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Summary

Merit is defined to be a non-linear function of an animal’s phenotype for various traits. A

Bayesian type selection rule to increase merit in hypothetical populations is proposed. The rule is
based on the conditional expectation of total merit in the population given data. This rule has
similarities to selection index theory. An animal’s phenotype for any trait and data are assumed
distributed as multivariate normal random variables. Situations are treated when associated

population means are known or unknown. When means are unknown and must be estimated, the
procedures can take advantage of mixed model methodology. An illustration of its application to a
mate selection problem is presented.
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Résumé

Décisions efficaces de sélection pour une fonction d’objectif non linéaire : .’
application aux choix des conjoints

L’objectif de sélection est défini par une fonction non linéaire de la valeur phénotypique d’un
animal pour différents caractères. Une décision de sélection de type bayesien est proposée pour
accroître la fonction d’objectif dans diverses situations hypothétiques. La décision de sélection

correspond à l’espérance conditionnelle de l’objectif dans la population sachant les données
recueillies.

Cette règle présente des similitudes avec la théorie des indices de sélection. On suppose
notamment que le phénotype de l’animal et les données ont une distribution conjointe multi-
normale. On aborde les cas de moyennes connues et inconnues. En situation de moyennes
inconnues à estimer, les méthodes proposées peuvent s’inspirer de celle de modèle mixte. Un
exemple d’application relatif au choix des conjoints est donné.
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I. Introduction

The goal of artificial selection is typically to increase some quantity (T) in the
selected population. When T is a relatively simple quantity, the selection index and
linear model procedures are quite powerful aids to selection. T can be considered

simple if, for example, it is a linear combination of additive genetic effects. In this

case, the linear combination may reflect the relative economic worth of each genetic
effect.

To say T is complicated is frequently due to a belief that hypothetical components
of T are well described by additive genetic models. In this setting the practitioner is

unwilling to use simple additive models to describe T itself (i.e., if T can be measured).
Our paper is directed at this situation.

When T is complicated, « optimal » selection rules become complicated and the
usefulness of the selection index or linear model procedures are much in doubt.

Complicated merit functions have been described by Allaire (1980) in the context of
mate selection.

In this paper, T will be an expression that reflects the economic merit or utility of
an animal’s phenotype (or phenotypes). Assume

where P; is the phenotype for the ilh trait, fi (.) is an arbitrary function that assigns an
economic value to P;. The arbitrary functions will be assumed known a priori.

There are a number of observations that should be made about [1] :
a) It has been assumed, rather arbitrarily, that merit is a function of n traits (i.e.,

Pi, P2, ... P&dquo;). The choice of which traits is usually a personal one. Merit need not
exists independently for any one of the traits. Merit is a subjective quantity assigned to
all the traits in concert.

b) We have not used the most general representation of T (i.e., T = f
(PI, P2, ... P&dquo;)). This is simply a practical requirement and it is theoretically unjustified.
It would be harder to estimate a more general function. Moreover, given such a

function, application of theory presented in this paper would be made harder. We are
not advocating the use of [1] for all applications. However, [1] can be made more

general implicity if we define Pi, P2, ... P&dquo; as arbitrary (but known) linear combinations
of phenotypic measurements (Mi, M2, ... M&dquo;,). In this setting, Ml, M2, ... Mm deter-
mines our subjective ideal of merit. This interpretation causes no problems with
methods in our paper.

c) T is a function of the phenotypes and not the genotypes directly. This conven-
tion is not mandatory for all selection problems. However, we decided to use it because
the economic utility of any animal can generally be quantified through phenotypic
relationships. Furthermore, if the function f (-) assigns a merit (f (P)) to phenotype P
then it should not be assumed that f (G) represents the merit of genotype G (where
P = G + E, and E is an environmental effect). Still, statements related to genotypic
worth can be made. For example, the genotypic value of a sire in breeding may be
taken to equal the expected phenotypic worth of his progeny. Realization of genotypic



worth is ultimately mediated by a phenotype or phenotypes. Thus, the genotypic worth
may be a function of both genetic and non-genetic quantities. Usually the non-genetic
quantities will reflect (in some way) the class of all possible environmental happenings.
When T is a simple function the above distinction is usually only academic. However,
when T is complicated the distinction is critical.

d) The function T can be generalized to accomodate things like sex differences,
inbreeding depression and animal dependent investment cost. For example, two func-
tions like [1] can be defined for each sex. Investment cost can be included in [1] by
adding an extra term (usually negative). Examples of investment cost are semen cost or
the cost of purchasing breeding animals. To accomodate a more general T, methods in
this paper can be extended in a straight-forward manner. However, to describe methods
for a more general T would only serve to obscure our message.

