
Watt et al. New Zealand Journal of Forestry Science 2013, 43:1
http://www.nzjforestryscience.com/content/43/1/1
RESEARCH ARTICLE Open Access
Modelling variation in Pinus radiata stem volume
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Abstract

Background: Light Detection and Ranging (LiDAR) is an established technology that has been shown to provide
accurate information on individual-tree and stand-level forest structure. Although LiDAR has been widely used to
describe stand structural dimensions the utility of this technology to predict spatial variation in wood quality traits
is largely unexplored. This study used LiDAR metrics to predict spatial variation in total stem volume (TSV) and
outerwood stress-wave velocity (V) in an even-aged mature forest (25 yrs) of moderate size (stocked area of 217.8
ha). Outerwood stress-wave velocity is a good predictor of modulus of elasticity which is a key performance
criterion for structural timber.

Methods: Linear and non-linear models were developed to predict TSV and V. Models of TSV were developed from
the full dataset that included 163 plots while models of V were developed from a subset of 32 plots in which V had
been measured.

Results: The best statistical models that included only LiDAR data, explained 60% and 37% of the variation in TSV
and V, respectively. Addition of measured stand density to both models significantly improved the R2 to,
respectively, 0.76 and 0.70 for TSV and V. The root-mean square error for the final models of TSV and V were,
respectively, 64.0 m3 ha-1 and 0.086 km s-1.

Conclusion: At the forest level LiDAR metrics were found to be useful for predicting both V and TSV. Further
research should examine the link between LiDAR metrics and V across broader ranges of V to confirm these
findings.
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Background
Light Detection and Ranging (LiDAR) is an established
technology that provides a highly accurate measure of dis-
tance. Often mounted on an airborne system, the applica-
tion of LiDAR for aerial laser scanning has been studied in
forestry since about 1978. However, it is only in recent
years that the combination of precise airborne navigation,
high quality instruments and effective post-processing
software has allowed the technology to progress to ope-
rational use (Naesset, 1997, 2002). Innovation in laser
scanning technology is advancing very rapidly and there
are several benchmark papers that describe the technology
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and review sensor characteristics (Baltsavias, 1999;
Hyyppa et al., 2006; Wehr & Lohr, 1999).
Internationally, LiDAR data have been used within the

forest sector to provide estimates of stand height, basal
area (Means et al., 1999; Watt, 2005), stem diameter, stem
volume (Lim et al., 2003; Lim & Treitz, 2004; Naesset,
1997; Woods et al., 2008; Woods et al., 2011) canopy
properties (Naesset & Okland, 2002) and species compo-
sition (Donoghue et al., 2007). For estimation of tree height
and volume the accuracy of LiDAR-derived estimates is
reported to be similar to or better than manual field mea-
surement methods (Naesset, 2002; Watt, 2005). LiDAR data
are used operationally in, for example, the Nordic coun-
tries, to provide estimates of stand dimensions at the com-
partment level (Eid et al., 2004). However, in the southern
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hemisphere, where Pinus radiata D.Don is the most widely
planted conifer species (Lewis & Ferguson, 1993), little pub-
lished research has demonstrated the utility of this techno-
logy in predicting stand volume at the forest level.
Given the known correlation between stand structural

attributes and internal wood properties in a range of
conifers (van Leeuwen et al., 2011; Watt & Zoric, 2010)
there is a theoretical basis linking LiDAR metrics to
wood properties. Despite this, very little research has
demonstrated useful relationships between LiDAR and
wood quality traits (Hilker et al., in press; van Leeuwen
et al., 2011). In plantation-grown softwoods, such as P.
radiata, modulus of elasticity (E) is an important wood
property that describes resistance of timber to deform-
ation under load. Although E is not an important prop-
erty for pulp, it is a key performance criterion for
structural timber. In standing trees E is most commonly
estimated by portable instruments that determine stress-
wave velocity (V) in outerwood using time of flight
methods (Lindström et al., 2002).
Using spatially coincident LiDAR and inventory data

obtained from a P. radiata forest located within New
Zealand, the objective of this research was to construct
models between LiDAR metrics and both total stem vo-
lume (TSV) and outerwood velocity (V).

