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Abstract
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strong convergence for certain special cases.
MSC: 47J25; 47N20; 34G20; 65J15

Keywords: ergodic; implicit midpoint rule; nonexpansive mapping; projection;
Hilbert space

1 Introduction
The first mean ergodic theorem for nonlinear noncompact operators was proved by Bail-
lon []. Let C be a closed convex subset of a Hilbert space H and let T : C → C be a
nonexpansive mapping (i.e., ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C) with fixed points. Then,
for each x ∈ C, the Cesàro means

Sn(x) :=

n

n–∑
k=

Tkx, n ≥ ,

converge weakly to a fixed point of T . This mean ergodic theorem was extended by Bruck
[] to the setting of Banach spaces that are uniformly convex and have a Fréchet differen-
tiable norm. Baillon and Clement [] also investigated ergodicity of the nonlinear Volterra
integral equations in Hilbert spaces.
It is quite natural to consider ergodic convergence of iterative algorithms in the case

where the sequences generated by the algorithms either are not guaranteed to converge
or not convergent at all. For instance, the double-backwardmethod of Passty [] generates
a sequence {xn} in the recursive manner:

xn+ =
(
Jλn+B ◦ Jλn+A

)
xn, n≥ , (.)

where A and B are maximal monotone operators in a Hilbert space such that A+B is also
maximal monotone and the inclusion  ∈ (A + B)x is solvable, and JλA and JλB are the resol-
vents ofA and B, respectively, that is, JλA = (I +λA)– and JλB = (I +λB)–. It is well known []
that the sequence {xn} generated by the double-backward method (.) fails to converge
weakly, in general. However, Passty [] showed that if the sequence of parameters, {λn}, is
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in � \ �, then the averages

zn :=
∑n

i= λixi∑n
i= λi

, n = , , . . . , (.)

converge weakly to a solution to the inclusion  ∈ (A + B)x.
The implicit midpoint rule (IMR) for nonexpansive mappings in a Hilbert space H , in-

spired by the IMR for ordinary differential equations [–], was introduced in []. This
rule generates a sequence {xn} via the semi-implicit procedure:

xn+ = ( – tn)xn + tnT
(
xn + xn+



)
, n≥ , (.)

where the initial guess x ∈ C is arbitrarily chosen, tn ∈ (, ) for all n, and T : C → C is a
nonexpansive mapping with fixed points.
The IMR (.) is proved to converge weakly [] in the Hilbert space setting provided

the sequence {tn} satisfies the two conditions:
(C) tn+ ≤ atn for all n ≥  and some a > , and
(C) lim infn→∞ tn > .

However, this algorithm may fail to converge weakly without the assumption (C). We
therefore turn our attention to the ergodic convergence of the algorithm.Wewill show that
for any sequence {tn} in the interval (, ), the mean averages {zn} as defined by (.) will
always converge weakly to a fixed point of T as long as {xn} is an approximate fixed point
of T (i.e., ‖xn –Txn‖ → ). We will also show that under certain additional conditions the
means {zn} can converge in norm to a fixed point of T . This paper is organized as follows.
In the next section we introduce the concept of nearest point projections and properties
of nonexpansivemappings. Themain results of this paper (i.e., weak and strong ergodicity
of the IMR (.)) are presented in Section .

2 Preliminaries
Let C be a nonempty closed convex subset of a Hilbert space H . Recall that the nearest
point projection from H to C, PC , is defined by

PCx := argmin
y∈C ‖x – y‖, x ∈H . (.)

We need the following characterization of projections.

Lemma . Let C be a nonempty closed convex subset of a Hilbert space H . Given x ∈ H
and z ∈ C, then z = PCx if and only if any one of the following properties is satisfied:

(i) ‖x – z‖ ≤ ‖x – y‖ for all y ∈ C;
(ii) 〈x – z, y – z〉 ≤  for all y ∈ C;
(iii) ‖x – z‖ ≤ ‖x – y‖ – ‖z – y‖ for all y ∈ C.

Recall that a mapping T : C → C is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, x, y ∈ C.
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A point x ∈ C such that Tx = x is said to be a fixed point of T . The set of all fixed points of
T is denoted by Fix(T), namely,

Fix(T) = {x ∈ C : Tx = x}.