It is the purpose of this paper to describe practical selection rules that aid in

increasing T in hypothetical populations. The rules are designed for the realization of
short term response.

II. Bayesian selection theory

Selection requires a decision. Consequently, standard techniques in decision theory
can be used to establish useful selection rules. In this section, we will describe Bayesian
decision rules (BERGER, 1980, p. 14) in the context of selection.

We will not use words like « optimal or « best to describe selection rules.
These words foster misconceptions. To call a selection rule best implies a certain

objectivity that does not usually exist. Decisions are affected by subjective beliefs or
attitudes. Bayesian methods force users to identify their subjectivity.

Despite subjectivity, Bayes decision rules can be justified by strong arguments. If
one is to be consistent with « rationality axioms » then his decision rule should be

equivalent to some Bayes rule (BERGER, 1980, p. 91). This means that if our decisions
are not equivalent to some Bayes rule, then we might be accused of being irrational.

Establishing a useful Bayes rule depends upon the appropriateness of assumptions
related to preference and prior information. In practice, needed assumptions may seem
arbitrary.

A. Development

The objective of selection is to increase overall merit of a hypothetical popula-
tion (1). After selection this population will be called the « selected population ». The
selected population need not represent the population that underwent physical selec-
tion. For example, given that physical selection involves the formation of mating pairs

(a) This view may be too simplistic for some applications. The objective of selection may be to increase
merit in several populations. If populations are defined by the time frames then discounting may need to be
considered. In his case T will need to be redefined.



(i.e., sires and dams), the selected population may be the resulting progeny. That is,
the objective of selection may be to increase the overall merit of the progeny. The
selected population will be understood to be finite. Thus, given the phenotypes of this
population, the total merit can be calculated exactly using [1]. However, these pheno-
types will generally be unknown when selection decisions are being made.

The selection rule (S) is a function of data (say a column vector y). That is, S (y)
defines a signal specifying an action (a) of choosing one of numerous selection
alternatives. Thus, a or S (y) will set in motion the stochastic mechanism that will
determine the selected population. Every action is associated with a loss determined by
a loss function. The loss function is at least a function of w (a), where w is the true
state of nature in the selected population. Here, w is simply a vector containing the
realized phenotypes.

The opportunity cost can be derived from the definition of T. Define M (a) as the
sum of the realized merit or utility (i.e., T) from each individual in a selected

population. Hence, M (a) represents the total merit or utility of the selected population
resulting from an action a (bl. Given an alternative action a’, the opportunity cost is
then M (a’)-M (a). With a’ fixed, it is quite natural to take the opportunity cost as the
loss function corresponding to action a. Moreover, the loss function may simply be
taken as -M (a). This assignment will be used.

It would be nice to choose some action among all acceptable actions (A) so the
loss is minimized. Unfortunately, when decisions need to be made the losses resulting
from various actions are not usually known. However, given y and a the stochastic

behavior of w (a) may be known. If so, the necessary ingredients are available to

choose an action by Bayes rule.

BERGER (1980, p. 109) states that the Bayes rule can be found by choosing an
action among A, that minimizes the conditional expectation of the loss given data.

Thus, the selection rule that will be proposed, is to find an action, a* included in A,
that will minimize

when a = a*. Note that minimizing E [-M (a) yJ is the same as maximizing
E [M (a) yj.

In order to find a* it is sufficient to do the following :
a) Determine the smallest set of individuals containing all individuals in all possible

selected populations represented by selection schemes in A. If all selected populations
consist of offspring of known animals, this requirement would consists of listing parents
or mating pairs.

b) Compute E [T y] for each uniquely identified individual.
c) Identify a* by inspection or by comparing a sufficient number of the quantities

given by [21, where a is in A. The total of the conditional expectations of the losses for
each a (i.e., [2]) can be evaluated by adding together the negative of the appropriate
quantities computed in b).

(b) It is technically improper to assume that M (a) represents the utility resulting from action a. That is, the
utility of action a need not be representable as a sum of utilities corresponding to individuals in the selected
population. We will assume otherwise due to practical considerations. For a discussion of utility theory, see
BERGER (1980).



B. Application

The difficulty in finding a* is a function of the complexity of both A and of

stochastic properties of w (a). When these complexities are relatively minor the Bayes
selection rule reduces to procedures that are familiar to most animal breeders. For

example, consider the use of the selection index in ranking animals for real producing
ability. A typical action would be to select a fixed proportion of animals ; those

corresponding to the highest index values. From a decision theoretic perspective, this

corresponds to taking A to be the set of all actions that involve selecting a fixed

proportion of animals. Moreover, the utility of individuals in the selected population
can be assigned exclusively to animals that are physically selected. With this variety of
decision problem, the selection rule proposed here involves computing conditional

expectations of T for each animal and selecting animals corresponding to the highest
expectations. BULMER (1980, p. 196) developed a similar rule to increase the genetic
merit of pure lines.