Methods
Data collection
Stand information
The data for this study were obtained during late sum-
mer 2011 from a 25-year-old forest located in Eastern
Bay of Plenty, New Zealand. This forest is located on
steep dissected country with an elevation range of ap-
proximately 150 to 300 metres above sea level. A stand-
ard pre-harvest inventory comprising 163 plots was
carried out within the forested area of 217.8 hectares.
The circular plots were laid out on a systematic grid.
Plot size was varied from 0.06 to 0.09 ha to ensure that
approximately 20 trees were included in each plot. The
location of the plots was measured using a Trimble
Pathfinder Pro XT high grade GPS with data corrected
using post processing (accuracy = 0.5m). Within each
plot all trees were measured for stem diameter.
Total stem volume, TSV (m3 ha-1), was determined

from stand basal area, BA (m2 ha-1), and mean top
height, Ht, (m; mean height of the 100 largest diameter
trees per ha), using the following nationally applicable
equation (Kimberley & Beets, 2007),

TSV ¼ HtBA 0:942 Ht � 1:4ð Þ�1:161 þ 0:317
� �

ð1Þ

For Equation 1, Ht was determined directly from
LiDAR metrics using the following unbiased and
accurate (R2=0.95; root mean square error = 1.91 m)
nationally applicable equation, derived from an extensive
set of LiDAR metrics and field measurements (Watt &
Watt, in press),

Ht ¼ 2:442þ 0:992H95 ð2Þ

where H95 (m) is the 95th percentile of the LiDAR height
distribution. Stem slenderness was defined from the
plot data as Ht/mean stem diameter. For each plot
stand density was determined as the actual number of
trees ha-1.

Outerwood velocity
Outerwood stress-wave velocity (V) was measured in 32 of
the inventory plots. Plots were selected to cover the range in
stem slenderness and stand density present throughout the
forest as both factors are significant determinants of V
(Lasserre et al., 2008; Waghorn et al., 2007; Watt & Zoric,
2010). Where possible, measurements were taken from at
least 20 trees within the plot.
Velocity measurements, centred about breast height

(1.4 m), were taken using the ST300 tool (Fibre-gen,
New Zealand). Using paths that avoided any large
branch stubs or obvious malformations, two measure-
ments were taken either side of the stem (ca. 180 apart)
and averaged. The path length between transmitter
probe and receiver probe sensors was approximately
1 m.

LiDAR dataset
Light detection and ranging data and aerial imagery were
collected by New Zealand Aerial Mapping, who flew over
the site between 24 May and 1 June 2011. Data were cap-
tured using New Zealand Aerial Mapping’s Optech ALTM
3100EA LiDAR system (05SEN178) and Trimble AIC
medium-format digital camera. The LiDAR data were col-
lected at a minimum of 2 points m-2 on open ground. The
raw LiDAR data was processed by the supplier into LAS
format and georeferenced into the New Zealand Trans-
verse Mercator (NZTM) coordinate system. Classified
ground returns were used to construct a Digital Terrain
Model (DTM) by connecting them into a Triangulated Ir-
regular Network (TIN) followed by linear interpolation
onto a regular grid. All returns within 0.5 m of the ground
were eliminated to remove the effects of understorey vege-
tation. LiDAR metrics used in the modelling were
extracted above the circular plots using corrected GPS
locations with the ClipData and CloudMetrics tools from
the Fusion software (McGaughey & Carson, 2003).

