution function of a standard normal
variate, respectively.

Let:

then from (4),

The mode of the posterior density (3) can be calculated by applying the Newton-
Raphson algorithm to the log of (3), which leads to the nonlinear system of
equations for the [k + l]th round of iteration (Foulley et al., 1983)

where
an s x s diagonal matrix with wi in the diagonal and

Note, that W and Y2 in round [k + 1] are computed based on the solutions from
the preceding round !k!.

Let

and :

Iteration on (6) is continued until d’ d < e, where e is an arbitrarily small number.
Suppose this criterion is met in round !k’!, then the converged solutions have to



be transformed back to the original scale (the superscript [t] indicating the set of
dispersion parameters used):

Estimation of genetic variances and covariances

Foulley et al. (1983) discuss briefly the case of the variance-covariance structure
being unknown and suggest the application of the restricted maximum likelihood
(RE1VIL) algorithm described by Schaeffer et al. (1978) to estimate the entire genetic
variance-covariance structure as well as the residual variance of the continuous trait

only, and the residual covariance between continuous and binary traits.
Methods to estimate dispersion parameters have been developed from a Bayesian

background for different data structures. Procedures for single polychotomous traits
have been described by Harville & Mee (1984) and by H6schele et al. (1987).
Methods for multivariate binary traits have been suggested by Foulley et al.

(1987a), and for multivariate continuous traits by Gianola et al. (1986). Essentially,
all authors recommend an algorithm analogous to the expectation-maximization
(EM) algorithm (Dempster et al., 1977) for REML and its multitrait extension,
respectively.
Let

which requires integration of (2) with respect to 0. Foulley et al. (1987a) show that
(7) can be written as

where Ee is the expectation taken with respect to f (u ! Y, yl, T). Furthermore,
Foulley et al. (1987a) show that whenever a flat prior for g is used, the joint posterior
distribution of T can be maximized with respect to g by maximizing E!{ln f( u I g) I
at each iterate. The resulting iterative scheme for the [t + 1]th round is

where tr (.) is the trace operator and

These terms cannot be derived explicitly, but approximations have been suggested
(Harville & Mee, 1984; Stiratelli et al., 1984). Making use of these approximations
and performing one estimation step on the transformed scale, we replace in (9)



and Cii, by the Ut x ui, part of the inverted left hand side of (6). The new estimates
are on the transformed scale and need to be transformed back:

Foulley et al. (1987a) have shown that if the initial G is positive definite, then the
subsequent estimates of G are also positive definite, which holds in combination
with the applied Cholesky transformation.

Estimation of the residual variance of the continuous trait

Maximum a posteriori predictors tend to converge to trivial results when flat priors
for the dispersion parameters are used (Lindley & Smith, 1972). As an alternative
Gianola et al. (1986) suggest estimators arising from an approximate integration
of the variances. For g these are equivalent to the algorithms described in section
B as long as flat priors for the variances are used. For the residual variance of the
continuous trait estimator is

which can be shown to lead to the same results as iterating on

assuming full column rank of X. Estimators on the original scale are obtained by:

which yields

Estimation of the residual correlation between traits

Foulley et al. (1983) suggest the use of restricted maximum likelihood estimation
as described by Schaeffer et al. (1978) for multivariate normal data. However, this
requires that the residual correlations between continuous and binary traits be
known. Foulley et al. (1983) show that proportionately except for a constant.

The problem is to find y[t] and 8 (which is a function of T14 ) which maximize this log
posterior density. Estimates for 0, g, and rll can be obtained under the pretense
that pe = pe similar to the one dimensional grid search technique proposed by
Smith & Graser (1986). In this case the strategy would be:
- 1) choose a set of possible values of pe and a set of starting values for g, and rll;



- 2) for ith value of pe in the set, iterate on (6) using the dispersion parameters
(g, rll, Pei) until convergence of 0, then do one step of (9) and (10) and continue
to iterate until convergence of (g and rll) is achieved. Then compute the value of
(11) defined as h (pei). Repeat for all p,i in the set;
- 3) to find the p,i that maximizes the log likelihood, fit a second degree polynomial
through the points (pei, h (pe2)). Add the mode of this curve to the set of possible
values of pe and repeat the second step with this new value. Continue this iterative
process until convergence of pe is achieved.

This strategy is computationally very demanding as convergence is very slow. An
alternative empirical approach using a maximum likelihood procedure to estimate
pe was suggested by equation 4.4 of Tate (1955) for the biserial correlation problem.
The [t + l]th improved estimate of pe is computed as:

where
v = s x 1 vector with elements vi, i = 1, s,
1 = s x 1 vector of I’s,

Yi (yi- 1 * !I) * l/(dtl)l/2,
!I = phenotypic mean of y21 for all animals,

and OW] is the estimated value of the threshold which can be calculated from !lk’]
analogously to a least squares mean. Note that this procedure yields a new estimate
of pe on the original scale, and therefore, no backtransformation is needed.

Computing algorithm

Combining all the different steps described, an obvious computing strategy would
be:
- 1) choose a set of starting values yl’], set (t] = 1;
- 2) iterate on (6) until convergence to get 9 ! Y = T14 ;
- 3) do one step each of (9), (10) and (12) to get a new set of dispersion parameters
Tl’+’], set [t] = [t + 1] and continue with the precedent step.