In mate selection problems, the Bayes selection rule can become complicated. For
example, assume that there are 15 sires available (via artificial insemination) to be

mated to 20 cows. An attempt will be made to mate each cow only once in the next
month. However, any sire will be used once, several times or not at all. Let i index the
i-th sire, i = 1, 2, ... 15. Assume that the i-th sire has only n; units of semen available.

Thus, the i-th sire can not be used more than n; times. Clearly, the class of acceptable
actions is very large and possesses complicated constraints. Moreover, the utility of

each individual in the selected population can be assigned to a sire-dam pair rather
than just one animal (i.e., for one stage selection).

To solve the mate selection problem it is best to refer to the three rules given
earlier. Step c) can be cast as an integer linear programming problem. This fact has
been discovered independently by JANSEN & WttTOrt (1984). Let j index the j-th cow,
j = 1, 2, ... 20, and let cij equal the expected T for the progeny produced by mating the
i-th sire to the j-th cow. The integer linear programming problem is

This problem can be solved by using the methods described in PFAFFENBERGER &

WALKER (1976). If xii = 1 when the solution is found, then inseminate the j-th cow with
semen from the i-th sire.

GODDARD (1983) suggests that non-random mating (alone) should not be used to

improve long term genetic gain. We agree ; however, all mate selection shemes should

not be considered as simply non-random mating or assortative mating. Mate selection is

the synthesis of selection and non-raridom mating. Mate selection can affect reproduc-
tive fitness (usually fitness of males).

One stage mate selection can be used sequentially to improve long term merit.
Mate selection is similar (but less restrictive) to creating subdivisions in the population
where mating (following selection) occurs only within subpopulations. Each subpopula-



tion can be sequentially selected so as to improve long term merit. Yet the direction in
which subpopulation means are changed may be quite different. It should be noted that

random mating can destroy gains made via mate selection. If mate selection is to be

practiced, random mating should never be allowed. It should also be noted that

sequential single stage selection may direct some subpopulation to a locally desirable
state of nature rather than a globally desirable state. This seems to depend on the
shape of the merit function. The last criticism is directed at single stage selection and
not mate selection per se. Admittedly, determining mating pairs that maximize long
term expected merit is complicated.

It is difficult to say when mate selection is preferable (long term response) to

alternative methods. Consider only a univariate merit function (i.e., T = F (P)). If f (.)
is monotone it may make little difference if mate selection or selection with random

mating is used. Alternatively, if f (-) has a global maximum near the population mean,
the question of long term response maybe a little ill-posed. In this situation, control of
population variance becomes more important. If/(-) is « U » shaped, mate selection
should fragment a population into « high » and « low lines. Mate selection can do this
more effectively than approaches that do not allow all animals to contribute genes to

both lines (when advantages). This advantage is lost when the lines become so different
that migration between them (when advantages) becomes unlikely. Mate selection is

probably most valuable as a tool to realize short term gains. For example, mate

selection may be useful in controlling calving difficulty in dairy or beef cows.

A third type of selection problem is the gene pool problem. For this case a fixed
number of parents are selected and allowed to contribute genes to a hypothetical gene
pool (thoroughly mixed by recombination). The object is to select those parents that
maximize the expected merit of a randomly selected representative (animal) of the gene
pool. Note that each selected population (corresponding to a particular gene pool) can
be thought of as having one individual. Thus, only one E [T y] need be computed for
each group of parents (action) considered. Important considerations pertaining to the
evaluation of E [T y] are given in Annex A. The Bayes one stage selection scheme is
very similar (but different, see Annex A) to the procedure given by BULMER (1980,
p. 197). GODDARD (1983) points out that this kind of problem is very difficult to solve
because it is usually not practical to enumerate all possible parent combinations

(actions). Thus, step a) of the rules given earlier may be prohibitive. It might be better
to approximate a solution to the gene pool problem by using the linear indices

described by GODDARD (1983) or MOAv & HILL (1966). The selection rule proposed by
GODDARD (1983) is equivalent to the Bayes rule, if a unique Bayes rule exists and given
additional assumptions (equal information, infinite population size, selected animals are
sufficiently unrelated, population means known). Approximate solutions can be impro-
ved as outlined in Annex A.

In this paper the stochastic properties of w (a) will be assumed to be relatively
simple. Precisely, the phenotypes associated with w (a) will be taken to have a

conditional normal distribution given data. This convention is suitable for one stage
selection. Methods presented in this paper are designed only for short term gains.

