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Summary

The joint distribution of breeding values and of records usually depends on unknown
parameters such as means, variances and covariances in the case of the multivariate normal
distribution. If the objective of the analysis is to make selection decisions, these parameters should
be considered as « nuisances ». If the values of the parameters are unknown, the state of

uncertainty can be represented by a prior probability distribution. This is then combined with the
information contributed by the data to form a posterior distribution from which the needed

predictors are calculated after integrating out the « nuisances ». Prediction under alternative states
of knowledge is discussed in this paper and the corresponding solutions presented. It is shown that
when the dispersion structure is unknown, modal estimators of variance parameters should be
considered. Because a Bayesian framework is adopted, the estimates so obtained are necessarily
non-negative. If prior knowledge about means and variances is completely vague and the distribu-
tion is multivariate normal, the « optimal predictors in the sense of maximizing the expected
merit of the selected candidates can be approximated by using the « mixed model equations » with
the unknown variances replaced by restricted maximum likelihood estimates. This leads to

empirical Bayes predictors of breeding values.
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Résumé

Prédiction des valeurs génétiques avec variances inconnues

La distribution conjointe des valeurs génétiques et des performances dépend habituellement de
paramètres inconnus tels que les espérances, les variances et covariances dans le cas de la
distribution multinormale. Quand l’analyse statistique vise à des décisions de sélection, ces

paramètres devraient être considérés comme des paramètres « parasites ». L’état d’incertitude sur
les paramètres peut être représenté par une distribution a priori. Celle-ci, combinée à l’information
procurée par les données, permet d’aboutir à une distribution a posteriori des paramètres d’intérêt
après intégration des paramètres « parasites ». Cet article envisage la prédiction des valeurs

génétiques sous différentes hypothèses de connaissance des paramètres et présente les solutions

correspondantes. Lorsque les paramètres de dispersion sont inconnus, des estimateurs de la
variance basés sur le mode a posteriori sont suggérés. Du fait du mode d’inférence, de type
bayésien, ces estimateurs s’avèrent nécessairement non négatifs. Avec une distribution a priori des
moyennes et des variances uniforme et sous l’hypothèse de normalité, les prédicteurs optimum (au



sens de la maximisation du mérite espéré des individus sélectionnés) sont ceux obtenus à partir des
équations du modèle mixte dans lesquelles les variances sont remplacées par leurs estimées du
maximum de vraisemblance restreint. Cela conduit à des prédicteurs des valeurs génétiques de
type bayésien empirique.

Mots clés : Inférence bayésienne, BLUP, prédiction, valeurs génétiques.

I. Introduction

The problem of improvement by selection can be stated as follows : it is wished to
elicit favorable genetic change in a « merit » function presumably related to economic
return by retaining « superior » breeding animals and discarding « inferior » ones.

Merit, e.g., breeding value or a future performance, is usually unobservable so culling
decisions must be based on data available on the candidates themselves or on their
relatives. The joint distribution of merits and of data usually depends on unknown
parameters. In the multivariate normal distribution, these are means, variances and
covariances. These must be estimated from the data at hand or, more generally, from a
combination of data and pertinent prior information. What predictors of merit should
be used when parameters are unknown ? For simplicity and for reasons of space we
restrict attention to the multivariate normal distribution and to simple models. The
general principles used apply to other distributions and models although the technical
details differ. A Bayesian framework is used throughout. ZELLNER (1971) and Box &
TlAO (1973) have reviewed foundations of Bayesian statistics. See GIANOLA & FER-
NANDO (1986) for some applications of Bayesian inference to animal breeding.

