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Abstract
By combining Korpelevich’s extragradient method, the viscosity approximation
method, the hybrid steepest-descent method, Mann’s iteration method, and the
gradient-projection method with regularization, a hybrid multi-step extragradient
algorithm with regularization for finding a solution of triple hierarchical variational
inequality problem is introduced and analyzed. It is proven that under appropriate
assumptions, the proposed algorithm converges strongly to a unique solution of a
triple hierarchical variational inequality problem which is defined over the set of
solutions of a hierarchical variational inequality problem defined over the set of
common solutions of finitely many generalized mixed equilibrium problems (GMEP),
finitely many variational inclusions, fixed point problems, and the split feasibility
problem (SFP). We also prove the strong convergence of the proposed algorithm to a
common solution of the SFP, finitely many GMEPs, finitely many variational inclusions,
and the fixed point problem of a strict pseudocontraction. The results presented in
this paper improve and extend the corresponding results announced by several
others.
MSC: Primary 49J30; 47H09; secondary 47J20; 49M05
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1 Introduction
The following problems have their own importance because of their applications in diverse
areas of science, engineering, social sciences, and management:
• Equilibrium problems including variational inequalities.
• Variational inclusion problems.
• Split feasibility problems.
• Fixed point problems.

One way or the other, these problems are related to each other. They are described as
follows.
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Equilibrium problem
Let C be a nonempty closed convex subset of a real Hilbert spaceH andΘ : C×C →R be
a real-valued bifunction. The equilibrium problem (EP) is to find an element x ∈ C such
that

Θ(x, y) ≥ , ∀y ∈ C.

The set of solutions of EP is denoted by EP(Θ). It includes several problems, namely, vari-
ational inequality problems, optimization problems, saddle point problems, fixed point
problems, etc., as special cases. For further details on EP, we refer to [–] and the refer-
ences therein.
Let A : C → H be a nonlinear operator. If Θ(x, y) = 〈A(x), y – x〉, then EP reduces to the

variational inequality problem of finding x ∈ C such that

〈
A(x), y – x

〉≥ , ∀y ∈ C.

For further details on variational inequalities and their generalizations, we refer to [–]
and the references therein.
During the last two decades, EP has been extended and generalized in several directions.

The generalized mixed equilibrium problem (GMEP), one of the generalizations of EP, is
to find x ∈ C such that

Θ(x, y) + ϕ(y) – ϕ(x) + 〈Ax, y – x〉 ≥ , ∀y ∈ C, (.)

where ϕ : C → R is a real-valued function. The set of solutions of GMEP is denoted by
GMEP(Θ ,ϕ,A). For different choices of operators/functions Θ , ϕ, and A, we get different
forms of equilibrium problems. For applications of GMEP, we refer to [, ] and the
references therein.

Variational inclusion problem
Let B : C → H be a single-valued mapping and R : C → H be a set-valued mapping with
D(R) = C, where D(R) denotes the domain of R. The variational inclusion problem is to
find x ∈ C such that

 ∈ Bx + Rx. (.)

We denote by I(B,R) the solution set of the variational inclusion problem (.). In particu-
lar, if B = R = , then I(B,R) = C. If B = , then problem (.) becomes the inclusion prob-
lem introduced by Rockafellar []. It is well known that problem (.) provides a conve-
nient framework for the unified study of optimal solutions in many optimization related
areas including mathematical programming, complementarity problems, variational in-
equalities, optimal control, mathematical economics, equilibria and game theory, etc. Let
a set-valued mapping R :D(R)⊂H → H be maximal monotone. We define the resolvent
operator JR,λ :H → D(R) associated with R and λ >  as follows:

JR,λ = (I + λR)–, ∀x ∈H .
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Huang [] studied problem (.) in the case where R is maximal monotone and B is
strongly monotone and Lipschitz continuous with D(R) = C = H . Zeng et al. [] further
studied problem (.) in a more general setting than in []. They gave the geometric con-
vergence rate estimate for approximate solutions. Various types of iterative algorithms for
solving variational inclusions have been further studied and developed in the literature;
see, for example, [–] and the references therein.

Split feasibility problem
Let C andQ be nonempty closed convex subsets of real Hilbert spacesH andH, respec-
tively. The split feasibility problem (SFP) is to find a point x such that

x ∈ C and Ax ∈Q, (.)

where A : H → H is a bounded linear operator from H to H. We denote by Γ the
solution set of the SFP. It is a model of an inverse problem which arises in phase retrievals
and in medical image reconstruction. A number of image reconstruction problems can be
formulated as SFP; see, for example [] and the references therein. Recently, it is found
that the SFP can also be applied to study intensity-modulated radiation therapy (IMRT);
see, for example, [, ] and the references therein. In the recent past, a wide variety of it-
erativemethods have been proposed to solve SFP; see, for example, [–] the references
therein.

Fixed point problem
Let C be a nonempty subset of a H and T : C → C be a mapping. The fixed point problem
is to find an element x ∈ C such that T(x) = x.
It is a well-known problem and has tremendous applications in different branches of

science, engineering, social sciences, and management.
The following proposition provides some relations among the above mentioned prob-

lems.

Proposition . Given x∗ ∈H , the following statements are equivalent:
(a) x∗ solves the SFP;
(b) x∗ solves the fixed point equation

PC(I – λ∇f )x∗ = x∗,

where λ > , ∇f = A∗(I – PQ)A, PQ is the projection operator and A∗ is the adjoint
of A;

(c) x∗ solves the variational inequality problem (VIP) of finding x∗ ∈ C such that

〈∇f
(
x∗),x – x∗〉≥ , ∀x ∈ C.

A variational inequality problem which is defined over the set of fixed points of a map-
ping is called hierarchical variational inequality problem; that is, when the set C in varia-
tional inequality formulation is equal to the set of fixed points of a mapping. A variational
inequality problem which is defined over the set of solutions of a hierarchical variational
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inequality problem is called a triple hierarchical variational inequality problem. For further
details on hierarchical variational inequality problems and triple hierarchical variational
inequality problems, we refer to [], a recent survey on these problems.
Very recently, Kong et al. [] considered the following triple hierarchical variational

inequality problem (THVIP).

Problem . Let C be a nonempty closed convex subset of a real Hilbert space H and
F : C → H be a κ-Lipschitzian and η-strongly monotone operator, where κ and η are
positive constants. Let A : C → H be a monotone and L-Lipschitzian mapping, V : C →
H be a ρ-contraction with coefficient ρ ∈ [, ), S : C → C be a nonexpansive mapping,
and T : C → C be a ξ -strictly pseudocontractive mapping with Fix(T) ∩ VI(C,A) �= ∅,
where Fix(T) denotes the set of all fixed points of T . Let  < μ < η

κ
and  < γ ≤ τ , where

τ =  –
√
 –μ(η –μκ). Then the objective is to find x∗ ∈ Ξ such that

〈
(μF – γV )x∗,x – x∗〉≥ , ∀x ∈ Ξ , (.)

whereΞ denotes the solution set of the hierarchical variational inequality problem (HVIP)
of finding z∗ ∈ Fix(T)∩VI(C,A) such that

〈
(μF – γ S)z∗, z – z∗〉≥ , ∀z ∈ Fix(T)∩VI(C,A). (.)

Kong et al. [] presented an algorithm for finding a solution of Problem .. Under
some conditions, they proved that the sequence {xn} generated by the proposed algo-
rithm converges strongly to a point x∗ ∈ Fix(T) ∩ VI(C,A) which is a unique solution
of Problem . provided that {Sxn} is bounded and ‖xn+ – xn‖ + ‖xn – zn‖ = o(εn). They
also showed under certain conditions that the sequence {xn} generated by proposed al-
gorithm converges strongly to a unique solution x∗ of the following VIP provided that
‖xn+ – xn‖ + ‖xn – zn‖ = o(εn) and the sequence {Sxn} is bounded:

find x∗ ∈ Ξ such that
〈
Fx∗,x – x∗〉≥ , ∀x ∈ Ξ .

In this paper, we consider the following triple hierarchical variational inequality problem
(THVIP).

Problem . LetM, N be two positive integers. Assume that
(i) F :H →H is κ-Lipschitzian and η-strongly monotone with positive constants

κ ,η >  such that  < γ ≤ τ and  < μ < η
κ

where τ =  –
√
 –μ(η –μκ);

(ii) for each k ∈ {, , . . . ,M}, Θk : C ×C →R satisfies conditions (A)-(A) and
ϕk : C →R∪ {+∞} is a proper lower semicontinuous and convex function with
restriction (B) or (B) (conditions (A)-(A) and (B)-(B) are given in the next
section);

(iii) for each k ∈ {, , . . . ,M} and i ∈ {, , . . . ,N}, Ri : C → H is a maximal monotone
mapping, and Ak :H →H and Bi : C →H are μk-inverse strongly monotone and
ηi-inverse strongly monotone, respectively;

(iv) T :H → H is a ξ -strict pseudocontraction, S :H →H is a nonexpansive mapping
and V :H → H is a ρ-contraction with coefficient ρ ∈ [, );

(v) Ω := (
⋂M

k=GMEP(Θk ,ϕk ,Ak))∩ (
⋂N

i= I(Bi,Ri))∩ Fix(T)∩ Γ �= ∅.
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Then the objective is to find x∗ ∈ Ξ such that

〈
(μF – γV )x∗,x – x∗〉≥ , ∀x ∈ Ξ , (.)

whereΞ denotes the solution set of the hierarchical variational inequality problem (HVIP)
of finding z∗ ∈ Ω such that

〈
(μF – γ S)z∗, z – z∗〉≥ , ∀z ∈ Ω . (.)