The selection rules given here can be implemented in a sequential manner. The
decisions of the past are usually responsible for the propagation of observations that
will be used to make up-to-date decisions. Expectation [2] can be evaluated by ignoring
the fact that records (i.e., y) are selected, if the vector y contains all the observations
that prior decisions were based on. This result was demonstrated by GOFFINET (1983)
and FERNANDO & GIANOLA (1984).



III. Computing the expectation

Let Tk represent the merit of animal k in a selected population. Denote the
realized phenotypes for various traits on animal k as P;k, i = 1, 2, ... n. Using [1] it can
be shown that E [Tk y) is equal to

This section is devoted to describing methods that can be used to compute

where f (.) is some function (representing fi (.)), P is a phenotype (representing Pi).
These methods can be implemented directly, in order to compute the various terms in
[3]. Computed terms can be combined in order to obtain E [Tk y]. Thus, E [T y] can
be computed for various individuals and a* can be determined as outlined in the

previous section.
P and y in [4] will be assumed to have a multivariate normal distribution with a

known variance-covariance structure. For now we will assume that means associated
with P and y are known. In order to evaluate [4], the posterior density of P given y
must be determined. This can be done by using standard selection index theory (Van
VLECK, 1974). Let

Then P given y has a normal distribution with mean Up + d’V-1 (y &mdash; Uy) and
variance r &mdash; d’V ’d Denote the mean as UPIY and the variance as ap!,. Using standard
terminology, UP!, is the selection index and a7,1Y is the prediction error variance. The
selection index and Qp!, are necessary ingredients to evaluate [4].

In the next subsection we will describe algorithms that can be used to evaluate [4]
given UPIY and QP!,. The same algorithms can be used when means associated with P
and y are unknown. However, UP!, and aP!, must be modified as we will see later. The
unknown means situation is certainly the most relistic characterization of knowledge
pertaining to P and y.

A. Algorithms

One way [4] can be evaluated is by Gnusstnrr quadrature (STOER & BuuRscH,
1980, pp. 142-151). This method can be used for an arbitrary f (!). Details of this
method are given in Annex B.

Method of evaluating [4] may be closely allied with methods of estimating f (!).
For example, an attempt might have been made to describe f (!) as a polynomial. In

s

which case f (P) can be taken to equal I a;p’ and consequently, [4] can be expressed
as i = 0



The terms (i.e., E [P’ y]) in [5] can be computed directly via recursion. That is, E
[P° I y] = 1, E (Pl ! I y] = Uvly and for i ; 2, E [P’ I y] = (i - 1) wl! E [P’-’ I y]
+ UpiY E [P’-’ y]. For the situation when s = 2 [5] can be written as 

p

Quadratic indices have been described by WILTON et al. (1968). These authors

ignored terms analogous to a2U 2 in their indices. Clearly, a2u)> should be considered if
candidates available for selection have unequal information.

Estimating f (.) by a polynomial may be ill-advised because such a scheme may
induce unrealistic fluctuations in the estimate (i.e., if f (!) is not a polynomial).
Generally, f (.) can be better estimated as a piece-wice cubic. In addition to being
piece-wice cubic, the estimate of f (-) can be made to be continuous and first derivative
continuous. Piece-wise estimation can be handled via interpolation by spline function
(STOER & BuLixscH, 1980, pp. 93-106). Alternatively, piece-wise linear regession (NETER
& WASSERMAN, 1974) might be useful in estimating f(.). The regression approach can
be generalized in a straight-forward manner to piece-wise cubic models. Appropriate
continuity constraints can be imposed by the method of Lagrange multipliers (KAPLAN,
1973). A method of evaluating [4] when f (!) is a piece-wise cubic is presented in
Annex B.

It should be clear that [4] can be evaluated with the aid of a computer. Moreover,
f (-) can be taken to be a very general function.

In the next sub-section we will see how to modify Up! and (T 2 Pl,, when the means of
P and y are unknown.

B. Unknown Means

When Up and Uy are not known the selection rule that minimized loss can not

usually be found (i.e., if one insists that Up and Uy are fixed). Fortunately, it is usually
possible to mimic this selection rule when means are unknown. For example, if
estimates for Up and Uy are available, the practitioner might use the estimates as if they
were known. However, such a scheme can be criticised on grounds of sensitivity to
errors associated with the estimated means. To avoid some of the problems related to
sensitivity, it is best to increase u§> so that in some way an accounting is made for the
precision of estimated means. It would then be more reasonable for the practitioner to
use means as if they were known.

Assume that y contains information that can be used to estimate Up and Uy. In

particular, let Up = t’Xb and Uy = Xb where t is a known column vector, X is a known
full column rank matrix and b is a column vector of unknown fixed effect &dquo;’.

