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1 Introduction
In this paper, we are concerned with the existence and uniqueness of solution to an Ry, -
valued parabolic variational inequality with the integro-differential terms

(uX); — L — Fe(x,t,u, V) > 0, in Qr,

uk(x,t) > uff(%), in Qr,

((*); = L — Fi(, t, u, Vo)) (uk — ufi(x)) = 0, in Qr, (1)
u(x, 0) = ub (x), on Q,

uk(x,t) = g5 (x, 1), on a2 x (0, T),

where Q € R, is an open set with a smooth boundary 92, Qr = Q x [0, T] is a parabolic
domain for some T > 0. L = (Ly,Ly,...,Ly ), and Ly = L (x, £) is a divergence form second-
order elliptic operator satisfying

dy d 9 - 9 d d 9 dy
L=y YL (k(x t)wr) S Bl =Y a0
r=1 ij=1 % i r=1 i=1 i r=1

Moreover, the integro-differential operator Fy is defined by
Fi(x,t,u, Au) = / Si(x 8,9, ulx, 1), Vulx, 1) dy
Q

which is a continuous integral operator as defined in [1].
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The concrete motivations of studying (1) can be easily found in the literature. If d; =1,
Fi(x,t,u, Au) = 0, and the operator L; degenerates to

o? 92 o? d
Lu=0;u— Uu+|—-r)—u+ru,
2 9a 2 ox

(1) becomes the linear variational inequality based on the famous Black-Scholes equation
(see [2]). Such a variational inequality arises in many applications of American option
pricing (see [3, 4]). To deal with this problem, some scholars often introduce a free and
moving boundary problem. By adding a certain penalty term to the Black-Scholes equa-
tion, the solution of this variational inequality is extended to a fixed domain. Furthermore,
this penalty term forces the solution to stay above the payoff function at expiry. Through-
out the last decade, a number of papers addressing penalty schemes for American options
have been published (see, for instance, [5-9] and references therein).

However, several Black-Scholes models proposed in recent years, such as the model
found in [8, 9], have allowed the risk assets driven by levy processes. In this model, the
risk asset S as in the Black-Scholes model, follows the stochastic process (assume d; = 1)

dSt = I‘LSt dt + USt dZt,

from which we obtain the following PIDE:

2

0:U = %[8xxu — 0] + / [u(x +y,t) —ulx,t) - (ey - 1)8xu]v(dx), (2)

where z; is a kind of levy process ( for details, see [10, 11]). The authors in [9] generalize (2)
and prove the existence and uniqueness of a classical solution to a more general problem
in the parabolic domain Qr = Q x [0, T'], where Q is an open, unbounded subset of R,
with a smooth boundary d€2. A related work in the context of quantum mechanics has
been studied in [12, 13].

Therefore, the authors of this paper intend to study a more complex variational inequal-
ity involved in American option based on the more complicated PIDE type Black-Scholes
equation than (2). And we will consider R, -valued parabolic variational inequality (1) us-
ing the penalty method. The rest of this article is as follows. In Section 2, we state the
main result. Section 3 discusses the penalty problem which will be used to prove our main
result. In Section 4, we show the proof of our main result.

2 Main result

In this section, we present some notations and lemmas which are important to be used to
prove our main result. Define IL,(2) = L,(€2;Ry,) as the space of all Ry -value functions
u=(u',u?,...,u™) satistying

|u|| Z”uk”Lp Rd

Let1 <p <ooand k € N. By sz , we mean that the R-value functions space satisfies

W, (Q) = {u € LP(%R)|D"u € LP(R),1 < o < k}
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which is Banach spaces with the norm

IVl o) = Z ”Da"”ua(sz)'

0<|a|<k

Further, we use the following Sobolev spaces which are modified from R-value version to

R, -value version
WH(Q) = {u € IP(QR)|IDu € I/ (% Ry, 1 < @ < k}

with the norm

Wy = D 1DV gy

0=<|a|<k

As mentioned in [14], we shall use C***%%+%/2(Q1) to denote the Holder space which satis-
fies

CHRB(Qry = {u|D*8f € C(Qr), ] +2p < 2k}.