II. General framework

A. Model and assumptions

Suppose the data y, an n x 1 vector, are suitably described by the linear model
&dquo; 

y = Xp + Zu + e (1)
where p and u are p x 1 and q x 1 vectors, respectively, X and Z are known matrices
and e is an independent residual. Assume, without loss of generality, that rank

(X) = p. The vector 0 can include elements such as age of dam or herd-year effects
which are regarded as « nuisance » parameters when the main objective is to predict
breeding values. The vector u may consist of producing abilities or breeding values.
Define « merit » as a linear function of u which in some sense depicts economic returns
accruing from breeding. For example, the function Mu, for some matrix M, is the
classical « aggregate genetic value » of selection index theory (SMITH, 1936 ; HAZEL,
1943).

The random process in (1) is a two-stage one. Prior to the realization of y, 13 and
u follow a conceptual (prior) joint distribution. Assume temporarily that



are independent. Above, A is the additive relationship matrix and u[ is proportional to
the additive genetic variance ; observe that the distribution of u depends on this last

parameter. When the variances in (2) are known, the joint density of [3 and u can be
written as

If ! ! 00, the distribution of (3 becomes flat and all such vectors tend to be

equally likely. This implies vague prior knowledge about 0 or, from a classical

viewpoint, that this is a « fixed » vector. Thus, (3) is strictly proportional to the

distribution of u in (2) above when prior knowledge about 0 is diffuse. If the variance
of u is unknown, a prior distribution for this parameter would be needed but we
assume in this paper that this distribution is also « flat », so as to represent complete
ignorance about this variance.

The second stage relates to the realization of y. Given 0, u and Q,!, from the first

stage distribution, Xfl + Zu in (1) is fixed prior to the realization of the data. Thus, e
is a discrepancy due to second stage sampling. The model for this stage, assuming
normality, is

where R is a known matrix and u.’ is the variance of the residuals e. This distribution
or likelihood is

which is independent of the variance of u. If uel is unknown, uncertainty can be
introduced via another prior distribution, and we take here a flat prior to represent
complete ignorance about this parameter.

Remembering that flat prior distributions have been taken for all parameters
except u, the posterior distribution of all unknowns is given by Bayes theorem (Box &

TIAO, 1973)

with-!<(3;<!(i=1,...p),-!<u!«(j=1,...q),ou!0andae>O.This
distribution contains all available information about the unknown parameters and

provides a point of departure for constructing predictors of merit when the variances
are unknown.

B. Choosing the predictor

COCHRAN (1951), BULMER (1980), GOFFINET (1983), GOFFINET & ELSEN (1984) and
FERNANDO & GIANOLA (1986) considered predictors that maximize expected merit in a
selected group of individuals. Suppose there are q candidates for selection and that
k < q are needed for breeding. If u were observable, one would choose its largest k
elements. Because this is not the case, it is intuitively appealing to calculate expecta-
tions conditionally on y, and to retain the k individuals with the largest conditional
means. COCHRAN (1951) showed that selection upon conditional means maximizes

expected merit in a series of trials where a proportion a is selected, on average. For
this to hold, the joint distribution of merit and of records has to be identical and

independent from candidate to candidate. The other authors showed that these restric-
tive assumptions are not needed when selecting a fixed number k out of m available



items. In this case, selection upon conditional means maximizes expected merit in the
selected sample irrespective of the form of the joint distribution. HENDERSON (1973),
SEARLE (1974) and HARVILLE (1985) have shown that over repeated sampling of y, the
conditional mean is an unbiased predictor of merit and that minimizes mean squared
prediction error. Thus, conditional means are appealing in animal breeding applications.
In the next section we consider prediction under several alternative states of know-

ledge.

III. Prediction under alternative states of knownledge

A. Known fixed effects and variances

Suppose one wishes to predict u from y in (1), with (3, u[ and Qe known. The
conditional mean would be calculated from the distribution

to obtain as predictor under multivariate normality

where C’ = Cov (u, y’) and V = Var (y). The posterior distribution (7) is normal with

parameters 
-

Putting in (8) B = V- ’C, it is seen at once that û is a selection index predictor.
Because this predictor is derived from (7), the fact that selection indexes depend on
exact knowledge of means, variances and covariances is highlighted. It is unrealistic to
assume in practice that the values of all these parameters are known. A possibility
would be to replace them by estimates obtained in some manner. Unfortunately,
selection index theory does not guide on how these estimates should be chosen.