Predictive variables used for the modelling
The LiDAR metrics used in the modelling consisted of
height percentiles (H5 – H95), the mean (Hmean) and



Table 1 Mean and range for variables used in analyses

Stem volume Outerwood stress-wave velocity

Mean Range R P-value Mean Range R P-value

Stand dimensions

Stand density (stems ha-1) 248 114-433 0.66 <0.0001 242 114-433 0.50 0.0032

Slenderness (m m-1) 72.1 48.8-99.4 0.04 0.58 74.5 48.8-99.4 0.64 <0.0001

Mean top height (m) 36.3 27.1-41.4 0.30 <0.0001 36.9 28.1-41.4 0.50 0.0033

Diameter (cm) 50.8 39.2-67.1 0.16 0.036 50.7 39.2-64.0 −0.68 <0.0001

Basal area (m2 ha-1) 49.3 23.7-75.8 0.94 <0.0001 47.1 23.7-70.0 −0.03 0.88

Topographical variables

Slope (o) 28.9 9.0-45.0 0.03 0.75 29.6 14.0-45.0 0.37 0.036

Aspect (o) 175 0-356 0.0007 0.99 173 30-356 −0.22 0.22

Selected LiDAR metrics

H95 (m) 34.1 24.9-39.3 0.30 <0.0001 34.7 25.8-39.3 0.50 0.0033

H30 (m) 16.9 5.7-25.5 0.77 <0.0001 16.7 8.3-24.1 0.002 0.99

PCveg (%) 98.8 80.3-100.0 0.14 0.086 98.6 89.8-100.0 −0.20 0.27

Hsd (m) 9.9 6.9-12.9 0.04 0.65 10.1 6.9-12.9 0.55 0.0010

Also shown are summary statistics describing the strength and significance of the relationship of each variable with stem volume and outerwood stress-wave
velocity. Shown are the correlation coefficient (R) and P-value for simple linear correlations. Abbreviations for LiDAR metrics are as follows: H95 and H30 – 95th and
30th LiDAR height percentiles, PCveg –percentage of first returns from the vegetation (above the cutoff of 0.5 m), Hsd –standard deviation of LiDAR height.

Figure 1 Relationship between the LiDAR 30th height percentile
(H30) and total stem volume (TSV). The following linear line has
been fitted to the data: TSV = 150.49 + 26.26H30.
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maximum height (Hmax), several metrics describing the
LiDAR height distribution through the canopy (skew-
ness, coefficient of variation, standard deviation (Hsd),
kurtosis) and measures of canopy density such as the
percentage of returns reaching within 0.5 m of the
ground (PCzero) and the percentage of first returns above
0.5 m (PCveg).
Variables describing site topography and stand struc-

ture were also used in the modelling. These variables
included aspect, slope, stand density, stem slenderness,
basal area, mean diameter and Ht. Aspect was deter-
mined using a digital terrain model while slope was
measured in the field.

Analysis
Linear and non-linear models to predict TSV and V were
developed using PROC GLM and PROC NLIN in SAS
(SAS-Institute-Inc, 2000). Variables were introduced se-
quentially into each model starting with the variable that
exhibited the strongest correlation, until further additions
were either not significant or did not markedly improve
model precision (R2 gains of < 5%). Variable selection was
undertaken manually, one variable at a time, and plots of
residuals were examined prior to variable addition to ensure
that the variable was included in the model using the least
biased functional form.
Model precision was determined using the coefficient of

determination (R2) and the root mean square error (RMSE).
Model bias was determined through plotting predicted
against measured values. Residual values (measured –
predicted values) were plotted against predicted values,
all independent variables in the model and key variables
not included in the models. The contribution and func-
tional form of each variable in both of the final models
were examined through partial response functions.
These partial response functions were generated across
the range of each variable whilst holding other variables
at mean values in the dataset.

Results
Data ranges
Mean values for TSV and V were, respectively, 594.5 m3 ha-1

and 4.31 km s-1, with respective ranges of 296–908 m3 ha-1

and 3.79-4.52 km s-1. Ranges for stand dimensions, LiDAR



Figure 2 Relationship between total stem volume and values
predicted by Equation (4). For reference the 1:1 line is shown as a
dashed line.
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metrics and topographical variables were similar between
the full dataset and that used to determine V (Table 1). In
the full dataset, stem slenderness and stem diameter ranged
two-fold while basal area varied three-fold. Mean top height,
as estimated by LiDAR, ranged from 27.1-41.4 m. Slope
Figure 3 Partial response functions showing changes in total
stem volume with variation across the range in (a) LiDAR 30th

height percentile and (b) stand density.
varied five-fold and almost the complete range of aspects
were included in the dataset. There was a relatively wide
range in LiDAR metrics with the 30th LiDAR height per-
centile (H30) showing greatest variation from 5.7 to 25.5 m.