In the rest of this paper we always assume Fix(T) �= ∅.
We need the demiclosedness principle of nonexpansive mappings as described below.

Lemma . [] Let C be a closed convex subset of a Hilbert space H and let T : C → C be
a nonexpansive mapping. Then the mapping I – T is demiclosed in the sense that, for any
sequence {xn} of C, the following implication holds:

xn → x weakly and (I – T)xn →  in norm ⇒ (I – T)x = .

Next we need the following lemma (not hard to prove).

Lemma . [] For each integer n ≥ , λ ≥ , . . . ,λn ≥  such that λ + · · ·+λn = , points
u, . . . ,un ∈ C, and any nonexpansive mapping T : C → C, we have

∥∥∥∥∥T
( n∑

j=

λjuj

)
–

n∑
j=

λjTuj

∥∥∥∥∥


≤
∑
i<j

λiλj
(‖ui – uj‖ – ‖Tui – Tuj‖

)
. (.)

Recall also that the implicit midpoint rule (IMR) [] generates a sequence {xn} by the
recursion process

xn+ = ( – tn)xn + tnT
(
xn + xn+



)
, n≥ , (.)

where tn ∈ (, ) for all n, and T : C → C is a nonexpansive mapping.
The following properties of the IMR (.) are proved in [].

Lemma . Let {tn} be any sequence in (, ) and let {xn} be the sequence generated by the
IMR (.). Then

(i) ‖xn+ – p‖ ≤ ‖xn – p‖ for all n≥  and p ∈ Fix(T). In particular, {xn} is bounded,
and moreover, we have

lim
n→∞‖xn – p‖ exists for every p ∈ Fix(T). (.)

(ii)
∑∞

n= tn‖xn – xn+‖ < ∞.
(iii)

∑∞
n= tn( – tn)‖xn – T( xn+xn+ )‖ <∞.

The convergence of the IMR (.) is proved in [].

Theorem . Let C be a nonempty closed convex subset of a Hilbert space H and T : C →
C be a nonexpansive mapping with Fix(T) �= ∅. Assume {xn} is generated by the IMR (.)
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where the sequence {tn} of parameters satisfies the conditions (C) and (C) in the Intro-
duction. Then {xn} converges weakly to a fixed point of T .

3 Ergodicity
In this section we discuss the ergodic convergence of the sequence {xn} generated by the
IMR (.), that is, the convergence of the means

zn :=

sn

n∑
k=

akxk , n = , , . . . , (.)

where {an} is a sequence of positive numbers such that

sn :=
n∑
k=

ak → ∞ (as n→ ∞). (.)

Set F = Fix(T) and let PF be the nearest point projection from H to F .

Lemma . The sequence {PFxn} is convergent in norm.

Proof First observe that

lim
n→∞‖xn – PFxn‖ exists. (.)

As a matter of fact, we get for n >m, by Lemma .(i) and Lemma .(i),

‖xn – PFxn‖ ≤ ‖xn – PFxm‖ ≤ ‖xm – PFxm‖.

That is, {‖xn – PFxn‖} is decreasing and (.) is proven.
Applying the inequality (Lemma .(iii))

‖PFv – u‖ ≤ ‖v – u‖ – ‖PFv – v‖, v ∈H ,u ∈ F (.)

to the case where v = xn and u = PFxm (with n >m) together with Lemma .(i), we get

‖PFxn – PFxm‖ ≤ ‖xn – PFxm‖ – ‖PFxn – xn‖

≤ ‖xm – PFxm‖ – ‖PFxn – xn‖.

The strong convergence of {PFxn} follows immediately from the fact (.). �

Remark . The limit of {PFxn}, which we denote by p̂, can also be identified as the
asymptotic center of the sequence {xn} with respect to the fixed point set F of T . In other
words,

p̂ = argmin
x∈F f (p) := lim sup

n→∞
‖xn – p‖. (.)

http://www.journalofinequalitiesandapplications.com/content/2015/1/4
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As a matter of fact, by (.) we get, for any p ∈ F ,

‖PFxn – xn‖ ≤ ‖xn – p‖ – ‖PFxn – p‖.

Upon taking limsup we immediately obtain

f (p̂) ≤ f (p) – ‖p – p̂‖, p ∈ F .

Hence, (.) holds.