By combiningKorpelevich’s extragradientmethod, the viscosity approximationmethod,
the hybrid steepest-descentmethod,Mann’s iterationmethod, and the gradient-projection
method (GPM) with regularization, we introduce and analyze a hybrid multi-step extra-
gradient algorithm with regularization in the setting of Hilbert spaces. It is proven that
under appropriate assumptions, the proposed algorithm converges strongly to a unique
solution of THVIP (.). The algorithm and convergence result of this paper extend and
generalize several existing algorithms and results, respectively, in the literature.

2 Preliminaries
Throughout this paper, unless otherwise specified, we assume thatH is a realHilbert space
whose inner product and norm are denoted by 〈·, ·〉 and ‖ ·‖, respectively.Wewrite xn → x
(respectively, xn ⇀ x) to indicate that the sequence {xn} converges (respectively, weakly)
to x. Moreover, we use ωw(xn) to denote the weak ω-limit set of the sequence {xn}, that is,

ωw(xn) :=
{
x ∈H : xni ⇀ x for some subsequence {xni} of {xn}

}
.

Definition . A mapping T :H →H is said to be
(a) nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈H ;

(b) firmly nonexpansive if T – I is nonexpansive, or equivalently, if T is -inverse
strongly monotone (-ism),

〈x – y,Tx – Ty〉 ≥ ‖Tx – Ty‖, ∀x, y ∈H ;

alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =


(I + S),

where S :H →H is nonexpansive; projections are firmly nonexpansive.

It can easily be seen that if T is nonexpansive, then I – T is monotone.

Definition . Amapping T :H →H is said to be an averaged mapping if it can be writ-
ten as the average of the identity I and a nonexpansive mapping, that is,

T ≡ ( – α)I + αS,

http://www.journalofinequalitiesandapplications.com/content/2014/1/492


Ceng et al. Journal of Inequalities and Applications 2014, 2014:492 Page 6 of 40
http://www.journalofinequalitiesandapplications.com/content/2014/1/492

where α ∈ (, ) and S : H → H is nonexpansive. More precisely, when the last equality
holds, we say that T is α-averaged. Thus firmly nonexpansive mappings (in particular,
projections) are 

 -averaged mappings.

Proposition . [] Let T :H →H be a given mapping.
(a) T is nonexpansive if and only if the complement I – T is 

 -ism.
(b) If T is ν-ism, then for γ > , γT is ν

γ
-ism.

(c) T is averaged if and only if the complement I – T is ν-ism for some ν > /. Indeed,
for α ∈ (, ), T is α-averaged if and only if I – T is 

α -ism.

Proposition . [, ] Let S,T ,V :H →H be given operators.
(a) If T = ( – α)S + αV for some α ∈ (, ) and if S is averaged and V is nonexpansive,

then T is averaged.
(b) T is firmly nonexpansive if and only if the complement I – T is firmly nonexpansive.
(c) If T = ( – α)S + αV for some α ∈ (, ) and if S is firmly nonexpansive and V is

nonexpansive, then T is averaged.
(d) The composite of finitely many averaged mappings is averaged, that is, if each of the

mappings {Ti}Ni= is averaged, then so is the composite T · · ·TN . In particular, if T is
α-averaged and T is α-averaged, where α,α ∈ (, ), then the composite TT is
α-averaged, where α = α + α – αα.

(e) If the mappings {Ti}Ni= are averaged and have a common fixed point, then

N⋂
i=

Fix(Ti) = Fix(T · · ·TN ).

The notation Fix(T) denotes the set of all fixed points of the mapping T , that is,
Fix(T) = {x ∈H : Tx = x}.

A mapping T : C → C is said to be ξ -strictly pseudocontractive if there exists ξ ∈ [, )
such that

‖Tx – Ty‖ ≤ ‖x – y‖ + ξ
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C.

In this case, we also say that T is a ξ -strict pseudocontraction. We denote by Fix(S) the
set of fixed points of S. In particular, if ξ = , T is a nonexpansive mapping.
It is clear that, in a real Hilbert spaceH , T : C → C is ξ -strictly pseudocontractive if and

only if the following inequality holds:

〈Tx – Ty,x – y〉 ≤ ‖x – y‖ –  – ξ


∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C.

This immediately implies that if T is a ξ -strictly pseudocontractive mapping, then I – T
is –ξ

 -inverse strongly monotone; for further details, we refer to [] and the references
therein. It is well known that the class of strict pseudocontractions strictly includes the
class of nonexpansive mappings and that the class of pseudocontractions strictly includes
the class of strict pseudocontractions.

Lemma. [, Proposition .] Let C be a nonempty closed convex subset of a real Hilbert
space H and T : C → C be a mapping.

http://www.journalofinequalitiesandapplications.com/content/2014/1/492
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(a) If T is a ξ -strictly pseudocontractive mapping, then T satisfies the Lipschitzian
condition

‖Tx – Ty‖ ≤  + ξ

 – ξ
‖x – y‖, ∀x, y ∈ C.

(b) If T is a ξ -strictly pseudocontractive mapping, then the mapping I – T is semiclosed
at , that is, if {xn} is a sequence in C such that xn ⇀ x̃ and (I – T)xn → , then
(I – T)x̃ = .

(c) If T is ξ -(quasi-)strict pseudocontraction, then the fixed point set Fix(T) of T is
closed and convex so that the projection PFix(T) is well defined.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T : C → C be a ξ -strictly pseudocontractive mapping. Let γ and δ be two nonnegative real
numbers such that (γ + δ)ξ ≤ γ . Then∥∥γ (x – y) + δ(Tx – Ty)

∥∥≤ (γ + δ)‖x – y‖, ∀x, y ∈ C.

Lemma. (Demiclosedness principle) Let C be a nonempty closed convex subset of a real
Hilbert space H . Let S be a nonexpansive self-mapping on C with Fix(S) �= ∅. Then I – S is
demiclosed. That is, whenever {xn} is a sequence in C weakly converging to some x ∈ C and
the sequence {(I – S)xn} strongly converges to some y, it follows that (I – S)x = y, where I is
the identity operator of H .

Definition . A nonlinear operator T with the domain D(T)⊂ H and the range R(T) ⊂
H is said to be
(a) monotone if

〈Tx – Ty,x – y〉 ≥ , ∀x, y ∈D(T);

(b) β-strongly monotone if there exists a constant β >  such that

〈Tx – Ty,x – y〉 ≥ η‖x – y‖, ∀x, y ∈D(T);

(c) ν-inverse strongly monotone if there exists a constant ν >  such that

〈Tx – Ty,x – y〉 ≥ ν‖Tx – Ty‖, ∀x, y ∈D(T).

It is easy to see that the projection PC is -inverse strongly monotone. Inverse strongly
monotone (also referred to as co-coercive) operators have been applied widely in solving
practical problems in various fields, for instance, in traffic assignment problems; see, for
example, []. It is obvious that if T is ν-inverse strongly monotone, then T is monotone
and 

ν
-Lipschitz continuous. Moreover, we also have, for all u, v ∈D(T) and λ > ,∥∥(I – λT)u – (I – λT)v

∥∥ =
∥∥(u – v) – λ(Tu – Tv)

∥∥
= ‖u – v‖ – λ〈Tu – Tv,u – v〉 + λ‖Tu – Tv‖

≤ ‖u – v‖ + λ(λ – ν)‖Tu – Tv‖. (.)

So, if λ ≤ ν , then I – λT is a nonexpansive mapping.

http://www.journalofinequalitiesandapplications.com/content/2014/1/492
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The metric (or nearest point) projection from H onto C is the mapping PC : H → C
which assigns to each point x ∈H the unique point PCx ∈ C satisfying the property

‖x – PCx‖ = inf
y∈C ‖x – y‖ =: d(x,C).

Some important properties of projections are gathered in the following proposition.

Proposition . For given x ∈H and z ∈ C:
(a) z = PCx⇔ 〈x – z, y – z〉 ≤ , ∀y ∈ C;
(b) z = PCx ⇔ ‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖, ∀y ∈ C;
(c) 〈PCx – PCy,x – y〉 ≥ ‖PCx – PCy‖, ∀y ∈ H .

Consequently, PC is nonexpansive and monotone.
Let λ be a number in (, ] and let μ > . Associating with a nonexpansive mapping

T : C → H , we define the mapping Tλ : C →H by

Tλx := Tx – λμF(Tx), ∀x ∈ C,

where F : H → H is an operator such that, for some positive constants κ ,η > , F is κ-
Lipschitzian and η-strongly monotone on H , that is, F satisfies the conditions:

‖Fx – Fy‖ ≤ κ‖x – y‖ and 〈Fx – Fy,x – y〉 ≥ η‖x – y‖

for all x, y ∈ H .

Lemma . [, Lemma .] Tλ is a contraction provided  < μ < η
κ
, that is,

∥∥Tλx – Tλy
∥∥≤ ( – λτ )‖x – y‖, ∀x, y ∈ C,

where τ =  –
√
 –μ(η –μκ) ∈ (, ].

Lemma . Let A : C → H be a monotone mapping. In the context of the variational in-
equality problem the characterization of the projection (see Proposition .(a)) implies

u ∈VI(C,A) ⇔ u = PC(u – λAu), ∀λ > .