Bivariate correlations
Both TSV and V were significantly correlated to stand dens-
ity, mean top height and stem diameter (Table 1). There was
also a moderate correlation between V and slenderness that
had an R2 of 0.56 when a second order polynomial function,
with curvilinearity, was used to characterise the relationship.
With the exception of the significant relationship between
slope and V, none of the topographical variables were signifi-
cantly related to either V or TSV (at P=0.05). Of the LiDAR
metrics considered, TSV was most strongly related to H30,
while the standard deviation of height (Hsd) was the stron-
gest predictor of V (Table 1).

Total stem volume
The 30th LiDAR height percentile (H30) accounted for
60% of the variation in TSV (Figure 1), with RMSE of
82.3 m3 ha-1, using the following highly significant
(P<0.0001) linear equation,

TSV ¼ 150:49þ 26:26H30 ð3Þ

The best model of TSV included only H30 and stand
density (S) obtained from the ground plots, in the fol-
lowing equation,

TSV ¼ 7:57þ 20:68H30 þ 0:96S ð4Þ

The overall model was highly significant (P<0.0001) as
were the two variables included in the model (P<0.0001).
The model accounted for 76% of the variation in TSV and
had a RMSE of 64.0 m3 ha-1. A plot of predicted against
Figure 4 Relationship between actual velocity and values
predicted using Equation (6). For reference the 1:1 line is shown
as a dashed line.



Figure 5 Partial response functions showing changes in
outerwood stem velocity with variation across the range in (a)
standard deviation of elevation, (b) percentage of first returns
from the vegetation (above 0.5 m) and (c) stand density.
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actual TSV showed the model to be relatively unbiased
(Figure 2). Partial response functions showing the change in
TSV with changes in both variables show the model to be
more sensitive to H30 than S (Figure 3). Model residuals of
TSV were normally distributed (Shapiro-Wilk P > 0.05) and
exhibited little correlation with either the variables in the
model or those that were excluded from the model (data
not shown).

Outerwood velocity
The best predictive model of V (using only LiDAR va-
riables as possible components) included the standard
deviation in LiDAR heights (Hsd) and the percentage of
first returns from the vegetation (PCveg). The model had
an R2 of 0.37, RMSE of 0.12 km s-1, and was described
by,

V ¼ 5:41þ 0:0732Hsd � 0:0187PCveg ð5Þ
The overall model was significant (P=0.0013) as was

Hsd (P<0.0001). Although PCveg was marginally insignifi-
cant (P=0.11), this variable was retained as it was a use-
ful predictor in the more complex model outlined
below. With the exception of one outlier, a plot of model
predictions against actual velocity showed little apparent
bias (data not shown).
Using all available variables the best predictive model

of V included Hsd, PCveg and stand density (S) in the fol-
lowing formulation,

V ¼ 7:08þ 0:0690Hsd � 0:0423PCveg

þ 0:893 1� exp �0:00691Sð Þð Þ ð6Þ

The overall model was significant as were all variables
(P<0.05). The model accounted for 70% of the variance
in V, with RMSE of 0.086 km s-1. A plot of predictions
against actual velocity was relatively unbiased (Figure 4),
although there was one outlier with a low V (Figure 4).
Removal of the outlier had little effect on the precision
of the model with the R2 reduced from 0.70 to 0.69.
Residuals from the final model were normally distributed
(Shapiro-Wilk P > 0.05) and showed little pattern when
plotted against any of the variables in the model or any of
the key variables not included within the model (e.g. slope,
aspect).
Partial response functions show linear relationships

between V and all variables apart from stand density. For
stand density, there was an exponential increase in V
that approached a threshold at stand densities exceeding
400 stems ha-1 (Figure 5).