For 0 < T < oo, we also use some following common notation from PDEs without men-

tioning:
HKQ) = Wé‘(Q), - k) = ”'”Wé‘(ﬂ)’
H*(Q) = WIZ((Q), Il () = ”'”W’Q(W

L7(0, T; HY()) = {v(-, t)|v(-, £) € HX(R) in (0, T);

V(" t) ||Hk(§2) € LP(O’ T)}:

L7 (0, T; HY(2)) = {v( £)Iv(-,t) € HY(R) in (0, T);

V('rt)”Hk(Q) € LP(O: T)},
T » T »
”””iﬂ(o,r;]—{k(g)) = /0 ””("t)HHk(Q) dz, ”uHIZP(O,T;Hk(Q)) = /0 - 0) ”Hk(g) dt,

where 0 < T < oo.
Moreover, we use the following lemmas to show the existence and uniqueness of the
solution for the penalty approximation of our main problem.

Definition 2.1 Assume that X is a real Banach space, the space C([0, T']; X) consists of all

continuous functions u : [0, T] — X with

u x) = max ||ullx < oo.
llztll c (o, 1150 ossz” Ilx

Then C([0, T]; X) is a Banach space endowed with the norm ||u||¢(jo,7};x)-

Definition 2.2 A mapping A : X — X is called to be compact if and only if the sequence
{Au]}?2, is precompact for each bounded sequence {u}2,, that is, there exists a subse-

quence {u };’fl such that {A[uk/] ,9:01 converges in X.
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Lemma 2.3 (Schaefer’s fixed point theorem) Suppose that A : X — X is a continuous and

compact mapping. Further, assume that the set
{u € X :u=M1Alul, for some 0 <A < 1}

is bounded. Then A has a fixed point.

The following two lemmas from the linear theory of parabolic partial differential equa-

tions can be found in [15].

Lemma 2.4 (Energy estimates) Counusider the problem

k ,
aaLt - LkV z.ﬁ((x; t); in QT:
vk (x,0) =0, on Q, 3)
VK (x,t) = 0, ond2 x (0,T)

with fi € L*(0,T;L*()). Then there exists a unique solution v € L*(0, T;H§(Br)) N
C([0, T); L%(Bg)) to problem (9) that satisfies

v
- < Clfll20,r2(2)

O<t<T 12(0,T3HG ()

ma 190 gy 407y |

where C is a positive constant depending only on Q, T and the operator L.

Lemma 2.5 (Improved regularity) There exists a unique weak solution
u € L*(0, T3 Hyy(Br)) N C([0, T1; L*(Bg))

to problem (3), with 2 € L*(0, T; H™(R)). Moreover,

u e L*(0, T; H*(2)) N L®(0, T; Hy(R2)), 2—;‘ e L*(0, T; H ().

We also have the estimate

ou
ot

o R TR L ETEE TR ) PO

= Clf 20,720 (4)
where C is a positive constant depending only on Q, T and the operator L.

Throughout this section, we impose the following assumptions:

(A1) The coefficients aZr(x, 1), bf(r(x, t), ¢k (%, t) belong to the Holder space C*/2(Qr).

(A2) The operator a% — Ly is (uniformly) parabolic, that is, there exists a constant 6 > 0
such that

dy o d
0 V[P <3 a] (08 - pF forall (x,1) € Qrv € Ry.
k=1

k=1 ij=1
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(A3) There exists a positive constant B such that for all v € H}(R) and (x,t) € Qr, we

have

d d
BY ok V<D B t)d Vel t)>0,kr=12,...,d).
k=1

k,r=1

(A4) uf(x) and gx(x, t) belong to the Holder spaces C***(R%) and C***1*9/2(Qr), respec-
tively. Moreover, for all (x,£) € Qr, we have that ué (x) <grlx, 1), k=1,2,...,d;.