Clearly, if the means and the variances are estimated from the same body of data from
which the predictions are made, the distribution is no longer (7). It would be incorrect
to put any [3 = P, Q! _ cr.,<Te2 = fre2, and use (7) under the pretense that these are the
« true » parameters. Any inference based on (7) using estimated parameters would
ignore the « error » of the estimates.

B. Unknown fixed effects and known variances

The posterior distribution is now

f (u, 131 variances, y) « f (yjp, u, (T.1) - f (ulul) - f (p) (10)
remembering that the prior distribution of 13 is flat. Because this vector is a « nui-
sance », we integrate it out of (10). In other words, uncertainty about 13 is taken into
account by marginalizing the above posterior distribution. Thus

f (ul variances, y) oc f (10) dp (11)
where the integration is over the p-space of /3. From (11) and (8) it follows that the

predictor is



where the expectation is taken with respect to f (pj variances, y). The predictor in (12)
is thus a weighted average of selection index predictions using the marginal posterior
distribution of (3 (given the variances) as the weight function. Equivalently, (12) takes
into account the fact that P is not known but estimated from the data, with the

uncertainty taken into account via the marginal posterior distribution of /3. In order to
obtain this posterior distribution, observe in (1) that

with V = ZAZ’U[ + Rae. Hence, and because the prior distribution of P is flat :

Letting p = (X’V- IX)- X’V- ly, one can write

where it should be noted that only the second part of the expression depends on (3.
Using (15) in (14) and remembering that the only variable in this posterior distribution
is (3, one can write :

This is in the form of the multivariate normal distribution

Thus, the posterior distribution of 0 when the variances are known and when prior
knowledge about this vector is vague is centered at the best linear unbiased estimator

of fl (SEARLE, 1971). We can now evaluate (12) to obtain the predictor

which is the best linear unbiased predictor or BLUP of u (HENDERSON, 1973). Without
giving the details, the posterior distribution of u is

where M is the projection matrix R-’ - R-’X (X’R-’X)-’X’R-’, and a is the ratio
between the variance of the residuals and the variance of u. The distribution in (19) is
a function of the unknown variances. Unfortunately, these parameters are not always
known. In practice, one could replace the variances by estimates obtained in some
manner using a combination of data with prior knowledge. However, the theory of best
linear unbiased prediction does not answer how these estimates should be obtained. It
is clear that if (18) above is evaluated at, say, &, a function of the data, then the
predictor is no longer linear nor necessarily best in the sense of HENDERSON (1973).
However, (18) remains unbiased provided that certain conditions are met (KACKAR &

HARVILLE, 1981). While BLUP depends on knowledge of the variances, it is an

improvement over selection indexes, where uncertainty on (3 is ignored.

C. Unknown fixed effects and variances known to proportionality

Suppose now that there is certainty with respect to the value of a, but [3 and the
variance of the residuals are unknown ; this would include the case where heritability is
known. The joint posterior density of the unknowns is

f (u, p, a; 1_, y) (20)
Mathematically, this has the same form of (10) because a flat prior is taken for the
residual variance. Statistically, the residual variance is a random variable in (20) but a
constant in (10). In order to take into account uncertainty about [3 and the residual



variance, these variables are integrated out of (20). The predictor is calculated by
successive integration of nuisance parameters as

The predictor u is a weighted average of BLUP predictions, using the posterior density
f (<1;la, y) as weight function. Equivalently, it is a weighted average of selection index
evaluations using f ((3, residual variance ly) as weighting function. Because the BLUP
predictor depends on a but not on the residual variance (HENDERSON, 1973, 1977 ;
THOMPSON, 1979), it follows that 6 = BLUP (u). Hence, BLUP is the predictor of
choice when the fixed effects and the residual variance are unknown.