Discussion
This study showed LiDAR metrics to be significantly
related to both TSV and V. Inclusion of stand density
into these two regression models greatly improved the
predictive power of these relationships, highlighting how
knowledge of stand density can be useful at both the
intra and inter stand level. Little research has demon-
strated a link between LiDAR metrics and wood quality
attributes such as V and further studies should be under-
taken to explore the generality of this relationship.
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The variables included in the final model of V are likely to
be significant predictors of V as they are significantly related
to stem slenderness. As found here, stem slenderness has
previously been identified as one of the key drivers of V and
modulus of elasticity (Watt et al., 2009; Watt & Zoric,
2010). Both standard deviation of height (Hsd) and stand
density exhibited highly significant (P<0.001) positive rela-
tionships with stem slenderness.
There is a biological basis for the relationships be-

tween stem slenderness and both Hsd and stand density.
Hsd describes variation in LiDAR heights in the canopy
and provides a measure of stand porosity (the ratio or
percentage of pore space to the space occupied by tree
stems, branches, twigs and leaves). It has a strong correl-
ation with upper LiDAR metrics, reflecting increases in
stem slenderness as the stand height increases. The posi-
tive relationship between stand density and slenderness,
found here, has been well described previously for light
demanding conifers such as P. radiata (Watt & Kirschbaum,
in press) and results from greater height extension than
diameter growth in response to increasing competition for
light. Although the percentage of first returns from vegeta-
tion (PCveg) was not significantly related to slenderness
(P= 0.28) this variable was retained in the final model of V
as there was a clear relationship between PCveg and V.
Predictive power of the best TSV model shown here was

within the range cited by previous localised studies where
coefficient of determinations varied from 0.46 (Naesset,
1997) to 0.97 (Means et al., 2000). The relatively high coeffi-
cient of determination found here partially reflects a wide
range in the dependant variable (TSV) that tends to inflate
the percentage of variance explained. As RMSE is not sub-
ject to the same limitation, this statistic provides a more
conservative estimate of precision. When compared to pre-
vious research the RMSE for the best model of 64.0 m3 ha-1

found here is within the mid-range of previous values that
include 28 m3 ha-1 (Naesset, 1997, 2002; van Aart et al.,
2006), 18.3 – 31.9 m3 ha-1 (Holmgren & Jonsson, 2004),
38.0 – 56.7 m3 ha-1 (Naesset, 2002), 26.1 – 82.8 m3 ha-1

(van Aart et al., 2006) and 73 m3 ha-1 (Means et al., 2000).
The variables included in the final models were con-

sistent with previous research and have sound mechanis-
tic basis. Logically, LiDAR models describing TSV
should combine stem height with variables that provide
a measure of stand density and stem diameter. The stem
height variable used, H30, was appropriate as is affected
by the point cloud of almost all trees of significant size,
as opposed to top-end height percentiles (e.g. H95) that
are only altered by the point clouds of the highest trees.
Inclusion of stand density determined from plot mea-
surements was found to be superior to the use of LiDAR
metrics that approximate this quantity (e.g. PCveg).
Stand density could be included as a driving variable

at a range of resolutions. At a coarse level, stand density
for the compartment could be used as input to the
model. Alternatively tree counting software such as TiMBRs
could be used to identify tree locations (Culvenor et al.,
1998; Culvenor, 2002) which could then be used to estimate
local stand density above each ground plot and over the
whole stand using an appropriate grid size.

Conclusions
In conclusion, LiDAR metrics were found to be of con-
siderable use for predicting V and TSV at the forest level.
The most precise models of V and TSV included stand
density as a predictive variable. Little research has
demonstrated a link between LiDAR metrics and wood
quality metrics such as V. Given that V is an important
determinant of structural grade timber value further re-
search into the link between LiDAR metrics and V
would be warranted.
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