(A5) The following two consistency conditions
2(x,0) = ub(x) and  gi(x,0) — Li(x, 0)uf (x) = 0

hold forallx € 02, k =1,2,...,d;.
(A6) fx(x,t,,2,p) is nonnegative and belongs to C}(Qr x  x Ry xRy), k=1,2,...,d,,

and there exists 0 < € < 1 satisfying

ViCrosnzip1) =fi s 20, 02)| < €l — 22| + €lp1 = pal.

(A7) For some Cy > 0, f = (fi,/2,...,fa,) satisfies the estimate

di dp
[fi(x,t,5,2,p)| < Co (fo,k DI AEDD ’P’|)
r=1 r=1

for all (x,¢,9,2,p) € Qr x Q X Ry X Ry, where Cy is a positive constant independent of

frfox € LX)
(A8) If u € HZ (Ry), then F(x,t,u, Vu) € L*(0, T; L2 (R)). If w,, — w in L*(0, T; Hy(S2)),

then Fi(x, t, w,, Aw,) — Fi(x, ¢, w, Aw) in L*(0, T; L2(R2)).

Using these assumptions, we will elaborate our main result.

Theorem 2.6 Under hypotheses (A1)-(A8), there exists a unique solution u € L*(0,T;
H2(R)) N C([0, T); L2(RQ)) to variational inequality (1) satisfying

laell 20,7820y < N (ltollL2(@) + gl 20,7202 + 1 FC>50,0) | 1200 712(c)-

The proof of Theorem 2.6 will be given in Section 4.

3 The penalty problem
In order to prove the existence and uniqueness of the solution, we consider the following

penalty approximation of problem (1)

(W), — Liwse — Fi(o,t, e, Vi) + Be(uk — uf(x)) =0, in Qr,
uk(x,0) = uf (%), on Q, (5)
uif(x, t) =g"(x,t), on Q2 x (0,7),
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where B, k() is the penalty function satisfying

0<e<1, Bex®)eC*R),  Ber®) =<0, BLx)>0, Bl =<0,

0, x>0,
-0, x<0.

lim B k(%) =
e—0
Next, we introduce a change of variables
v(x, t) = ue(x, £) — @(x, £)
to transform problem (5) into the zero boundary condition of the form
(W) =Ly = Fr(, £, v+ 0, VIV + @) — B (VE + ¢F — ulg(x)), in Qr,
v (x,0) = 0, on £,
VK, t) = oF(x,2) = 0, on Q2 x (0, 7).
Here ¢ = (@', ¢?,...,¢M) € C**¥1*9/2(Qr) is the unique solution to the problem
(Wh)e - Liu=0, inQr,
uF(x,0) = ulg(x), on £,
uk(x,t) = gr(x,t), ondQ x (0,T)
satisfying
lellz20,mm2(0) < N(||”0||1L2(Q) + ||g||L2(o,T;L2(Q)))~

For further details, see Theorem 10.4.1 in [15].

Definition 3.1 v is said to be a weak solution to problem (7) if
ad
ve L2(0, T;HA(Q), a_: e 12(0, T;H ()

and

vk ad
(e

r=1 ij=1
d d &
* / (Z Zbﬁ(,(x, 1o - g+ Z Crr (2, )V -g) dx
2 r=1 i=1 —1

= / Fk(x, Lv+e, V(v + go))gdx - / ﬁg(vk + k- u’é)gdx
Q Q
for all g € H} ().
Lemma 3.2 Ifv € L*(0, T;HY(R)) and 3 € L*(0, T;H™\(R2)), then

ve C([0, TELA(Q)).

(6)

7)

(8)
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The mapping t — ||v(t) ||E2(Q) is absolutely continuous with

dy &
d Ve 2 8Vk k d 2 31/ A
oIV Ol = 2/9 SV g = 2;]9 FYaRdy
forany 0 <t < T. The proof is quite standard and can be found in [15].