Consider b as a vector of normal random variables even though it is not. Let

(c) It may seem unduly restrictive to assume that the mean of a future observation (Up) is a linear
combination of the means of past observations (Uy). However, if Up can not be estimated from data then Up can
be thought of as a random effect with its own mean and variance. Thus, appropriate modifications can be made
in model specification.



where D is a diagonal matrix. With Ub and D given, the machinery described for known
means can be implemented in a straight-forward manner. Because Ub may not be close
to b, it is best to pick the diagonal elements of D to be large. In this way the

subjective variation we assign to b reflects our confidence in Ub. If we have no

confidence in Ub it is reasonable to let the diagonal elements of D go to infinity. In this
case b can take on any value with equal likelihood. The posterior distribution of P
given y exists in the limit as the diagonal elements of D go to infinity. Moreover the
limiting distribution does not involve Ub. Thus, it is reasonable to use the limiting
distribution to evaluate [4] via procedures already described. The only new things
needed are the mean and variance of P given y as diagonal elements of D go to

infinity.

The strategy just described is a common Bayesian method. The limiting distribution
used for b is called an improper prior. Because this prior assigns equal likelihood to all
possible realizations of b, the prior is frequently referred to as noninformative or

vague. A formal generalization of the Bayes decision rule for the improper prior is

straight-forward and is given in BERGER (1980, p. 116). From the point of view of
robustness, use of the improper prior is generally very reasonable. Unfortunately, there
are situations where use of an improper prior is not very satisfactory (BERGER, 1980,
pp. 152-155).

Using [6], the means and variances given earlier for P and y are changed to

Thus, by standard selection index theory

The limiting values of UPIY and a2P!, are derived in Annex C. The limiting value of
Up[v is

A generalized least squares estimate of Uv (say 6y) is given by X (X’V-1X)-IX’V-1y.
Moreover, an estimate of Up (say Up) is given by t’Uy. Thus, [9] can be written as

This expression is directly analogous to the standard selection index with known
means. However, the limiting value of aP!, is

Terms other that r - d’V-ld in [10] can be regarded as corrections that were
needed due to estimation of unknown means.



In theory, [9] and [10] can be evaluated in order to find the Up!y and ap!, that are
needed to determine [4]. However, the formulae in their current form are very
awkward and actual evaluation of [9] and [10] may be prohibitive. Fortunately, Up!y and
aP!, can be found using alternative formulae.

If P and y can be described jointly by a suitable linear model, [9] will lead

naturally to the mixed model equations (HENDERSON, 1973). Moreover, [10] can be
expressed using machinery associated with mixed model methodology. These results are
not surprising given the correspondence between mixed model methodology and Baye-
sian estimation (DEMPFLE, 1977). The mixed model is generally used to estimate genetic
quantities. However, the problem at hand requires estimation of a phenotype. Mixed
model methodology must be employed with this subtle difference in mind.

Write P = t’Xb + k’u + e, where t’Xb was defined earlier, k is a known column

vector, u is a column vector of random effects and e is a random variable that is

stochastically independent of y, u and b. Assume that the variance of e (say ae) is
known and that E [e] = 0. Using the terminology of HENDERSON (1975), Up!y is the best
linear unbiased predictor of t’Xb + k’u and aP!, is Qe plus the variance of the error of
prediction of t’Xb + k’u.

Determining QP!, via mixed model procedures involves computing inverse elements
of the coefficient matrix described by HENDERSON (1975). In practice this step may be
prohibitive. We acknowledge that approximations for QP!, may be useful.

IV. Example

In this section, theory described earlier will be applied to a mate selection

problem. Throughout our example we will assume additive inheritance.

Assume that a dairy farmer wants to mate two bulls (Sire 1 and Sire 2) to two
cows (Cow 1 and Cow 2). He decides not to use the same bull twice. Thus, he must
choose one of the two mating schemes. These are :

Scheme 1 : Sire 1 x Cow 1 ; Sire 2 x Cow 2

Scheme 2 : Sire 1 x Cow 2 ; Sire 2 x Cow 1.

Each mating scheme will result in two progeny. The farmer wishes to use the

scheme that corresponds to progeny with the highest expectation of total merit.

Merit on female progeny will be taken to be a simple function of the phenotypes
for milk yield and rear leg set. No merit will be assigned to male progeny. The merit
function for females is

where milk is the 305 day mature equivalent milk yield measured in Kg, set is linear

type trait score (50 to 99) (THOMPSON et al. , 1983) depicting the rear leg side view set.
The merit expression [13] was constructed from survey data and was provided by
GONYON (personal communication, 1984). It can be argued that merit should be a

function of more than just milk and set. For simplicity we will ignore this.