While the distributions u)ct, <1;, y in (19) and uja, y have the same mean, they do
not have the same variance. Intuitively, some information should be used to remove
uncertainty about the residual variance so one would expect the predictions stemming
from (19) to me more precise that those based on (20). In fact, it can be shown

(ZELLNER, 1971 ; Box & ’DAO, 1973) that the distribution of u given a and y, i.e., with
the residual variance integrated out, is a multivariate-t distribution with mean equal to
the BLUP predictor, and variance as in (19) with the residual variance evaluated at

where V. = V/residual variance, and [3 is the best linear unbiased estimator of p. The
marginal and conditional distributions of elements of u also follow univariate or

multivariate t distributions. Because in animal breeding applications n - p is large, one
can assume that the distribution is normal as in (19), using (22) or expressions easier to
compute in lieu of the residual variance.

D. Unknown fixed effects and variance components

The joint posterior distribution of all unknowns in (6) is explicitly

I -

with the same restrictions as in (6). The predictor would be

where v denotes the variances. As in (21), the predictor is obtained upon successive

integration of « nuisance » parameters, these being the fixed efects and the variance
components. Equivalently, by interchange of the order of integration, the predictor is a
weighted average of BLUP predictions, and the weighting function is the marginal
density of the variance components. The necessary integrations leading to (24) are

technically complex so we consider several approximations. These involve taking the
mode of different posterior distributions rather than the mean. The approximations
presented below follow an increasing order of desirability related to the extent to which
(23) is marginalized with respect to the nuisance parameters (O’Hncnrt, 1976).



1. Joint maximization with respect to all unknowns

The procedure involves finding the mode of the joint posterior density (23) without
formally integrating out any of the nuisance parameters. The u component of this mode
is then used as an approximation to E (uly) in (24). The values of u, (3 and of the
variances maximizing (23) are the maximum a posteriori (MAP) estimates of the

corresponding unknowns (BECK & ARNOLD, 1977). MAP can be regarded as an

extension of estimation by maximum likelihood as the estimates obtained are the
« most likely » values of the unknowns given data and prior knowledge. Because (23) is
asymptotically normal (ZELLNER, 1971) the u-component of the mode would tend to
E (uly) as the amount of information increases. Under normality, the mode is equal to
the mean and elements of the vector of joint means give directly the marginal means.
In certain applications, the order of u increases with the number of observations.

Asymptotic results in this case are in PORTNOY (1984, 1985).

The first derivatives of (23) with respect to the unknowns are needed to find the
MAP estimates. We have

because the marginal posterior density of the variances does not depend on p.
Likewise,

In order to find the MAP estimates, (25A)-(25D) are equated to 0. Observe that (25A)
and (25B) involve densities corresponding to the state of knowledge where u and 13 are
unknown but the variances are known. From results of HENDERSON et al. (1959),
RONNINGEN (1971) and DEMPFLE (1977), the u and 0 satisfying simultaneously
(25A) = 0 and (25B) = 0 can be found by solving the mixed model equations of

HENDERSON (1973)

with alkl being the ratio of variances evaluated at their « current » value. This is
obtained by maximization of (23) as if u and /3 were known, as equations (25C) and
(25D) indicate. Differentiating (23) with respect to the variances yields



and

where e!&dquo;! is the current value of the residual vector in (1). Equations (26), (27) and
(28) define a double-iterative scheme which can be described as follows :

i) Choose starting values for the variance components and use them to solve (26) ;
ii) using the values of u and (i so obtained, update the variance components using
(27) and (28) ;
iii) return to (26) and repeat as needed until [3 and u stabilize.