Iterate on the above scheme until the estimates of y are converged. Empirically,
(10) and (12) were found to converge more quickly than (9), and the estimates
in r seemed to be relatively independent of those in g. This suggests the use of a
different strategy:
- 1) choose a set of starting values gl] and rIl], set [t] = 1 and [s] = 1;
- 2) do one round of (6) to get an improved estimate of 0 g = gIt], r = r14 ;
- 3) do one step each of (10) and (12) to get a new set of parameters rIs+1], set
[s] = [s + 1] and continue with the precedent stage
- 4) if convergence in the second step is reached, do one step of (9) to get a new
estimate of gIt+1], set [t] = [t + 1] and continue with the second step.
Iteration is stopped when the estimates in g are converged. This algorithm was
found to be much faster than the first, which is paralleled by the findings of Foulley



et al. (1987a) for the multiple binary trait case. Iterating on r only for some rounds
with every new value of g improved the procedure even further, as the estimates of
r converge quite rapidly.

SIMULATION STUDY

Model and methods

A simulation study was done to assess the sampling properties of the proposed
estimators. The assumed true model was:

where:
- 

Yijkl = phenotypic record (i = 1) or underlying liability value (i = 2) of animal I
in herd j with sire k,
- pz = mean of trait i,
- hij = effect of herd j on trait i,
- sz! = effect of sire k on trait i, and
- 

e2!! = residual term.
Pairs of herd, sire and residual effects were generated for each animal as random
samples from a bivariate normal distribution. Trait 2 was then dichotomized,
applying a threshold at 1.282 standard deviations, which assigns 90 and 10 per
cent of the observations to the phenotypic classes 0 and 1, respectively. Records
were generated for 10,000 individuals per replicate, which were randomly assigned
to sires (of which there were 50) and to herds (of which there were either 100 or
1000). With only 100 herds there were 13.5% empty sire by herd subclasses, and
with 1 000 herds there were 81% empty sire by herd subclasses. The objective of
having two data sets was to study the effect of small sire by herd subclass size on
the parameter estimates from the above methods.

The true dispersion parameters were:

The model of analysis was equal to (13), except that herd effects were treated as
fixed and the non observable y2 was replaced by the phenotypic observation in the
binary trait. The starting values of iteration were

and the stopping criterion was

considering the relative change to account for the different magnitude of the true
values. Due to computing time restrictions, only twenty-five replications of each
pair of data sets were generated and analyzed.



Results

The mean estimates and 95% confidence intervals are given in Table I. Fisher’s
x-transformation for correlations was applied to hi, h’, r9 and pe, and a t-test was

applied to examine differences between true and estimated parameters. Estimates
from data set I with 100 herds agreed quite closely with the true parameters. The
only significant bias was observed for the residual correlation, which is partly due
to the small confidence interval for this estimate. The genetic correlation had a very
large confidence interval compared with the other estimates.

The results for data set II (1000 herds) were similar with the exception of a 50%
overestimation of the heritability of the binary trait. H6schele et al. (1987) reported
similar results in a simulation study considering estimation of heritability for binary
traits. The bias was observed when the average subclass size was below 2, which
agrees with the present results, as the mean subclass sizes were approximately
2.3 and 1.1 in data set I and II, respectively. H8schele et al. (1987) considered
the approximation of the conditional distribution in the derivation of (9) as the
main cause of the bias, as this approximation is based on a normality assumption
(Stiratelli et al., 1984), which does not hold with small cell size.



DISCUSSION

A method has been presented for the estimation of variances and covariances for the
simplest case of one continuous and one binary trait. Theoretically, generalization to
more complex observation structures is straightforward. For the case of n continuous
and one binary trait, the method to estimate location parameters is as given by
Foulley et al. (1983), and the procedures to estimate dispersion parameters can be
readily extended, using results of Hannan & Tate (1965) for the maximum likelihood
estimation of residual correlations. Further generalizations, including the use of
informative priors, may be derived through Bayesian arguments as employed by
Gianola et al. (1986) and Foulley et al. (1987a).

In practice, however, an analysis of even the simplest case poses a formidable
computational task with a large body of data, in which case the optimization of
computing strategies is of crucial importance. Actually, the methodology presented
was developed for a joint analysis of more than 200,000 records on production and
disease data in dairy cattle.

Observations on both traits for all animals were assumed complete throughout
the data, which seldom is the case in practice, where selection and hence missing
data due to selection play an important role. This has been addressed by Henderson
(1975) for continuous traits and by Foulley & Gianola (1986) for categorical traits.
The multiple trait methodology allows for sequential selection where the decision
whether an animal is given the opportunity to be observed for the discrete trait is
made on the basis of its performance for the continuous trait, but not vice versa,
as was indicated by Foulley et al. (1983). General approaches to the more complex
types of selection are needed, as most of the reasons for inevitable natural selection
(diseases, fertility) are of categorical nature.

The simulation study was an illustration of the methodology for two special cases.
A general assessment of the sampling properties of the estimates would require
a series of simulations over a wide range of parameter combinations and more
realistic population structures as was done by Hbschele et al. (1987), for the single
categorical trait case. Since the general framework of the methods is the same, a
similar behaviour of the estimates can be expected, which was shown for the biased
estimate of heritability for the binary trait when the average size of the smallest
subclass was less than two. This is a serious problem in practical applications, e.g.
when dairy progeny test data are analyzed by a model in which sire and herd x
year x season effects are cross-classified.

The complexity of the Bayesian approach in the context of the given model and
observation structure makes it necessary to use certain assumptions and restrictions
as discussed by Gianola et al. (1986) for the multivariate normal case. Although
the approach of basing the inference about 0 on the conditional distribution
f (9 ! Y, Yl’Y*) where y* is the mode of f (r ! Y, yl) has proven to be very useful
(Gianola et al., 1986; H6schele et al., 1987), alternative approaches are possible
as discussed by Foulley et al. (1987a). Thus, further development of Bayesian
methodology may suggest changes in the proposed algorithm.
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