Genetic evaluations for Sire 1 and Sire 2 and phenotypic measurements taken from
Cow 1 and Cow 2 are provided in Table 1. The herd average for milk and set will be
assumed to be 7 258 kg and 76.6, respectively. These quantities are clearly realistic

(e.g. EVERETR et al., 1976 ; THOMPSON et aL, 1983). The herd averages will be assumed
known without error and directly applicable given the information in Table 1. Thus, the
expected phenotype for any progeny can be obtained by adding the herd average, sire
ETA and dam ETA. An implicit assumption is that the genetic base corresponding to
the sire evaluations is assumed to equal the average genetic level of the herd.

The heritability (h2) and phenotypic standard deviation (Qp) for milk yield will be
taken as .25 and 907 kg, respectively. The heritability and phenotypic standard
deviation for set will be taken to be equal to estimates published by THOMPSON et al.

(1983). These values are .15 and 6.7, respectively.

Assume that each sire has equal probability of producing female calves. Then
without loss in generality, all calves produced via schemes 1 and 2 can be taken as

female. This convention will be used. Thus, the expected merit of any particular
progeny can be found by determining the conditional expectation of [13] given the

information in Table 1.

In order to determine the expectation of [13], the conditional means and variances
for phenotypes expressed on particular progeny must be found. Assume that the

phenotypic and genetic correlations between milk and set are null. This assumption is

probably wrong (THOMPSON et al., 1983), however it is used only to simplify the
discussion and notation. Given the assumption, the conditional expectation of any
phenotype (milk, set) for a particular progeny is



where the transmitting abilities of the sire and dam can be found in Table 1. Likewise,
the conditional variance of this phenotype is

where 01 is a measure of the precision associated with the transmitting ability of the
sire and it can be found in Table 1. The computed conditional means and variances for
each progeny produced by schemes 1 and 2 are listed in Table 2.

The expectation of [13] for any progeny can be found by using the quantities given
in Table 2 in accordance to the formula

where Urn is the conditional mean for milk, U, is the conditional mean for set and V, is
the conditional variance for set. Note that the conditional variance for milk is not

needed. The expectation of [13] for progeny produced by the mating schemes are given
in Table 2.

The values in Table 2 suggest that scheme 1 is better than scheme 2. The
differences in expected merit are not dramatic. This is due to the relatively flat merit
function for set 111.

It is possible to incorporate into the decision process information on maternal

grandsires. This type of decision is probably more realistic than the example given here.
However, information on any maternal grandsire would only contribute in a small way
to the corresponding total phenotype.

(d) This observation is a little artificial. A reasonable measure of utility can be taken as k,T + k2 for any
k, > 0 and k2. Decisions resulting from the use of k,T + kZ are the same as those resulting from the use of T.
Any deviation observed in the expectation of k,T + k2 can be made to look small by taking k, to be small and
k2 to be large.



V. Conclusion

In the previous example the importance of milk in selection decisions was removed
because each sire and dam would produce one offspring regardless of the selection
alternative (thus the example does not display selection) and because of the linear
contribution of milk to merit. However, the value of milk production seems to

dominate mate selection rules when merit is a function of milk and several type traits
(ALLAIRE et al. , 1984). In this study an attempt was made to use realistic genetic
parameters and a realistic merit function. This suggests that « corrective mating as
practiced in dairy cows may be improper.

In this paper we have ignored ways of estimating the merit function. However, we
have implied that merit is directly related to some monetary measure. Thus, it may be

possible to estimate the merit function by a regression equation where the dependent
variable is measured in monetary units. Whereas this seems reasonable, it is bending
theory. More formally, the total merit function (M (’)) for the selected population can
be estimated via utility theory (BERGER, 1980). In this setting M (-) reflects an

individual’s gambling philosophy when phenotypic expressions are at stake. From a

theoretical perspective M (.) need not be representable as a sum of identical merit
functions (i.e., T) corresponding to individuals in the selected population. However, it
seems practical to assume that such a representation exists and that utility theory can
be used to estimate the component functions (i.e., T) of M (-). Even with appropriate
modifications, estimating T by utility theory can be criticized due to nonobjectivity.
However, BERGER (1980, p. 58) claims that such a criticism is « silly » because decisions
pertaining to uncertainties are personal choices and thus nonobjective anyway.
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Annex A

A. Evaluating Expected Merit of Gene Pools

The Problem : we will describe how to evaluate [4] given the assumptions of

multivariate normality and additive inheritance (’). In this case y contains information
associated with parents that will contribute genes to a gene pool. Also P is a