Let C be a nonempty closed convex subset ofH andΘ : C×C →R satisfy the following
conditions.
(A) Θ(x,x) = , ∀x ∈ C;
(A) Θ is monotone, that is, Θ(x, y) +Θ(y,x) ≤ , ∀x, y ∈ C;
(A) Θ is upper-hemicontinuous, that is, ∀x, y, z ∈ C,

lim sup
t→+

Θ
(
tz + ( – t)x, y

)≤ Θ(x, y);

(A) Θ(x, ·) is convex and lower semicontinuous, for each x ∈ C.
Let ϕ : C → R be a lower semicontinuous and convex function satisfying either (B) or
(B), where

http://www.journalofinequalitiesandapplications.com/content/2014/1/492
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(B) for each x ∈H and r > , there exist a bounded subset Dx ⊂ C and yx ∈ C such
that, for any z ∈ C \Dx,

Θ(z, yx) + ϕ(yx) – ϕ(z) +

r
〈yx – z, z – x〉 < ;

(B) C is a bounded set.
Given a positive number r > . LetT (Θ ,ϕ)

r :H → C be the solution set of the auxiliarymixed
equilibrium problem, that is, for each x ∈H ,

T (Θ ,ϕ)
r (x) :=

{
y ∈ C :Θ(y, z) + ϕ(z) – ϕ(y) +


r
〈y – x, z – y〉 ≥ ,∀z ∈ C

}
.

Next we list some elementary conclusions for the MEP.

Proposition . [] Assume thatΘ : C×C →R satisfies (A)-(A) and let ϕ : C → R be
a proper lower semicontinuous and convex function. Assume that either (B) or (B) holds.
For r >  and x ∈ H , define a mapping T (Θ ,ϕ)

r :H → C as follows:

T (Θ ,ϕ)
r (x) :=

{
z ∈ C :Θ(z, y) + ϕ(y) – ϕ(z) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
for all x ∈ H . Then

(i) for each x ∈H , T (Θ ,ϕ)
r (x) is nonempty and single-valued;

(ii) T (Θ ,ϕ)
r is firmly nonexpansive, that is, for any x, y ∈ H ,

∥∥T (Θ ,ϕ)
r x – T (Θ ,ϕ)

r y
∥∥ ≤ 〈

T (Θ ,ϕ)
r x – T (Θ ,ϕ)

r y,x – y
〉
;

(iii) Fix(T (Θ ,ϕ)
r ) =MEP(Θ ,ϕ);

(iv) MEP(Θ ,ϕ) is closed and convex;
(v) ‖T (Θ ,ϕ)

s x – T (Θ ,ϕ)
t x‖ ≤ s–t

s 〈T (Θ ,ϕ)
s x – T (Θ ,ϕ)

t x,T (Θ ,ϕ)
s x – x〉, for all s, t >  and x ∈ H .

Weneed some facts and tools in a real Hilbert spaceH which are listed as lemmas below.

Lemma . Let X be a real inner product space. Then we have the following inequality:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈ X.

Lemma . Let H be a real Hilbert space. Then the following hold:
(a) ‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉, for all x, y ∈H ;
(b) ‖λx +μy‖ = λ‖x‖ +μ‖y‖ – λμ‖x – y‖, for all x, y ∈H and λ,μ ∈ [, ] with

λ +μ = ;
(c) if {xn} is a sequence in H such that xn ⇀ x, it follows that

lim sup
n→∞

‖xn – y‖ = lim sup
n→∞

‖xn – x‖ + ‖x – y‖, ∀y ∈H .

Lemma. [] Let {an} be a sequence of nonnegative real numbers satisfying the property

an+ ≤ ( – sn)an + snbn + tn, ∀n≥ ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/492
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where {sn} ⊂ (, ] and {bn} are such that:
(i)

∑∞
n= sn =∞;

(ii) either lim supn→∞ bn ≤  or
∑∞

n= |snbn| <∞;
(iii)

∑∞
n= tn <∞ where tn ≥ , for all n≥ .

Then limn→∞ an = .

Recall that a set-valued mapping T : D(T) ⊂ H → H is called monotone if, for all
x, y ∈ D(T), f ∈ Tx, and g ∈ Ty imply 〈f – g,x – y〉 ≥ . A set-valued mapping T is called
maximal monotone if T is monotone and (I + λT)D(T) =H , for each λ > , where I is the
identity mapping of H . We denote by G(T) the graph of T . It is well known that a mono-
tone mapping T is maximal if and only if, for (x, f ) ∈ H × H , 〈f – g,x – y〉 ≥  for every
(y, g) ∈ G(T) implies f ∈ Tx.
Next we provide an example to illustrate the concept of maximal monotone mapping.
Let A : C → H be a monotone, k-Lipschitz-continuous mapping and let NCv be the

normal cone to C at v ∈ C, that is,

NCv =
{
u ∈H : 〈v – p,u〉 ≥ ,∀p ∈ C

}
.

Define

T̃v =

{
Av +NCv, if v ∈ C,
∅, if v /∈ C.

Then T̃ is maximal monotone (see []) such that

 ∈ T̃v ⇔ v ∈VI(C,A). (.)

Let R : D(R) ⊂ H → H be a maximal monotone mapping. Let λ,μ >  be two positive
numbers.

Lemma . [] We have the resolvent identity

JR,λx = JR,μ
(

μ

λ
x +

(
 –

μ

λ

)
JR,λx

)
, ∀x ∈H .

Remark . For λ,μ > , we have the following relation:

‖JR,λx – JR,μy‖ ≤ ‖x – y‖ + |λ –μ|
(

λ

‖JR,λx – y‖ + 
μ

‖x – JR,μy‖
)
, ∀x, y ∈H . (.)

The following property for the resolvent operator JR,λ : H → D(R) was considered in
[, ].

Lemma . JR,λ is single-valued and firmly nonexpansive, that is,

〈JR,λx – JR,λy,x – y〉 ≥ ‖JR,λx – JR,λy‖, ∀x, y ∈H .

Consequently, JR,λ is nonexpansive and monotone.

http://www.journalofinequalitiesandapplications.com/content/2014/1/492
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Lemma . [] Let R be a maximal monotone mapping with D(R) = C. Then, for any
given λ > , u ∈ C is a solution of problem (.) if and only if u ∈ C satisfies

u = JR,λ(u – λBu).

Lemma. [] Let R be amaximalmonotonemapping with D(R) = C and let B : C →H
be a strongly monotone, continuous and single-valued mapping. Then, for each z ∈ H , the
equation z ∈ (B + λR)x has a unique solution xλ for λ > .

Lemma . [] Let R be a maximal monotone mapping with D(R) = C and B : C → H
be a monotone, continuous and single-valued mapping. Then (I + λ(R +B))C =H , for each
λ > . In this case, R + B is maximal monotone.

3 Algorithms and convergence results
LetH be a real Hilbert space and f :H →R be a function. Then theminimization problem

min
x∈C f (x) :=



‖Ax – PQAx‖

is ill-posed. Xu [] considered the following Tikhonov’s regularization problem:

min
x∈C fα(x) :=



‖Ax – PQAx‖ + 


α‖x‖,

where α >  is the regularization parameter. It is clear that the gradient

∇fα =∇f + αI = A∗(I – PQ)A + αI

is (α + ‖A‖)-Lipschitz continuous.
Throughout the paper, unless otherwise specified, M, N are positive integers and C be

a nonempty closed convex subset of a real Hilbert space H .

Algorithm . The notations and symbols are the same as in Problem .. Start with a
given arbitrary x ∈H , and compute a sequence {xn} by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
un = T (ΘM ,ϕM)

rM,n (I – rM,nAM)T (ΘM–,ϕM–)
rM–,n (I – rM–,nAM–) · · ·T (Θ,ϕ)

r,n (I – r,nA)xn,
vn = JRN ,λN ,n (I – λN ,nBN )JRN–,λN–,n (I – λN–,nBN–) · · · JR,λ,n (I – λ,nB)un,
yn = βnxn + γnPC(I – λn∇fαn )vn + σnTPC(I – λn∇fαn )vn,
xn+ = εnγ (δnVxn + ( – δn)Sxn) + (I – εnμF)yn, ∀n≥ ,

(.)

where ∇fαn = αnI +∇f .

The following result provides the strong convergence of the sequence generated by Al-
gorithm ..

Theorem . For each k ∈ {, , . . . ,M}, let Θk : C × C → R be a bifunction satisfying
conditions (A)-(A) and ϕk : C → R ∪ {+∞} be a proper lower semicontinuous and con-
vex function with restriction (B) or (B). For each k ∈ {, , . . . ,M} and i ∈ {, , . . . ,N},

http://www.journalofinequalitiesandapplications.com/content/2014/1/492
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let Ri : C → H be a maximal monotone mapping and let Ak : H → H and Bi : C → H
be μk-inverse strongly monotone and ηi-inverse strongly monotone, respectively. Let T :
H → H be a ξ -strictly pseudocontractive mapping, S : H → H be a nonexpansive map-
ping and V : H → H be a ρ-contraction with coefficient ρ ∈ [, ). Let F : H → H be κ-
Lipschitzian and η-strongly monotone with positive constants κ ,η >  such that  < γ ≤ τ

and  < μ < η
κ
, where τ =  –

√
 –μ(η –μκ). Assume that the solution set Ξ of HVIP

(.) is nonempty where Ω := (
⋂M

k=GMEP(Θk ,ϕk ,Ak)) ∩ (
⋂N

i= I(Bi,Ri)) ∩ Fix(T) ∩ Γ . Let
{λn} ⊂ [a,b] ⊂ (, 

‖A‖ ), {αn} ⊂ (,∞) with
∑∞

n= αn < ∞, {εn}, {δn}, {βn}, {γn}, {σn} ⊂ (, )
with βn + γn + σn = , and {λi,n} ⊂ [ai,bi] ⊂ (, ηi), {rk,n} ⊂ [ck ,dk] ⊂ (, μk) where
i ∈ {, , . . . ,N} and k ∈ {, , . . . ,M}. Suppose that