Theorem . Let C be a closed convex subset of a Hilbert space H and let T : C → C be
a nonexpansive mapping such that F ≡ Fix(T) �= ∅. Assume {tn} is any sequence of positive
numbers in the unit interval (, ) and let {xn} be the sequence generated by the IMR (.).
Define the means {zn} by (.), where the weights {an} are all positive and satisfy the con-
dition (.). Assume, in addition, limn→∞ ‖xn – Txn‖ = . Then {zn} converges weakly to a
point z, where z = limn→∞ PFxn (in norm).

Proof Let z = limn→∞ PFxn which is well defined by Lemma .. By Lemma .(ii), we have,
for each k,

〈xk – PFxk ,u – PFxk〉 ≤ , u ∈ F .

It turns out that, for u ∈ F ,

〈xk – PFxk ,u – z〉 ≤ –〈xk – PFxk , z – PFxk〉 ≤M‖z – PFxk‖.

(HereM is a constant such thatM ≥ ‖xk – PFxk‖ for all k.)
By multiplying by ak and then summing up from k =  to n, we conclude

〈
zn –


sn

n∑
k=

akPFxk ,u – z

〉
≤ M

sn

n∑
k=

ak‖z – PFxk‖. (.)

We now claim that

lim
n→∞‖zn – Tzn‖ = . (.)

Consequently, by Lemma ., each weak cluster point of {zn} falls in F .
To see (.), we will prove that

‖Tzn – zn‖ < δ(ε) (.)

for all n big enough, where δ(ε) →  as ε → . For the sake of simplicity, we may, due to
the assumption limn→∞ ‖xn – Txn‖ = , assume that

‖xn – Txn‖ < ε (.)

for all n.
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Let h(t) =
√
t for t ≥  and let M be a constant such that M ≥  · diam(xn). For each n,

we put λ
(n)
j = aj

sn for  ≤ j ≤ n and apply (.) to get

∥∥∥∥∥T(zn) –
n∑
j=

λ
(n)
j Txj

∥∥∥∥∥ ≤ h
(
M

∑
i<j

λ
(n)
i λ

(n)
j

(‖xi – xj‖ – ‖Txi – Txj‖
))

≤ h
(
M

∑
i<j

λ
(n)
i λ

(n)
j

(‖xi – Txi‖ + ‖xj – Txj‖
))

≤ h
(
εM

∑
i<j

λ
(n)
i λ

(n)
j

)

≤ h(εM). (.)

Combining (.) and (.), we derive that

∥∥T(zn) – zn
∥∥ ≤

∥∥∥∥∥T(zn) –
n∑
j=

λ
(n)
j Txj

∥∥∥∥∥ +

∥∥∥∥∥
n∑
j=

λ
(n)
j (Txj – xj)

∥∥∥∥∥
≤ h(εM) +

n∑
j=

λ
(n)
j ‖Txj – xj‖

≤ h(εM) + ε. (.)

It turns out that (.) with δ(ε) =
√

εM + ε.
Now since PFxn → z in norm, we see that the means 

sn

∑n
k= akPFxk → z in norm, as

well. Consequently, if {znj} is a subsequence weakly converging to some point z∗, it follows
from (.) that

〈
z∗ – z,u – z

〉 ≤ , u ∈ F . (.)

This together with the fact that z∗ ∈ F implies that z = PFz∗ = z∗. That is, z is the only weak
cluster point of the sequence {zn} and therefore, we must have zn → z weakly. �

Remark . In Theorem . we assumed that limn→∞ ‖xn – Txn‖ = . This assumption
is guaranteed if the sequence {tn} satisfies the condition (C) in the Introduction, that is,
lim infn→∞ tn > . Indeed, by (C) and Lemma .(ii), we find

lim
n→∞‖xn+ – xn‖ = . (.)

Since the definition of IMR (.) yields

‖xn+ – xn‖ = tn
∥∥∥∥xn – T

(
xn + xn+



)∥∥∥∥,
we also have

lim
n→∞

∥∥∥∥xn – T
(
xn + xn+



)∥∥∥∥ = . (.)

http://www.journalofinequalitiesandapplications.com/content/2015/1/4
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Combining (.) and (.), we infer that

‖xn – Txn‖ ≤
∥∥∥∥xn – T

(
xn + xn+



)∥∥∥∥ +
∥∥∥∥Txn – T

(
xn + xn+



)∥∥∥∥
≤

∥∥∥∥xn – T
(
xn + xn+



)∥∥∥∥ +


‖xn – xn+‖ → .