If the algorithm converges to a non-trivial solution, the values obtained give the
MAP of the unknowns. Observe that (27) and (28) guarantee non-negativity of the
estimated variance components. The algorithm does not involve elements of the inverse
of the coefficient matrix in (26), which implies that the procedure can be applied to
large problems, as this system of equations can be solved by iteration without great
difficulty. The expressions in (27) and (28) parallel the « estimators » of variance

components derived by LINDLEY & SMITH (1972) for two-way cross-classified random
models ; these authors, however used an informative prior distribution for the variance
components, as opposed to the flat priors employed here. LINDLEY & SMITH (1972)
asserted that if a flat prior is used for the variance of u, then (28) would converge to 0.
It can be verified that this is not always the case albeit in many applications this

variance does go to 0, e.g., if 0 is in fact a mode. This can happen in sire evaluation
models when progeny group sizes are small or more generally, when a is large. T’he
problem seems to be related to the fact that « many » parameters are estimated

simultaneously so there is little information in the data about each of them. THOMPSON
(1980) gave conditions under which the procedure produces non-zero estimates of the
variance of the u’s in one-way models. HARVILLE (1977) conjectured that the problem
may stem from « dependencies ». The procedure needs further study as it is computa-
tionally feasible in very large models. Extensions to the multivariate domain would
make the joint estimation of (co)variance components and breeding values possible in
large data sets.

2. Marginal maximization with respect to u and the variances

We now take into account uncertainty about p by integrating it out of (23). This
involves working with the joint posterior density f’ = f (u, variances ly). Maximization
of f with respect to the unknowns gives the corresponding MAP estimates and the u
component of this joint posterior mode would be a closer approximation to (24) than
the one presented in the preceding section. Putting y’ = [u’, or!, 0’;], we need to satisfy

Write

Putting f (u, 13, variances ly) = f (plu, variances, y) - f’, equation (30) can be expressed
as



where the expectation is taken with respect to

From (23)

c

Taking the expectation of (33A) with respect to the distribution in (32) and setting to 0
gives

These are the mixed model equations of (26) after « absorption » of (3 and evaluated at
the « current » value of the variance ratio. The equation for the variance of the u’s
follows directly from (33B)

The expectation of (33C) with respect to (32) involves

where M’ = RM. Using this result when setting the expectation of (33C) to 0 gives :

It can be shown that the numerator of (34C) can be written as ê/[k] R-’ 1 êlkl.
Iteration as in the previous section but with equations (34A) &mdash; (34C) yields an

algorithm to obtain the MAP estimates of u and of the variances after integration 0 out
of (23). Again, expressions (34B) and (34C) guarantee non-negativity of the estimated
variance components. The algorithm does not involve elements of the inverse of the
coefficient matrix in (34A) so it can be applied, at least potentially, to large problems.
Extensions to the multivariate situation are straightforward. Because the main computa-
tional difficulty is the « absorption » of 0 into u to obtain (34A), it may be more
efficient to solve (26) directly by an iterative procedure. Equation (34B) has the same
form of (28) arising in MAP estimation by « joint maximization », so the problems
presented by the estimator of LirrntEY & SMITH (1972) are probably also encountered in
this method. On the other hand, the expression for the residual variance in (34C) has
n - p in the denominator instead of n as in (27). In this sense, the method takes into
account « losses in degrees of freedom » resulting from « estimation » of (3 (PATTERSON
& THOMPSON, 1971 ; HARVILLE, 1977). In the Bayesian view, n - p appears because 0
is integrated out of (23). Because joint and marginal maximization as described in this
paper are based on posterior densities subject to the non-negativity constraints for the



variances (see (6)), these procedures utilize all « information contained in y. This
would also be true when working with the posterior densities f (0, variances ly) and
f (variances ly). In ca-BaL-p#qKL are used these 2 densities lead to maximum likeli-
hood and restricted maximum likelihood estimators of vanances com nents, respecti-
ve y ARVILLE, 19 4, 1977).