(e) In theory it is possible to use a model that incorporates more complicated gene action. Gene pools will
usually be inbred. Thus, determining necessary covariances will be complicated (HARRIS, 1964).



hypothetical phenotype randomly created from additive genetic effects (representing
genes from gene pool) and environmental factors. Write P as :

where a, equals the average additive genetic effects of the parents, a2 is the additive

genetic effect due to segregation in the random mating population (or gene pool) and E
is the environmental effects. The conditional mean and variance of a, + E can be
found directly using mixed model procedures. Note that a, is a linear combination of

parental additive genetic effects (these will usually be effects in the linear model).
Likewise E will usually be represented as a linear combination of effects in the model
plus a random residual (this residual is stochastically independent from y and other
relevant terms). The term az has mean zero and it is stochastically independent from y,
a, and E. Thus, if we know the variance of az we can find the conditional mean and
variance of P using mixed model procedures. To find the variance of a2 it suffices to
construct a relationship matrix involving a sufficient number of animals in the analysis
plus the hypothetical animal. The diagonal element (times the additive genetic variance)
corresponding to the hypothetical animal will equal the unconditional variance (UV) of
a, + a2. The variance of a2 can be found by subtracting the UV of a, from the UV of
a, + a2. The UV of a¡ can be found in a straight forward manner. We will only show
how to compute the appropriate relationship matrix.

BULMER (1980, p. 197) described a selection rule that can be used to improve
nonlinear merit in outbreeding populations. Because he was not very explicit it is
difficult to tell whether he attempted to solve the gene pool problem as we defined it.
Nevertheless BULMER’S procedure is very similar to the one proposed here (select those
parent where [2] is minimized). BULMER’S procedure is different at least in one way
because he seems to assume that the variance of a2 is constant across all selection
alternatives. This may be a minor issue in practice.

B. Genomic Tabular Method

For many cases the tabular method (Van VLECK, 1979) can be used to compute the
relationship matrix. However, we will propose a genomic tabular method because this
procedure can be adapted to our problem in a conceptually simple manner. Unlike the
relationship matrix, every element in the genomic table is a probability. Moreover,
when building the genomic table inbreeding can be ignored. The inverse genomic table
can be computed (if one wants it) using shortcut procedures very similar to the
methods that HENDERSON (1976) described for the relationship matrix. The genomic
tabular method can also be adapted to non-diploid individuals (e.g., bees are diploid or
haploid). The only disadvantage of the genomic table is that it is usually 4 times larger
than the relationship matrix.

We will describe the genomic tabular method by example. Assume that animals A
and B are mated to produce animal C. Assume that the genomes that animals A and B
received from their parents are unrelated. Animals A, B and C contribute the genes to
a gene pool. Animals B and C are of the same sex. Thus, A contributes twice as many
genes as B or C. Animals B and C each contribute same amount of genes. Assume

that animal D is created from the gene pool. The genomic table is presented in

Table 3.



Observations. Each row or column of Table 3 corresponds to a genomic group.
Each animal has two genomic groups. Define Ai and Az to be the first and second

genomic groups in animal A. Define similar quantities for animals B, C, and D.

The letters on the top (or on the left hand side) identify the animals. The table is
set up such that animal symbols to the left (or top) correspond to older animals than
symbols to the right (or bottom). The symbols below (or to the right of) animal
symbols identifies the genomic groups. The genomic groups for any animal are adjacent
and ordered (first, second). The parentage of genomic groups are identified by the
codes following the equal signs in the second column. The genomic group code A for
C, means that C, was derived from animal A. The code 1/2A + 1/2BC for D, (or D2)
means that half of D, (or D2) was derived from A and the other half was derived from
B and C.

Any element in Table 3 equals the probability that a gene on a particular locus
from one genomic group is equal by descent to another gene at the same locus for a
different (or the same) genomic group. For example, the probability is 1/2 that genes
corresponding to some locus are equal in A, and C, (this probability can be found in
two places, i.e., the genomic table is symmetric). Note that the diagonal elements are
all one. This simply says that the probability that genomes are equal to themselves is
unity.

The additive relationship matrix is obtained by partitioning the genomic table into
2 by 2 blocks (corresponding to animals) and combining the 4 elements in each block
and dividing by 2. Note that animal D is 9/32 inbred.