Lemma 3.3 If v is a weak solution to problem (7), then there exists a positive constant C
such that

[v(e) ||L2(0,T;H})(Q)) =G
where C is independent of v.

Proof Choosing v € H},(R2) as the test function in (9), we obtain

vk a
/ <¥Vk + Z Zazr(x, 1oV - 8jvk) dx
Q

r=1 ij=1

d d di
+ / (Z be(,(x, o -V + ch,(x, t)v’vk> dx
Q r=1

r=1 ij=1
= / Fk(x, Lv+e, V(v+ go))vdx - / ,3,3(1/]( + <pk - ug)vk dx. (10)
Q Q

From (1), we easily have that

Vot k> 1/6 for all (x,£) € Qr.

This and (6) lead to

'/ Be (vk + ok - u’é)vk dx
Q

<[8.0) - [ #]x (1)
Q
By (A7), so that we get

|Ec(vt,v+9, V(v +9))]

=

/fk(x, Ly, v+, V(v+9)) dy‘
Q

di di dq dy
< CO/ (fo,k + Z ’vk’ + Z ‘VV](’ + Z ’(pk’ + Z |V<pk‘> dx, 12)
Q k=1 k=1 k=1 k=1

where Cj is a positive constant which depends only on the region Q. It follows by (A2) and
(A3) that

dy

d
Z Zaz,a,»v’ vk, (13)

dy
0 |V <
k=1 k=1 ij=1
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d d d d
[t moow var=p3" 3 [ank v
Q Q

kr=1 i=1 k=1 i=1
B a4 2
k

:522/93,@) dx=0 (14)

k=1 i=1

and
/ Crr(x, )V dx > 0. (15)
Q

Now, we use Theorem 10.4.1 in [15] and substitute (11)-(15) into (10) to arrive at

1d, o a o2
sl =0 [ [V e
k=1

dy di di dy di
<o (e S S Dl St S
& k=1 k=1 k=1 k=1 k=1
d
1) - [ 3ol ax 1o
Qg

It follows, by using the Cauchy inequality with @ > 0, that

Ld e < k|2
sl e 02 [ |94 Pas
k=1

( [l | (z,,)d) o (zw)d
et et L)
el oG
et o ()
oo s [ (S) @)

Next, we choose 0 < w < 1 to arrive at

1d 2 ~
k 2 2
E E ||V ||L2(Q) + CIHV”H(I)(Q) = CZHV”]LZ(Q) + C(t)’
where C; and C; are positive constants and
dy

a(t):cowfﬂ(ﬁk+<§|¢k|>2+(Zwm)z) dx+a)|,38(0)|~/;21dx.

k=1
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Note that ¢; € C**1*92(Q;). Therefore we choose a positive constant Cs = sup,_,. C(£)

to obtain

1d 2

5 21V Ol + GV ) < ColViiEag) + Ca- (17)
On the one hand, letting n(¢) = ||v(t)||]i2(9), (17) gives

n'(¢) <2Con(t) +2Cs.

Using the differential form of Gronwall inequality with 1(0) = ||v(0)|| )= 0, we get

2
L£2(Q

v < 2”@yt

- 20

and

2
max [ V(&)

where Cy, is a positive constant independent of v.
On the other hand, an integration of (17) from 0 to 7" with ||v(0) IIH%2 @ = 0 yields

T T
. 2
le ||v||H2_H1(Q) dt < CZ/ ||v||i2(9) dt + G T + lim ”v(t) ||]L2(Q).
0 0 0 t—>T

Using inequality (18), we obtain

GGy Cs Cy

|| V(t) ||L2(0,T;H(1)(Q)) < C1 T+ a T+ a.
Thus, the proof is ended by letting C = CZC?‘ T+ % T+ % > 0. O

Lemma 3.4 The solution to problem (7) satisfies

uF(x,8) > ulg (x).
Proof Using (A8), there exists a positive constant M satisfying

’Fk(x, t,u, Vu)’ <M.
Here we plan to finish the proof by using contradiction. Assume that Uzlz 1 {(tF(x, ) < ulg (%)}
is not empty, that is, at least there exists one k satisfying uk < ulg. Let B:(0) = —M, from (16),
one gets

us — Lu = Fr(x,t,u, Vu) — B, (uk - ulo((x)) > Fy(x, t,u, Vu) — B.(0) > 0.