(C) limn→∞ δn = , limn→∞ εn = , limn→∞ |εn–εn–|
δnεnεn–

=  and
∑∞

n= εnδn =∞;
(C)

∑∞
n= |δn – δn–| <∞ or limn→∞ |δn – δn–|/(δnεn) = ;

(C)
∑∞

n=
|βn–βn–|

εn
<∞ or limn→∞ |βn – βn–|/(δnεn) = ;

(C)
∑∞

n=
|γn–γn–|

εn
<∞ or limn→∞ |γn – γn–|/(δnεn) = ;

(C)
∑∞

n=
|λn–λn–|

εn
<∞ or limn→∞ |λn – λn–|/(δnεn) = ;

(C)
∑∞

n=
|λnαn–λn–αn–|

εn
< ∞ or limn→∞ |λnαn – λn–αn–|/(δnεn) = ;

(C) {βn} ⊂ [c,d] ⊂ (, ), (γn + σn)ξ ≤ γn and lim infn→∞ σn > ;
(C) for each i = , , . . . ,N ,

∑∞
n=

|λi,n–λi,n–|
εn

< ∞ or limn→∞ |λi,n – λi,n–|/(δnεn) = ;
(C) for each k = , , . . . ,M,

∑∞
n=

|rk,n–rk,n–|
εn

< ∞ or limn→∞ |rk,n – rk,n–|/(δnεn) = ;
(C) there exist positive constants θ , k̄ >  such that limn→∞ ε/θn /δn =  and

‖xn – Txn‖ ≥ k̄[d(xn,Ω)]θ , ∀x ∈ C for sufficiently large n≥ .
If {xn} is a sequence generated by Algorithm . and {Sxn} is bounded, then
(a) ‖xn+ – xn‖ = o(εn);
(b) ωw(xn) ⊂ Ω ;
(c) {xn} converges strongly to a point x∗ ∈ Ω provided ‖xn – yn‖ + αn = o(εn), which is the

unique solution of Problem ..

Proof First of all, taking into account Ξ �= ∅, we know that Ω �= ∅. Observe that

μη ≥ τ ⇔ μη ≥  –
√
 –μ

(
η –μκ

)
⇔

√
 –μ

(
η –μκ

)≥  –μη

⇔  – μη +μκ ≥  – μη +μη

⇔ κ ≥ η

⇔ κ ≥ η

and

〈
(μF – γV )x – (μF – γV )y,x – y

〉
= μ〈Fx – Fy,x – y〉 – γ 〈Vx –Vy,x – y〉
≥ μη‖x – y‖ – γρ‖x – y‖

= (μη – γρ)‖x – y‖, ∀x, y ∈H .

Since τ ≥ γ >  and κ ≥ η, we deduce that μη ≥ τ ≥ γ > γρ and hence the mapping
μF – γV is (μη– γρ)-strongly monotone. Moreover, it is clear that the mapping μF – γV

http://www.journalofinequalitiesandapplications.com/content/2014/1/492
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is (μκ + γρ)-Lipschitzian. Thus, there exists a unique solution x∗ in Ξ to the VIP

〈
(μF – γV )x∗,p – x∗〉≥ , ∀p ∈ Ξ ,

that is, {x∗} =VI(Ξ ,μF – γV ). Now, we put

Δk
n = T (Θk ,ϕk )

rk,n (I – rk,nAk)T (Θk–,ϕk–)
rk–,n (I – rk–,nAk–) · · ·T (Θ,ϕ)

r,n (I – r,nA)xn

for all k ∈ {, , . . . ,M} and n≥ ,

Λi
n = JRi ,λi,n (I – λi,nBi)JRi–,λi–,n (I – λi–,nBi–) · · · JR,λ,n (I – λ,nB)

for all i ∈ {, , . . . ,N}, Δ
n = I , and Λ

n = I , where I is the identity mapping on H . Then we
have un =ΔM

n xn and vn =ΛN
n un.

Now, we show that PC(I – λ∇fα) is ζ -averaged, for each λ ∈ (, 
α+‖A‖ ), where

ζ =
 + λ(α + ‖A‖)


∈ (, ).

Indeed, it is easy to see that ∇f = A∗(I – PQ)A is 
‖A‖ -ism, that is,

〈∇f (x) –∇f (y),x – y
〉≥ 

‖A‖
∥∥∇f (x) –∇f (y)

∥∥.
Observe that

(
α + ‖A‖)〈∇fα(x) –∇fα(y),x – y

〉
=
(
α + ‖A‖)[α‖x – y‖ + 〈∇f (x) –∇f (y),x – y

〉]
= α‖x – y‖ + α

〈∇f (x) –∇f (y),x – y
〉

+ α‖A‖‖x – y‖ + ‖A‖〈∇f (x) –∇f (y),x – y
〉

≥ α‖x – y‖ + α
〈∇f (x) –∇f (y),x – y

〉
+
∥∥∇f (x) –∇f (y)

∥∥
=
∥∥α(x – y) +∇f (x) –∇f (y)

∥∥
=
∥∥∇fα(x) –∇fα(y)

∥∥.
Hence, it follows that ∇fα = αI + A∗(I – PQ)A is 

α+‖A‖ -ism. Thus, by Proposition .(b),

λ∇fα is 
λ(α+‖A‖) -ism. From Proposition .(c), the complement I – λ∇fα is λ(α+‖A‖)

 -
averaged. Therefore, noting that PC is 

 -averaged and utilizing Proposition .(d), we see
that, for each λ ∈ (, 

α+‖A‖ ), PC(I – λ∇fα) is ζ -averaged with

ζ =


+

λ(α + ‖A‖)


–



· λ(α + ‖A‖)


=
 + λ(α + ‖A‖)


∈ (, ).

This shows that PC(I – λ∇fα) is nonexpansive. Taking into account that {λn} ⊂ [a,b] ⊂
(, 

‖A‖ ) and αn → , we get

lim sup
n→∞

 + λn(αn + ‖A‖)


≤  + b‖A‖


< .

http://www.journalofinequalitiesandapplications.com/content/2014/1/492
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Without loss of generality, we may assume that ζn := +λn(αn+‖A‖)
 < , for each n ≥ . So,

PC(I – λn∇fαn ) is nonexpansive, for each n≥ . Similarly, since

lim sup
n→∞

λn(αn + ‖A‖)


≤ b‖A‖


< ,

it may be confirmed that I – λn∇fαn is nonexpansive, for each n≥ .
We divide the rest of the proof into several steps.
Step . We prove that {xn} is bounded.
Indeed, take a fixed p ∈ Ω arbitrarily. Utilizing (.) and Proposition .(b), we have

‖un – p‖ =
∥∥T (ΘM ,ϕM)

rM,n
(I – rM,nBM)ΔM–

n xn – T (ΘM ,ϕM)
rM,n

(I – rM,nBM)ΔM–
n p

∥∥
≤ ∥∥(I – rM,nBM)ΔM–

n xn – (I – rM,nBM)ΔM–
n p

∥∥
≤ ∥∥ΔM–

n xn –ΔM–
n p

∥∥
...

≤ ∥∥Δ
nxn –Δ

np
∥∥

= ‖xn – p‖. (.)

Utilizing (.) and Lemma ., we have

‖vn – p‖ =
∥∥JRN ,λN ,n (I – λN ,nAN )ΛN–

n un – JRN ,λN ,n (I – λN ,nAN )ΛN–
n p

∥∥
≤ ∥∥(I – λN ,nAN )ΛN–

n un – (I – λN ,nAN )ΛN–
n p

∥∥
≤ ∥∥ΛN–

n un –ΛN–
n p

∥∥
...

≤ ∥∥Λ
nun –Λ

np
∥∥

= ‖un – p‖. (.)

Combining (.) and (.), we have

‖vn – p‖ ≤ ‖xn – p‖. (.)

For simplicity, put tn = PC(I – λn∇fαn )vn, for each n ≥ . Note that PC(I – λ∇f )p = p for
λ ∈ (, 

‖A‖ ). Hence, from (.), it follows that

‖tn – p‖ =
∥∥PC(I – λn∇fαn )vn – PC(I – λn∇f )p

∥∥
≤ ∥∥PC(I – λn∇fαn )vn – PC(I – λn∇fαn )p

∥∥
+
∥∥PC(I – λn∇fαn )p – PC(I – λn∇f )p

∥∥
≤ ‖vn – p‖ + ∥∥(I – λn∇fαn )p – (I – λn∇f )p

∥∥
= ‖vn – p‖ + λnαn‖p‖
≤ ‖xn – p‖ + λnαn‖p‖. (.)
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Since T is a ξ -strictly pseudocontractive mapping and (γn + σn)ξ ≤ γn, for all n ≥ , by
Lemma ., we obtain from (.) and (.) that

‖yn – p‖ = ‖βnxn + γntn + σnTtn – p‖
=
∥∥βn(xn – p) + γn(tn – p) + σn(Ttn – p)

∥∥
≤ βn‖xn – p‖ + ∥∥γn(tn – p) + σn(Ttn – p)

∥∥
≤ βn‖xn – p‖ + (γn + σn)‖tn – p‖
≤ βn‖xn – p‖ + (γn + σn)

[‖xn – p‖ + λnαn‖p‖
]

≤ βn‖xn – p‖ + (γn + δn)‖xn – p‖ + λnαn‖p‖
= ‖xn – p‖ + λnαn‖p‖. (.)