Remark . If we assume (.) holds for all n > N , then we need some more delicate
technicalities dealing with (.). We may proceed as follows. Decompose zn (for n > N )
as

zn =
sN
sn

zN +
sNn
sn

zNn ,

where

sNn =
n∑

j=N+

aj, zNn =
n∑

j=N+

λ
(n,N)
j xj, λ

(n,N)
j =

aj
sNn

, n >N .

As sn → ∞, we may assume sN
sn ‖zN‖ < ε. Repeating the argument for (.) and (.), we

get

∥∥T(
zNn

)
– zNn

∥∥ ≤ h(εM) + ε.

LetM = supn≥ ‖xn‖. We finally obtain, for n >N ,

∥∥T(zn) – zn
∥∥ ≤ ∥∥T(zn) – T

(
zNn

)∥∥ +
∥∥T(

zNn
)
– zNn

∥∥ +
∥∥zNn – zn

∥∥
≤ ∥∥T(

zNn
)
– zNn

∥∥ + 
∥∥zNn – zn

∥∥
=

∥∥T(
zNn

)
– zNn

∥∥ + 
sN
sn

∥∥zN – zNn
∥∥

≤ h(εM) + ε + Mε.

Next we show that in some circumstances, the sequence {zn} can converge strongly.

Theorem . Let the assumptions of Theorem . holds. Then the sequence {zn} converges
in norm to the point z = limn→∞ PFxn if, in addition, any one of the following conditions is
satisfied:

(i) The fixed point set F of T has nonempty interior.
(ii) T is a contraction, that is,

‖Tx – Ty‖ ≤ ρ‖x – y‖, x, y ∈ C,

where ρ ∈ [, ) is a constant. In this case, the sequence {xn} generated by the IMR
(.) converges in norm to the unique fixed point of T .

(iii) T is compact, namely, T maps bounded sets to relatively norm-compact sets.

Proof (i) By assumption, we have x ∈ F and δ >  such that
• x + δw ∈ F for all w ∈H such that ‖w‖ ≤ .

http://www.journalofinequalitiesandapplications.com/content/2015/1/4
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Therefore, upon substituting x + δw for u in (.) we obtain

δ

〈
zn –


sn

n∑
k=

akPFxk ,w

〉

≤ –

〈
zn –


sn

n∑
k=

akPFxk ,x – z

〉
+
M
sn

n∑
k=

ak‖z – PFxk‖, (.)

for all w ∈H such that ‖w‖ ≤ .
Taking the supremum in (.) over w ∈H such that ‖w‖ ≤  immediately yields

δ

∥∥∥∥∥zn – 
sn

n∑
k=

akPFxk

∥∥∥∥∥
≤ –

〈
zn –


sn

n∑
k=

akPFxk ,x – z

〉
+
M
sn

n∑
k=

ak‖z – PFxk‖ → .

This verifies that zn → z in norm.
(ii) Since T is a contraction, T has a unique fixed point which is denoted by p. By (.)

we deduce that (noticing ‖xn+ – p‖ ≤ ‖xn – p‖)

‖xn+ – p‖ ≤ ( – tn)‖xn – p‖ + tnρ
∥∥∥∥  (xn + xn+) – p

∥∥∥∥
≤ ( – tn)‖xn – p‖ + 


ρtn

(‖xn – p‖ + ‖xn+ – p‖)
≤ (

 – ( – ρ)tn
)‖xn – p‖.

It turns out that

( – ρ)tn‖xn – p‖ ≤ ‖xn – p‖ – ‖xn+ – p‖

and hence

∞∑
n=

tn‖xn – p‖ < ∞.

Since
∑∞

n= tn = ∞, we must have lim infn→∞ ‖xn – p‖ = . However, since the sequence
{‖xn –p‖} is decreasing, we must have limn→∞ ‖xn –p‖ = . Namely, xn → p in norm, and
so zn → p in norm.
(iii) Since T is compact and since {zn} is weakly convergent, {Tzn} is relatively norm-

compact. This together with (.) evidently implies that {zn} is relatively norm-compact.
Therefore, {zn} must converge in norm to z = limn→∞ PFxn. �
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