Using the standard maximum principle and (A4), one gets

uk(x,t) > ulg ().
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This is obviously contradictory. Therefore, we conclude that u*(x,t) > u’é(x) for any
(x,2) € QT. O

Lemma 3.5 If (A1)-(A8) are satisfied, there exists a unique weak solution v € L*(0, T;
H2(2)) N C([0, T];L*(2)) to problem (7) satisfying

”V”LZ(O,T;H%(Q)) = N”F(r El O’ 0) ||L2(0,T;]L2(Q)) + N|ﬂ£ (0) | T’ (19)

where N is a positive constant independent of v.
Proof Given w € L%(0, T; H} (Q2)), set

S = Grwbowwrerfrw)s  Sin) = Ex(x,t,w+ @, VW + @) — B (Wr + 0 —uif).
The use of (A8) leads to

Sfulx,t) € L2(0, T; L*(R)). (20)
By Lemma 2.4, there exists a unique solution v € L2(0, T; H2(R)) N C([0, T]; L*(RQ)) to

(V) = Liv = fi(x,8) i Qr,

V(x,0) =0, on £, (21)
V(x,t) =0, on Q2 x (0, 7).
Define the mapping

M:L*(0, T;HG(Q)) — L*(0, T; HG(Q)),  w> M(w) =v,

where v is derived from w via (21).

Here we plan to prove the existence and uniqueness by Schaefer’s fixed point theorem.
So that we need to present the continuity and compactness of the mapping M. In this
proof we only prove the continuity of the mapping M. The compactness can be obtained
by following similar arguments, so we omit it here.

Let {w,}, € L*(0, T; HL(R2)) be a sequence such that

wy — w  in L*(0, T3 Hy (). (22)
By the improved regularity (4), we obtain
Vil 200, mm20)) < Wi ll2o,r2@)  for ve=Mlw,],n=1,2,....

By using (A8) and Lemma 3.4 with S,(x) <0, 8.(x) > 0, we have

e 220, 7:.2(02))

< ||Fk(x, t,w+o,Vw + V) ”LZ(O,T;]LZ(Q)) + |,85(O)|d1T

< ||Fk(x, Lw+ @, Vw+ Vo) — Fr(x,t,0,0) HL2(0,T;IL2(Q))
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+ ”Fk(x’t’o’o)HLZOT]LZ () +|Be(O)|di T
<alwl2o,r2e) + 2l VW2 i)
+ ”Fk(x’t’()’o)HLZOT]LZ () +|Be(O)|di T

< alwlorme) + |[Fixt,0,0)] oL@yt |:(0)| i T

The two inequalities above lead to

Vi llz2 (0,T;H2(R))

E o ”Wn ||L2(O,T;H2(Q)) + HFk(xr t: Oy 0) ”L2 0, T]LZ ’ﬁe(o) ’dl (23)

Next, we pay our attention to the sequence {||f,,, |l LZ(O,T;H}(Q))},,. Since w, — w in L*(0, T;
HY(2)), from (A8) we have

[fon G5:) ||L2(0,T;]L2(Q)) = Al 0) ”LZ(o,T;LZ(Q))'
This and (20) lead to the fact that the sequence {|[fu, ll;2(,71.2(q)) }» is Pounded, that is,

A Il 20, 751.202)) < Ce- (24)
Combing (23) with (24), the sequence {v,}, is bounded uniformly in L2(0, T;H?()).
In a similar way, {3"” }uis uniformly bounded in L2(0, T;H™}(2)). By using Rellich’s the-
orem (see [16]), there exist a subsequence {v;}; € L*(0, T; H}(2)) and a function v €
L*(0, T; Hy(2)) which satisfies