How the Table was constructed. To construct a genomic table initially add one to
all diagonals. Next add zeros to all off diagonals corresponding to genomic groups in
the base population. For our example the animals A and B are the base population.
The remaining elements are now computed by recursion. The recursion formula uses
elements in a row to compute elements to the right in the same row. Thus, the



elements must be determined from left to right. Use the recursion starting with the top
row. The recursion is identified by the parentage code. The symbol A corresponding to
C, indicates that the 2 elements (in the appropriate row) listed under animal symbol A
are averaged. This number is put in the table under CI. The symbol 1/2A + 1/2BC
corresponding to DI (or D2) indicates that elements listed under animal symbol A are
averaged and in a separate calculation the 4 elements listed under animal symbols B
and C are averaged. Finally the computed averages are each weighted by 1/2 and
combined. This number is put in the table under D, (or D2). After the row is

completely determined fill in the column that is determined by symmetry. Then return
to the row directly below the row that was previously evaluated and compute its
elements. Never use a recursion directly to compute elements below the diagonal.
These elements should always come from calculations that were made to find elements
above the diagonal.

The recursion formulae are easy to derive. Each probability is related back to

probabilities that involve the parentage of the youngest genomic group (or of equal
age). Consider for example the probabilities associated with A, and Cl. The parentage
of C, is animal A. Half of the genes in C¡ come from A, and the other half come from
A2. These events are equally likely and are mutually exclusive. If the gene in question
from C, comes Ai, the probability of identity is 1. If the gene comes from A2 the

probability is 0. Thus, the probability we are looking for is 1/2*1 + 1/2*0 = 1/2.

C. Approximate Solution to the Gene Pool Problem

The gene pool problem is very hard to solve. We will suggest a procedure to find
an approximate solution given that we have an initial group of parents that might
contribute genes to a gene pool. The initial group can be improved if we substitute one
of the parents with some other candidate such that [2] is reduced. We might use that
candidate that reduces [2] the most. Next we do the same substitution for a different
parent and continue the process to a third parent or a fourth, etc. We should continue
in a iterative way until [2] can not be reduced any more by substitution of any
individual parent in our solution.

This procedure need not solve the gene pool problem. The solution that we get
may depend on the initial group of parents and the order parents are considered for
substitution. However, the algorithm will find a choice of parents that reduces [2]
relative to the initial group of parents.

Annex B

A. Gaussian Quadrature

With Gaussian Quadrature (STOER & BULIRSCH, 1980, pp. 142-151) [4] is approxi-
mated by 

.

where s is a user selected integer, x;, i = 1, 2, ... s, are the roots of the s’h order
Hermite polynomial and w;, i = 1, 2, ... s, are the associated « weights ». The x; and



w;, i = 1, 2, ... s, are tabulated and can be found in ABRAMOWITZ & STEGUN (1972).
The difference between [14] and [4] is equal to

for some z’ (i.e., if [15] exists). If the absolute value of [15] is small for all z’ in

(&mdash; oo, + oo), Gaussian quadrature will yield a good approximation. However, as a

indicator of the precision of Gaussian quadrature, the upper bound of the absolute

value of [15] may be too pessimistic (STOER & BULIRSCH, 1980, p. 151).

B. Expectation of Piece-Wise Cubic

Assume that - - = to < ti < t2 ... < ts = 00 and let f (P) = aoi + alip +

a2ip2 + a3iP’, if P is in [t;, ti,l). Then [4] after some simplification equals

The terms, Vo;, VI;, V2i and V3i, can be computed together via recursion. Given
these terms, evaluation of [16] is straight forward. The formulae are given below :

Next, compute the quantities

By convention, 4> (C) = C! (C) = C2<1> (C) = 0 if C = + 00 or - 00 and 4) (C) = 1
(or 0) if C = + 00 (or - oo). Finally set,



Annex C

A. Limiting Value of Conditional Mean

From HENDERSON ceC SEARLE (1981)

Hence, by substitution UplY (i.e., [7]) equals

Consider only that part of the UplY given by

[18] can be written as

Moreover, it is easy to show that

Thus [18] equals

and consequently Up! can be written as

It can be shown that the limiting value of [21] as diagonals of D go to infinity, can
be obtained by dropping D-1. Thus, in the limit UplY is

Thus [22] can be written as

B. Limiting Value of Conditional Variance

We can write u7,By (i.e., [8]) as

Using relation [17] the term - d’ (V + XDX’)-ld can be written as



Consider now parts of terms in [23] given by

This term is equal to [18] following substitution with relation [17]. Thus, [25] is

equal to [20]. Pre-multiplying [20] by &mdash; 2 and post-multiplying [20] by d yields

which is one of the terms in [23].

Post-multiplying [20] by - XDX’t produces

which is another term in [23]. Combining the term t’XDX’t from [23] with [27] yields
after rearranging

This expression simplifies to

which was found by substitution as suggested from the transpose of identity [19].

We have shown that [23] is equal to r plus [24] plus [26] plus [28]. The limiting
value of azP!, if found by dropping D-1 from the term [24], [26] and [28]. In the limit
o!,! is
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