Noticing the boundedness of {Sxn}, we get supn≥ ‖γ Sxn – μFp‖ ≤ M̂ for some M̂ > .
Moreover, utilizing Lemma . and (.), (.), we deduce that {λn} ⊂ [a,b] ⊂ (, 

‖A‖ )
and  < γ ≤ τ that, for all n ≥ ,

‖xn+ – p‖
=
∥∥εnγ (δnVxn + ( – δn)Sxn

)
+ (I – εnμF)yn – p

∥∥
=
∥∥εnγ (δnVxn + ( – δn)Sxn

)
– εnμFp + (I – εnμF)yn – (I – εnμF)p

∥∥
≤ ∥∥εnγ (δnVxn + ( – δn)Sxn

)
– εnμFp

∥∥ + ∥∥(I – εnμF)yn – (I – εnμF)p
∥∥

= εn
∥∥δn(γVxn –μFp) + ( – δn)(γ Sxn –μFp)

∥∥
+
∥∥(I – εnμF)yn – (I – εnμF)p

∥∥
≤ εn

[
δn‖γVxn –μFp‖ + ( – δn)‖γ Sxn –μFp‖] + ( – εnτ )‖yn – p‖

≤ εn
[
δn
(‖γVxn – γVp‖ + ‖γVp –μFp‖) + ( – δn)M̂

]
+ ( – εnτ )‖yn – p‖

≤ εn
[
δnγρ‖xn – p‖ + δn‖γVp –μFp‖ + ( – δn)M̂

]
+ ( – εnτ )

[‖xn – p‖ + λnαn‖p‖
]

≤ εn
[
δnγρ‖xn – p‖ +max

{
M̂,‖γVp –μFp‖}] + ( – εnτ )

[‖xn – p‖ + λnαn‖p‖
]

≤ εnγρ‖xn – p‖ + εnmax
{
M̂,‖γVp –μFp‖} + ( – εnτ )‖xn – p‖ + λnαn‖p‖

=
[
 – (τ – γρ)εn

]‖xn – p‖ + εnmax
{
M̂,‖γVp –μFp‖} + λnαn‖p‖

=
[
 – (τ – γρ)εn

]‖xn – p‖ + (τ – γρ)εnmax

{
M̂

τ – γρ
,
‖γVp –μFp‖

τ – γρ

}
+ λnαn‖p‖

≤max

{
‖xn – p‖, M̂

τ – γρ
,
‖γVp –μFp‖

τ – γρ

}
+ αnb‖p‖.

By induction, we get

‖xn+ – p‖ ≤max

{
‖x – p‖, M̂

τ – γρ
,
‖γVp –μFp‖

τ – γρ

}
+

n∑
j=

αjb‖p‖, ∀n≥ .
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Thus, {xn} is bounded since
∑∞

n= αn < ∞, and so are the sequences {tn}, {un}, {vn}, and
{yn}.
Step . We prove that limn→∞ ‖xn+–xn‖

εn
= .

Indeed, utilizing (.) and (.), we obtain

‖vn+ – vn‖
=
∥∥ΛN

n+un+ –ΛN
n un

∥∥
=
∥∥JRN ,λN ,n+ (I – λN ,n+BN )ΛN–

n+ un+ – JRN ,λN ,n (I – λN ,nBN )ΛN–
n un

∥∥
≤ ∥∥JRN ,λN ,n+ (I – λN ,n+BN )ΛN–

n+ un+ – JRN ,λN ,n+ (I – λN ,nBN )ΛN–
n+ un+

∥∥
+
∥∥JRN ,λN ,n+ (I – λN ,nBN )ΛN–

n+ un+ – JRN ,λN ,n (I – λN ,nBN )ΛN–
n un

∥∥
≤ ∥∥(I – λN ,n+BN )ΛN–

n+ un+ – (I – λN ,nBN )ΛN–
n+ un+

∥∥
+
∥∥(I – λN ,nBN )ΛN–

n+ un+ – (I – λN ,nBN )ΛN–
n un

∥∥ + |λN ,n+ – λN ,n|

×
(


λN ,n+

∥∥JRN ,λN ,n+ (I – λN ,nBN )ΛN–
n+ un+ – (I – λN ,nBN )ΛN–

n un
∥∥

+


λN ,n

∥∥(I – λN ,nBN )ΛN–
n+ un+ – JRN ,λN ,n (I – λN ,nBN )ΛN–

n un
∥∥)

≤ |λN ,n+ – λN ,n|
(∥∥BNΛN–

n+ un+
∥∥ + M̃

)
+
∥∥ΛN–

n+ un+ –ΛN–
n un

∥∥
≤ |λN ,n+ – λN ,n|

(∥∥BNΛN–
n+ un+

∥∥ + M̃
)

+ |λN–,n+ – λN–,n|
(∥∥BN–Λ

N–
n+ un+

∥∥ + M̃
)
+
∥∥ΛN–

n+ un+ –ΛN–
n un

∥∥
...

≤ |λN ,n+ – λN ,n|
(∥∥BNΛN–

n+ un+
∥∥ + M̃

)
+ |λN–,n+ – λN–,n|

(∥∥BN–Λ
N–
n+ un+

∥∥ + M̃
)

+ · · · + |λ,n+ – λ,n|
(∥∥BΛ


n+un+

∥∥ + M̃
)
+
∥∥Λ

n+un+ –Λ
nun

∥∥
≤ M̃

N∑
i=

|λi,n+ – λi,n| + ‖un+ – un‖, (.)

where

sup
n≥

{


λN ,n+

∥∥JRN ,λN ,n+ (I – λN ,nBN )ΛN–
n+ un+ – (I – λN ,nBN )ΛN–

n un
∥∥

+


λN ,n

∥∥(I – λN ,nBN )ΛN–
n+ un+ – JRN ,λN ,n (I – λN ,nBN )ΛN–

n un
∥∥}≤ M̃

for some M̃ >  and supn≥{
∑N

i= ‖BiΛ
i–
n+un+‖ + M̃} ≤ M̃ for some M̃ > .

Utilizing Proposition .(b), (e), we deduce that

‖un+ – un‖
=
∥∥ΔM

n+xn+ –ΔM
n xn

∥∥
=
∥∥T (ΘM ,ϕM)

rM,n+
(I – rM,n+AM)ΔM–

n+ xn+ – T (ΘM ,ϕM)
rM,n

(I – rM,nAM)ΔM–
n xn

∥∥
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≤ ∥∥T (ΘM ,ϕM)
rM,n+

(I – rM,n+AM)ΔM–
n+ xn+ – T (ΘM ,ϕM)

rM,n
(I – rM,nAM)ΔM–

n+ xn+
∥∥

+
∥∥T (ΘM ,ϕM)

rM,n
(I – rM,nAM)ΔM–

n+ xn+ – T (ΘM ,ϕM)
rM,n

(I – rM,nAM)ΔM–
n xn

∥∥
≤ ∥∥T (ΘM ,ϕM)

rM,n+
(I – rM,n+AM)ΔM–

n+ xn+ – T (ΘM ,ϕM)
rM,n

(I – rM,n+AM)ΔM–
n+ xn+

∥∥
+
∥∥T (ΘM ,ϕM)

rM,n
(I – rM,n+AM)ΔM–

n+ xn+ – T (ΘM ,ϕM)
rM,n

(I – rM,nAM)ΔM–
n+ xn+

∥∥
+
∥∥(I – rM,nAM)ΔM–

n+ xn+ – (I – rM,nAM)ΔM–
n xn

∥∥
≤ |rM,n+ – rM,n|

rM,n+

∥∥T (ΘM ,ϕM)
rM,n+

(I – rM,n+AM)ΔM–
n+ xn+ – (I – rM,n+AM)ΔM–

n+ xn+
∥∥

+ |rM,n+ – rM,n|
∥∥AMΔM–

n+ xn+
∥∥ + ∥∥ΔM–

n+ xn+ –ΔM–
n xn

∥∥
= |rM,n+ – rM,n|

[∥∥AMΔM–
n+ xn+

∥∥ + 
rM,n+

∥∥T (ΘM ,ϕM)
rM,n+

(I – rM,n+AM)ΔM–
n+ xn+

– (I – rM,n+AM)ΔM–
n+ xn+

∥∥] + ∥∥ΔM–
n+ xn+ –ΔM–

n xn
∥∥

...

≤ |rM,n+ – rM,n|
[∥∥AMΔM–

n+ xn+
∥∥ + 

rM,n+

∥∥T (ΘM ,ϕM)
rM,n+

(I – rM,n+AM)ΔM–
n+ xn+

– (I – rM,n+AM)ΔM–
n+ xn+

∥∥] + · · · + |r,n+ – r,n|
[∥∥AΔ


n+xn+

∥∥
+


r,n+

∥∥T (Θ,ϕ)
r,n+ (I – r,n+A)Δ

n+xn+ – (I – r,n+A)Δ
n+xn+

∥∥]
+
∥∥Δ

n+xn+ –Δ
nxn

∥∥
≤ M̃

M∑
k=

|rk,n+ – rk,n| + ‖xn+ – xn‖, (.)

where M̃ >  is a constant such that, for each n≥ ,

M∑
k=

[∥∥AkΔ
k–
n+xn+

∥∥ + 
rk,n+

∥∥T (Θk ,ϕk )
rk,n+ (I – rk,n+Ak)Δk–

n+xn+ – (I – rk,n+Ak)Δk–
n+xn+

∥∥]
≤ M̃.

Furthermore, we define yn = βnxn + ( – βn)wn for all n≥ . It follows that

wn+ –wn

=
yn+ – βn+xn+

 – βn+
–
yn – βnxn
 – βn

=
γn+tn+ + σn+Ttn+

 – βn+
–

γntn + σnTtn
 – βn

=
γn+(tn+ – tn) + σn+(Ttn+ – Ttn)

 – βn+
+
(

γn+

 – βn+
–

γn

 – βn

)
tn

+
(

σn+

 – βn+
–

σn

 – βn

)
Ttn. (.)
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Since T is a ξ -strictly pseudocontractive mapping and (γn + σn)ξ ≤ γn, for all n ≥ , by
Lemma ., we obtain

∥∥γn+(tn+ – tn) + σn+(Ttn+ – Ttn)
∥∥≤ (γn+ + σn+)‖tn+ – tn‖. (.)