Vg = v in LZ(O, T;H%)(Q)) asj— 0o

such that

avk
/ ( Lo - Lkvn/ ) dx = /fkwn (x,£)p dx for each ¢ € HI(Q) (25)
Q

We combine (22) with (25) to arrive at

/(aVk¢> Lkvqb)dx /fkwx,t)(bdx
Q

Therefore,
v=Aw], Alw,] — Alw] in L*(0, T; Hy(S2)).
Further, by Lemma 3.3, we have that {w € L*(0, T; H}(2)) : w = A[w]} is bounded. Hence

the existence and uniqueness of this theorem are proven by using Lemma 2.3 with 1 = 1.
Finally, we pay our attention to the estimate (19). Letting # — oo in (23), we obtain

VIl 20,7209 < @lIVll20,rm2(0)) + | Fx(x,£,0,0) “Lz OTLA(Q |,35(0)’d1
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It follows by 0 < & < 1 that

1 1
||V||L2(O,T;H2(Q)) = E HFk(x’ t,0, 0) HLZ(O,T;]LZ(Q)) + m ’ﬂ&(o)‘dl T.
Therefore, the proof is complete. g

4 The proof of the main result

In this section, we prove that the solution to problem (5) converges to that of problem (1)
when ¢ — 0. From Lemma 3.3 and Lemma 3.5, we conclude that «, in (7) exists a unique
solution satisfying

”u(&‘”LZ((),T;H%)(Q)) <G
”u8||L2(0,T;H(2)(Q)) = N”F(" »0,0) ||L2(0,T;L2(Q)) +N|:3€(0)|d1T'

Thus, there exists a subsequence of {u.} still denoted by itself for convenience, and u €
L(0, T; H%(2)) such that

WS in (0, T HA(Q)), k= 1,2, dy,

iforml
uk TS ki C(Q7),k=1,2,...,d;.

&

Letting ¢ — 0 in (5) and using the maximum principle, we arrive at
() = Ly — Fr(x, t,u, V) > 0,

u*(x, 0) = ub (x), (26)
uk(x, £) = g ().
Comparing (1) with (26), we only need to prove that

[(uk)t — Liu — Fi(x, t, u, Vu)] (uk(x, ) — ug(x)) =0

holds. Note that *(x, 0) > u’é (%) derived from Lemma 3.3. Thus, we can end the proof by
showing

(uk)t — Liu— Fe(x, t,u, Vi) =0  when u¥(x, ) > u’é (x). (27)
In fact, there exists a positive constant such that for all (xo, ty) € {tX(x, £) > ué (x)},

uf(xo, t) >a + ué(xo)
holds when ¢ is sufficiently small. Further, from (15) we have that

0= B (g - ug) = Bs(@) — 0. (28)
Therefore, we conclude that

(uk)t — Lyt — Fi(x, t,u,Vu) =0 in L(0, T;HZ(Q)),
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Now, we prove the uniqueness by contradiction. Assume that u; = (ul,42,...,u") and
uy = (ud,u, ..., u;ll) are the solutions of (1) and u; # u,. That is, there exists at least one k
satisfying uf # u5. For simplicity, we assume that {u{ > 14} is not empty (if not, we assume
{ulf < ué} is not empty), so that we have

uy > ul > ug(x) in {uf > us}.
This and (27) lead to

(”lf)t — Lyuy — Fie(x, t,u1, Aug) =0 in { 11(> ué},
(18), = Liter = Filw, t, g, Au) > 0 in {uuf > u},

(uf — ), — Li(us — uz) — (i, £, Awy) — Fi(, 8, 112, Aa)) < 0.

By the maximum principle and (A8), we have that

ulf—ulz(fo in {u{‘>u]2‘}

This is obviously contradictory. Therefore, we conclude that problem (1) has a unique
solution. Moreover the estimate can be easily obtained by Lemma 3.5 and (28) with ¢ — 0.
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