3. Approximate integration of the variances

The conditional expectation in (24) can also be written as

E (uly) = I! u [f Jo f (u) variances, y) - f (variances ly) doe d(7!] du (35)
and we note that the expression inside the brackets is E [f (uj variances, y)], taken over
the marginal posterior distribution of the variances. This latter distribution gives the
plausibility of values taken by the residual variance and the variance of the u’s, given
the data. If this density is reasonably peaked, which occurs when there is a large
amount of information about the unknown variances in the data, most of the density is
at the mode (ZELLNER, 1971 ; Box & TIAO, 1973). If this condition is met, one can

write

where a:2 and ae2 are the two components of the mode of f (variances ly). Using (36)
in (35) gives

This result indicates that the variances should be estimated by maximization of f (va-
riances ly), and the predictor obtained by calculating the mean of the conditional

distribution (36), which is multivariate normal as stated in (19). The problem is then

solved using results obtained in the section for unknown fixed effects and known

variance components, taking a at the modal values of the posterior density of the
variance components. The predictor obtained belongs to the class of Empirical Bayes
estimators (VINOD & ULLAH, 1981 ; JUDGE et al., 1985) as the variance of the prior
distribution of u is obtained from the data as opposed to being actually « prior ».

Using a result similar to the one leading to

where the expectation is taken with respect to f (u, PI variances ly). Evaluating these
expectations and setting to zero to satisfy (38) gives



where [k] indicates iterate number and C[k] is the q x q lower sub-matrix of the inverse
of the mixed model equations evaluated at the current value of a. Equations (40) and
(41) in conjunction with (26) define an iterative scheme. Once the variances stabilize,
(26) is solved once more to obtain the necessary predictions. The main difficulty of this
procedure is the computation of the matrix C ; in practice, it may be necessary to

approximate the traces needed in (40) and (41) and HARmLLE (1977) has suggested
some possibilities.

We note that (40) and (41) are expressions arising in the EM algorithm (DEMPSTER
et al. , 1977) when a restricted likelihood is maximized (PATTERSON & THOMPSON, 1971) ;
similar equations are in HENDERSON (1984). This is not surprising as HARVILLE (1974,
1977) showed that restricted maximum likelihood corresponds to Bayesian estimates
obtained by maximization of f (variances ly) when flat priors are used for the variances
and for the fixed effects. This was the approach followed in this section of the paper. It

should be observed that (40) and (41) are « natural » expressions derived directly from
the posterior distribution without invoking numerical « trickery ». Thus, the estimates
so obtained would be non-negative as they are based on a posterior distribution which
would return with probability equal to zero any negative value. Wu (1983) discussed
numerical aspects of the EM algorithm. Slow convergence has been reported by
THOMPSON (1979), MEYER (1985), and THOMPSON & MEYER (1985). These authors
advocate algorithms based on second differentials but they warn about the non-null
probability of obtaining estimates outside of the parameter space. This is a disturbing
property of such algorithms, especially when employed in multivariate cases.

IV. Conclusions

The theory presented in this paper indicates that under normaUty_and in the

absence of prior infoimation about the dispersion parameters, breeding values sfiouTd
be predicted using BLUP methodolo , with the unknown variances replaced by their
- fin mg REML estimates obtained from the data from which predictions are to
be made. A t iough « flat » prior distributions were employed for the variances in this
paper, the arguments used can be applied without formal difficulty to situations in
which different priors are used. In this case, the estimators of variance so obtained

would not be those of REML.

The predictors of breeding value obtained are not BLUP but yield a very close
approximation to E (uly), as uncertainty about the values of fixed effects is taken into
account, and the variances are approximately integrated out. The results dismiss

quadratic unbiased estimators and point to statistics obtained from maximization of

posterior densities or of likelihood in the classical sense when flat priors are employed
Several issues which are not dealt with here for reasons of space include prediction
using data from selected individuals, specification of informative prior distributions for
the unknown variance parameters, and non-normal settings such as when major genes
segregate in the population or when the variables are categorical. It is felt, however,
that the Bayesian paradigm gives a completely general framework to adress hereto

unsolved statistical problems in animal breeding.
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