Also, utilizing the nonexpansivity of PC(I – λn∇fαn ), we have

‖tn+ – tn‖ =
∥∥PC(I – λn+∇fαn+ )vn+ – PC(I – λn∇fαn )vn

∥∥
≤ ∥∥PC(I – λn+∇fαn+ )vn+ – PC(I – λn+∇fαn+ )vn

∥∥
+
∥∥PC(I – λn+∇fαn+ )vn – PC(I – λn∇fαn )vn

∥∥
≤ ‖vn+ – vn‖ +

∥∥(I – λn+∇fαn+ )vn – (I – λn∇fαn )vn
∥∥

≤ ‖vn+ – vn‖ + |λn+αn+ – λnαn|‖vn‖
+ |λn+ – λn|

∥∥∇f (vn)
∥∥. (.)

Hence, from (.)-(.), it follows that

‖wn+ –wn‖

≤ ‖γn+(tn+ – tn) + σn+(Ttn+ – Ttn)‖
 – βn+

+
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣‖tn‖ + ∣∣∣∣ σn+

 – βn+
–

σn

 – βn

∣∣∣∣‖Ttn‖
≤ (γn+ + σn+)‖tn+ – tn‖

 – βn+
+
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣‖tn‖ + ∣∣∣∣ σn+

 – βn+
–

σn

 – βn

∣∣∣∣‖Ttn‖
= ‖tn+ – tn‖ +

∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖tn‖ + ‖Ttn‖
)

≤ ‖vn+ – vn‖ + |λn+αn+ – λnαn|‖vn‖ + |λn+ – λn|
∥∥∇f (vn)

∥∥
+
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖tn‖ + ‖Ttn‖
)

≤ M̃

N∑
i=

|λi,n+ – λi,n| + ‖un+ – un‖ + |λn+αn+ – λnαn|‖vn‖

+ |λn+ – λn|
∥∥∇f (vn)

∥∥ + ∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖tn‖ + ‖Ttn‖
)

≤ M̃

N∑
i=

|λi,n+ – λi,n| + M̃

M∑
k=

|rk,n+ – rk,n| + ‖xn+ – xn‖

+ |λn+αn+ – λnαn|‖vn‖ + |λn+ – λn|
∥∥∇f (vn)

∥∥
+
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖tn‖ + ‖Ttn‖
)
. (.)

In the meantime, simple calculation shows that

yn+ – yn = βn(xn+ – xn) + ( – βn)(wn+ –wn) + (βn+ – βn)(xn+ –wn+).
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So, it follows from (.) that

‖yn+ – yn‖
≤ βn‖xn+ – xn‖ + ( – βn)‖wn+ –wn‖ + |βn+ – βn|‖xn+ –wn+‖

≤ βn‖xn+ – xn‖ + ( – βn)

[
M̃

N∑
i=

|λi,n+ – λi,n| + M̃

M∑
k=

|rk,n+ – rk,n|

+ ‖xn+ – xn‖ +
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖tn‖ + ‖Ttn‖
)
+ |λn+αn+ – λnαn|‖vn‖

+ |λn+ – λn|
∥∥∇f (vn)

∥∥] + |βn+ – βn|‖xn+ –wn+‖

≤ ‖xn+ – xn‖ + M̃

N∑
i=

|λi,n+ – λi,n| + M̃

M∑
k=

|rk,n+ – rk,n|

+
|γn+ – γn|( – βn) + γn|βn+ – βn|

 – βn+

(‖tn‖ + ‖Ttn‖
)

+ |λn+αn+ – λnαn|‖vn‖ + |λn+ – λn|
∥∥∇f (vn)

∥∥ + |βn+ – βn|‖xn+ –wn+‖

≤ ‖xn+ – xn‖ + M̃

N∑
i=

|λi,n+ – λi,n| + M̃

M∑
k=

|rk,n+ – rk,n|

+ |γn+ – γn| ‖tn‖ + ‖Ttn‖
 – d

+ |βn+ – βn|
(

‖xn+ –wn+‖ + ‖tn‖ + ‖Ttn‖
 – d

)
+ |λn+αn+ – λnαn|‖vn‖ + |λn+ – λn|

∥∥∇f (vn)
∥∥

≤ ‖xn+ – xn‖ + M̃

( N∑
i=

|λi,n+ – λi,n| +
M∑
k=

|rk,n+ – rk,n|

+ |γn+ – γn| + |βn+ – βn| + |λn+αn+ – λnαn| + |λn+ – λn|
)
, (.)

where supn≥{‖xn+ –wn+‖+ ‖tn‖+‖Ttn‖
–d +‖vn‖+‖∇f (vn)‖+M̃+M̃} ≤ M̃ for some M̃ > .

On the other hand, we define zn := δnVxn+(–δn)Sxn, for all n≥ . Then it is well known
that xn+ = εnγ zn + (I – εnμF)yn, for all n≥ . Simple calculations show that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
zn+ – zn = (δn+ – δn)(Vxn – Sxn) + δn+(Vxn+ –Vxn)

+ ( – δn+)(Sxn+ – Sxn),
xn+ – xn+ = (εn+ – εn)(γ zn –μFyn) + εn+γ (zn+ – zn)

+ (I – λn+μF)yn+ – (I – λn+μF)yn.

Since V is a ρ-contraction with coefficient ρ ∈ [, ) and S is a nonexpansive mapping, we
conclude that

‖zn+ – zn‖ ≤ |δn+ – δn|‖Vxn – Sxn‖ + δn+‖Vxn+ –Vxn‖
+ ( – δn+)‖Sxn+ – Sxn‖

≤ |δn+ – δn|‖Vxn – Sxn‖ + δn+ρ‖xn+ – xn‖
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+ ( – δn+)‖xn+ – xn‖
=
(
 – δn+( – ρ)

)‖xn+ – xn‖ + |δn+ – δn|‖Vxn – Sxn‖,

which together with (.) and  < γ ≤ τ implies that

‖xn+ – xn+‖
≤ |εn+ – εn|‖γ zn –μFyn‖ + εn+γ ‖zn+ – zn‖

+
∥∥(I – εn+μF)yn+ – (I – εn+μF)yn

∥∥
≤ |εn+ – εn|‖γ zn –μFyn‖ + εn+γ ‖zn+ – zn‖ + ( – εn+τ )‖yn+ – yn‖
≤ |εn+ – εn|‖γ zn –μFyn‖ + εn+γ

[(
 – δn+( – ρ)

)‖xn+ – xn‖

+ |δn+ – δn|‖Vxn – Sxn‖
]
+ ( – εn+τ )

[
‖xn+ – xn‖

+ M̃

( N∑
i=

|λi,n+ – λi,n| +
M∑
k=

|rk,n+ – rk,n| + |γn+ – γn| + |βn+ – βn|

+ |λn+αn+ – λnαn| + |λn+ – λn|
)]

≤ (
 – εn+(τ – γ ) – εn+δn+( – ρ)γ

)‖xn+ – xn‖ + |εn+ – εn|‖γ zn –μFyn‖

+ εn+|δn+ – δn|‖Vxn – Sxn‖ + M̃

( N∑
i=

|λi,n+ – λi,n| +
M∑
k=

|rk,n+ – rk,n|

+ |γn+ – γn| + |βn+ – βn| + |λn+αn+ – λnαn| + |λn+ – λn|
)

≤ (
 – εn+δn+( – ρ)γ

)‖xn+ – xn‖ + M̃

{ N∑
i=

|λi,n+ – λi,n|

+
M∑
k=

|rk,n+ – rk,n| + |εn+ – εn| + εn+|δn+ – δn| + |βn+ – βn|

+ |γn+ – γn| + |λn+αn+ – λnαn| + |λn+ – λn|
}
,

where supn≥{‖γ zn –μFyn‖ + ‖Vxn – Sxn‖ + M̃} ≤ M̃ for some M̃ > . Consequently,

‖xn+ – xn‖
εn

≤ (
 – εnδn( – ρ)γ

)‖xn – xn–‖
εn

+ M̃

{ N∑
i=

|λi,n – λi,n–|
εn

+
M∑
k=

|rk,n – rk,n–|
εn

+
|εn – εn–|

εn
+ |δn – δn–| + |βn – βn–|

εn
+

|γn – γn–|
εn

+
|λnαn – λn–αn–|

εn
+

|λn – λn–|
εn

}
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=
(
 – εnδn( – ρ)γ

)‖xn – xn–‖
εn–

+
(
 – εnδn( – ρ)γ

)‖xn – xn–‖
(


εn

–


εn–

)

+ M̃

{ N∑
i=

|λi,n – λi,n–|
εn

+
M∑
k=

|rk,n – rk,n–|
εn

+
|εn – εn–|

εn
+ |δn – δn–|

+
|βn – βn–|

εn
+

|γn – γn–|
εn

+
|λnαn – λn–αn–|

εn
+

|λn – λn–|
εn

}

≤ (
 – εnδn( – ρ)γ

)‖xn – xn–‖
εn–

+ εnδn( – ρ)γ · M̃

( – ρ)γ

{
|εn – εn–|
δnεnεn–

+
N∑
i=

|λi,n – λi,n–|
δnεn

+
M∑
k=

|rk,n – rk,n–|
δnεn

+
|εn – εn–|

δnεn
+

|δn – δn–|
δnεn

+
|βn – βn–|

δnεn
+

|γn – γn–|
δnεn

+
|λnαn – λn–αn–|

δnεn
+

|λn – λn–|
δnεn

}
, (.)

where supn≥{‖xn – xn–‖+ M̃} ≤ M̃ for some M̃ > . Utilizing Lemma ., we conclude
from conditions (C)-(C) and (C)-(C) that

∑∞
n= εnδn( – ρ)γ =∞ and

lim
n→∞

‖xn+ – xn‖
εn

= .

So, as εn → , it follows that

lim
n→∞‖xn+ – xn‖ = .

Step . We prove that limn→∞ ‖xn–un‖
εn

= , limn→∞ ‖xn–vn‖
εn

= , limn→∞ ‖vn–tn‖
εn

=  and
limn→∞ ‖tn–Ttn‖

εn
= .

Indeed, utilizing Lemmas . and .(b), from (.), (.)-(.) and (γn + σn)ξ ≤ γn, we
deduce that

‖yn – p‖

= ‖βnxn + γntn + σnTtn – p‖

=
∥∥∥∥βn(xn – p) + ( – βn)

(
γntn + σnTtn

 – βn
– p

)∥∥∥∥
= βn‖xn – p‖ + ( – βn)

∥∥∥∥γntn + σnTtn
 – βn

– p
∥∥∥∥ – βn( – βn)

∥∥∥∥γntn + σnTtn
 – βn

– xn
∥∥∥∥

= βn‖xn – p‖ + ( – βn)
∥∥∥∥γn(tn – p) + σn(Ttn – p)

 – βn

∥∥∥∥ – βn( – βn)
∥∥∥∥yn – xn
 – βn

∥∥∥∥
≤ βn‖xn – p‖ + ( – βn)

(γn + σn)‖tn – p‖
( – βn)

–
βn

 – βn
‖yn – xn‖

= βn‖xn – p‖ + ( – βn)‖tn – p‖ – βn

 – βn
‖yn – xn‖

≤ βn‖xn – p‖ + ( – βn)
(‖xn – p‖ + λnαn‖p‖

) – βn

 – βn
‖yn – xn‖

≤ βn
(‖xn – p‖ + λnαn‖p‖

) + ( – βn)
(‖xn – p‖ + λnαn‖p‖

) – βn

 – βn
‖yn – xn‖
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=
(‖xn – p‖ + λnαn‖p‖

) – βn

 – βn
‖yn – xn‖

≤ (‖xn – p‖ + αnb‖p‖
) – βn

 – βn
‖yn – xn‖. (.)

Observe that

∥∥Δk
nxn – p

∥∥ =
∥∥T (Θk ,ϕk )

rk,n (I – rk,nAk)Δk–
n xn – T (Θk ,ϕk )

rk,n (I – rk,nAk)p
∥∥

≤ ∥∥(I – rk,nAk)Δk–
n xn – (I – rk,nAk)p

∥∥
≤ ∥∥Δk–

n xn – p
∥∥ + rk,n(rk,n – μk)

∥∥AkΔ
k–
n xn –Akp

∥∥
≤ ‖xn – p‖ + rk,n(rk,n – μk)

∥∥AkΔ
k–
n xn –Akp

∥∥ (.)

and

∥∥Λi
nun – p

∥∥ =
∥∥JRi ,λi,n (I – λi,nBi)Λi–

n un – JRi ,λi,n (I – λi,nBi)p
∥∥

≤ ∥∥(I – λi,nBi)Λi–
n un – (I – λi,nBi)p

∥∥
≤ ∥∥Λi–

n un – p
∥∥ + λi,n(λi,n – ηi)

∥∥BiΛ
i–
n un – Bip

∥∥
≤ ‖un – p‖ + λi,n(λi,n – ηi)

∥∥BiΛ
i–
n un – Bip

∥∥
≤ ‖xn – p‖ + λi,n(λi,n – ηi)

∥∥BiΛ
i–
n un – Bip

∥∥ (.)

for i ∈ {, , . . . ,N} and k ∈ {, , . . . ,M}. Combining (.), (.)-(.), we get

‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)‖tn – p‖ – βn

 – βn
‖yn – xn‖

≤ βn‖xn – p‖ + ( – βn)‖tn – p‖

≤ βn‖xn – p‖ + ( – βn)
(‖vn – p‖ + λnαn‖p‖

)
≤ βn‖xn – p‖ + ( – βn)

(‖vn – p‖ + αnb‖p‖
)

= βn‖xn – p‖ + ( – βn)
[‖vn – p‖ + αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)]
≤ βn‖xn – p‖ + ( – βn)‖vn – p‖ + αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
≤ βn‖xn – p‖ + ( – βn)

∥∥Λi
nun – p

∥∥ + αnb‖p‖
(
‖vn – p‖ + αnb‖p‖

)
≤ βn‖xn – p‖ + ( – βn)

[‖un – p‖ + λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥]
+ αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
≤ βn‖xn – p‖ + ( – βn)

[∥∥Δk
nxn – p

∥∥ + λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥]
+ αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
≤ βn‖xn – p‖ + ( – βn)

[‖xn – p‖ + rk,n(rk,n – μk)
∥∥AkΔ

k–
n xn –Akp

∥∥
+ λi,n(λi,n – ηi)

∥∥BiΛ
i–
n un – Bip

∥∥] + αnb‖p‖
(
‖vn – p‖ + αnb‖p‖

)
= ‖xn – p‖ + ( – βn)

[
rk,n(rk,n – μk)

∥∥AkΔ
k–
n xn –Akp

∥∥
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+ λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥]
+ αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
, (.)

which immediately leads to

( – d)
[
rk,n(μk – rk,n)

‖AkΔ
k–
n xn –Akp‖

εn
+ λi,n(ηi – λi,n)

‖BiΛ
i–
n un – Bip‖

εn

]

≤ ( – βn)
[
rk,n(μk – rk,n)

‖AkΔ
k–
n xn –Akp‖

εn
+ λi,n(ηi – λi,n)

‖BiΛ
i–
n un – Bip‖

εn

]
≤ ‖xn – p‖ – ‖yn – p‖

εn
+

αn

εn
b‖p‖(‖vn – p‖ + αnb‖p‖

)
≤ ‖xn – yn‖

εn

(‖xn – p‖ + ‖yn – p‖) + αn

εn
b‖p‖(‖vn – p‖ + αnb‖p‖

)
.

Since {λi,n} ⊂ [ai,bi] ⊂ (, ηi), {rk,n} ⊂ [ck ,dk] ⊂ (, μk), i ∈ {, , . . . ,N}, k ∈ {, , . . . ,M}
and {vn}, {xn}, {yn} are bounded sequences, we obtain from ‖xn – yn‖ + αn = o(εn),

lim
n→∞

‖AkΔ
k–
n xn –Akp‖

εn
=  and lim

n→∞
‖BiΛ

i–
n un – Bip‖

εn
=  (.)

for all k ∈ {, , . . . ,M} and i ∈ {, , . . . ,N}.
Furthermore, by Proposition .(b) and Lemma .(a), we have

∥∥Δk
nxn – p

∥∥
=
∥∥T (Θk ,ϕk )

rk,n (I – rk,nAk)Δk–
n xn – T (Θk ,ϕk )

rk,n (I – rk,nAk)p
∥∥

≤ 〈
(I – rk,nAk)Δk–

n xn – (I – rk,nAk)p,Δk
nxn – p

〉
=


(∥∥(I – rk,nAk)Δk–

n xn – (I – rk,nAk)p
∥∥ + ∥∥Δk

nxn – p
∥∥

–
∥∥(I – rk,nAk)Δk–

n xn – (I – rk,nAk)p –
(
Δk

nxn – p
)∥∥)

≤ 

(∥∥Δk–

n xn – p
∥∥ + ∥∥Δk

nxn – p
∥∥

–
∥∥Δk–

n xn –Δk
nxn – rk,n

(
AkΔ

k–
n xn –Akp

)∥∥),
which implies that∥∥Δk

nxn – p
∥∥

≤ ∥∥Δk–
n xn – p

∥∥ – ∥∥Δk–
n xn –Δk

nxn – rk,n
(
AkΔ

k–
n xn –Akp

)∥∥
=
∥∥Δk–

n xn – p
∥∥ – ∥∥Δk–

n xn –Δk
nxn

∥∥ – rk,n
∥∥AkΔ

k–
n xn –Akp

∥∥
+ rk,n

〈
Δk–

n xn –Δk
nxn,AkΔ

k–
n xn –Akp

〉
≤ ∥∥Δk–

n xn – p
∥∥ – ∥∥Δk–

n xn –Δk
nxn

∥∥ + rk,n
∥∥Δk–

n xn –Δk
nxn

∥∥∥∥AkΔ
k–
n xn –Akp

∥∥
≤ ‖xn – p‖ – ∥∥Δk–

n xn –Δk
nxn

∥∥
+ rk,n

∥∥Δk–
n xn –Δk

nxn
∥∥∥∥AkΔ

k–
n xn –Akp

∥∥. (.)
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By Lemma .(a) and Lemma ., we obtain

∥∥Λi
nun – p

∥∥
=
∥∥JRi ,λi,n (I – λi,nBi)Λi–

n un – JRi ,λi,n (I – λi,nBi)p
∥∥

≤ 〈
(I – λi,nBi)Λi–

n un – (I – λi,nBi)p,Λi
nun – p

〉
=


(∥∥(I – λi,nBi)Λi–

n un – (I – λi,nBi)p
∥∥ + ∥∥Λi

nun – p
∥∥

–
∥∥(I – λi,nBi)Λi–

n un – (I – λi,nBi)p –
(
Λi

nun – p
)∥∥)

≤ 

(∥∥Λi–

n un – p
∥∥ + ∥∥Λi

nun – p
∥∥

–
∥∥Λi–

n un –Λi
nun – λi,n

(
BiΛ

i–
n un – Bip

)∥∥)
≤ 


(‖un – p‖ + ∥∥Λi

nun – p
∥∥ – ∥∥Λi–

n un –Λi
nun – λi,n

(
BiΛ

i–
n un – Bip

)∥∥)
≤ 


(‖xn – p‖ + ∥∥Λi

nun – p
∥∥ – ∥∥Λi–

n un –Λi
nun – λi,n

(
BiΛ

i–
n un – Bip

)∥∥),
which immediately leads to

∥∥Λi
nun – p

∥∥
≤ ‖xn – p‖ – ∥∥Λi–

n un –Λi
nun – λi,n

(
BiΛ

i–
n un – Bip

)∥∥
= ‖xn – p‖ – ∥∥Λi–

n un –Λk
nun

∥∥ – λ
i,n
∥∥BiΛ

i–
n un – Bip

∥∥
+ λi,n

〈
Λi–

n un –Λi
nun,BiΛ

i–
n un – Bip

〉
≤ ‖xn – p‖ – ∥∥Λi–

n un –Λi
nun

∥∥
+ λi,n

∥∥Λi–
n un –Λi

nun
∥∥∥∥BiΛ

i–
n un – Bip

∥∥. (.)

Combining (.) and (.), we conclude that

‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)‖vn – p‖ + αnb‖p‖
(
‖vn – p‖ + αnb‖p‖

)
≤ βn‖xn – p‖ + ( – βn)

∥∥Λi
nun – p

∥∥ + αnb‖p‖
(
‖vn – p‖ + αnb‖p‖

)
≤ βn‖xn – p‖ + ( – βn)

[‖xn – p‖ – ∥∥Λi–
n un –Λi

nun
∥∥

+ λi,n
∥∥Λi–

n un –Λi
nun

∥∥∥∥BiΛ
i–
n un – Bip

∥∥] + αnb‖p‖
(
‖vn – p‖ + αnb‖p‖

)
≤ ‖xn – p‖ – ( – βn)

∥∥Λi–
n un –Λi

nun
∥∥

+ λi,n
∥∥Λi–

n un –Λi
nun

∥∥∥∥BiΛ
i–
n un – Bip

∥∥ + αnb‖p‖
(
‖vn – p‖ + αnb‖p‖

)
,

which yields

( – d)
‖Λi–

n un –Λi
nun‖

εn

≤ ( – βn)
∥∥Λi–

n un –Λi
nun

∥∥
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≤ ‖xn – p‖ – ‖yn – p‖
εn

+ λi,n
‖Λi–

n un –Λi
nun‖‖BiΛ

i–
n un – Bip‖

εn

+ αnb‖p‖
(
‖vn – p‖ + αnb‖p‖

)
≤ ‖xn – yn‖

εn

(‖xn – p‖ + ‖yn – p‖) + λi,n
‖Λi–

n un –Λi
nun‖

εn

‖BiΛ
i–
n un – Bip‖

εn

+
αn

εn
b‖p‖(‖vn – p‖ + αnb‖p‖

)
.

So, it follows from {λi,n} ⊂ [ai,bi] ⊂ (, ηi), i = , , . . . ,N , that

( – d)
‖Λi–

n un –Λi
nun‖

εn

≤ ‖xn – yn‖
εn

(‖xn – p‖ + ‖yn – p‖)
+ bi

‖Λi–
n un –Λi

nun‖
εn

‖BiΛ
i–
n un – Bip‖

εn

+
αn

εn
b‖p‖(‖vn – p‖ + αnb‖p‖

)
. (.)

Now we claim that

lim
n→∞

‖Λi–
n un –Λi

nun‖
εn

= , ∀i ∈ {, , . . . ,N}. (.)

As a matter of fact, it is easy to see that, for each i ∈ {, , . . . ,N},

lim sup
n→∞

‖Λi–
n un –Λi

nun‖
εn

≤ ∞.

If lim supn→∞
‖Λi–

n un–Λi
nun‖

εn
< ∞, then from (.) and limn→∞

‖BiΛi–
n un–Bip‖

εn
=  (due to

(.)), we have

( – d)lim sup
n→∞

‖Λi–
n un –Λi

nun‖
εn

≤ lim sup
n→∞

‖xn – yn‖
εn

(‖xn – p‖ + ‖yn – p‖)
+ bilim sup

n→∞
‖Λi–

n un –Λi
nun‖

εn

‖BiΛ
i–
n un – Bip‖

εn

+ lim sup
n→∞

αn

εn
b‖p‖(‖vn – p‖ + αnb‖p‖

)
≤ lim sup

n→∞
‖xn – yn‖

εn

(‖xn – p‖ + ‖yn – p‖)
+ bilim sup

n→∞
‖Λi–

n un –Λi
nun‖

εn
lim sup
n→∞

‖BiΛ
i–
n un – Bip‖

εn

+ lim sup
n→∞

αn

εn
b‖p‖(‖vn – p‖ + αnb‖p‖

)
= .
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That is, limn→∞
‖Λi–

n un–Λi
nun‖

εn
= . If lim supn→∞

‖Λi–
n un–Λi

nun‖
εn

= ∞, then from (.), we
have

( – d)
‖Λi–

n un –Λi
nun‖

εn

[‖Λi–
n un –Λi

nun‖
εn

–
bi
 – d

‖BiΛ
i–
n un – Bip‖

εn

]
≤ ‖xn – yn‖

εn

(‖xn – p‖ + ‖yn – p‖) + αn

εn
b‖p‖(‖vn – p‖ + αnb‖p‖

)
. (.)

Since limn→∞
‖BiΛi–

n un–Bip‖
εn

=  (due to (.)), it is easy to see that

lim sup
n→∞

‖Λi–
n un –Λi

nun‖
εn

[‖Λi–
n un –Λi

nun‖
εn

–
bi
 – d

‖BiΛ
i–
n un – Bip‖

εn

]
=∞.

Thus, from (.), it follows that

∞ = lim sup
n→∞

( – d)
‖Λi–

n un –Λi
nun‖

εn

[‖Λi–
n un –Λi

nun‖
εn

–
bi
 – d

‖BiΛ
i–
n un – Bip‖

εn

]
≤ lim sup

n→∞
‖xn – yn‖

εn

(‖xn – p‖ + ‖yn – p‖)
+ lim sup

n→∞
αn

εn
b‖p‖(‖vn – p‖ + αnb‖p‖

)
= ,

which leads to a contradiction. This shows that (.) holds.
Also, combining (.), (.), and (.), we deduce that

‖yn – p‖ ≤ βn‖xn – p‖ + ( – βn)‖vn – p‖ + αnb‖p‖
(
‖vn – p‖ + αnb‖p‖

)
≤ βn‖xn – p‖ + ( – βn)‖un – p‖ + αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
≤ βn‖xn – p‖ + ( – βn)

∥∥Δk
nxn – p

∥∥ + αnb‖p‖
(
‖vn – p‖ + αnb‖p‖

)
≤ βn‖xn – p‖ + ( – βn)

[‖xn – p‖ – ∥∥Δk–
n xn –Δk

nxn
∥∥

+ rk,n
∥∥Δk–

n xn –Δk
nxn

∥∥∥∥AkΔ
k–
n xn –Akp

∥∥]
+ αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
≤ ‖xn – p‖ – ( – βn)

∥∥Δk–
n xn –Δk

nxn
∥∥

+ rk,n
∥∥Δk–

n xn –Δk
nxn

∥∥∥∥AkΔ
k–
n xn –Akp

∥∥
+ αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
,

which yields

( – d)
‖Δk–

n xn –Δk
nxn‖

εn

≤ ( – βn)
‖Δk–

n xn –Δk
nxn‖

εn

≤ ‖xn – p‖ – ‖yn – p‖
εn

+ rk,n
‖Δk–

n xn –Δk
nxn‖‖AkΔ

k–
n xn –Akp‖

εn
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+
αn

εn
b‖p‖(‖vn – p‖ + αnb‖p‖

)
≤ ‖xn – yn‖

εn

(‖xn – p‖ + ‖yn – p‖) + rk,n
‖Δk–

n xn –Δk
nxn‖

εn

‖AkΔ
k–
n xn –Akp‖

εn

+
αn

εn
b‖p‖(‖vn – p‖ + αnb‖p‖

)
.

So, it follows from {rk,n} ⊂ [ck ,dk] ⊂ (, μk), k = , , . . . ,M, that

( – d)
‖Δk–

n xn –Δk
nxn‖

εn

≤ ‖xn – yn‖
εn

(‖xn – p‖ + ‖yn – p‖)
+ dk

‖Δk–
n xn –Δk

nxn‖
εn

‖AkΔ
k–
n xn –Akp‖

εn

+
αn

εn
b‖p‖(‖vn – p‖ + αnb‖p‖

)
. (.)

Next, we claim that

lim
n→∞

‖Δk–
n xn –Δk

nxn‖
εn

= , ∀k ∈ {, , . . . ,M}. (.)

As a matter of fact, it is easy to see that, for each k ∈ {, , . . . ,M},

lim sup
n→∞

‖Δk–
n xn –Δk

nxn‖
εn

≤ ∞.

If lim supn→∞
‖Δk–

n xn–Δk
nxn‖

εn
< ∞, then from (.) and lim supn→∞

‖AkΔ
k–
n xn–Akp‖

εn
=  (due

to (.)), we have

lim sup
n→∞

( – d)
‖Δk–

n xn –Δk
nxn‖

εn

≤ lim sup
n→∞

‖xn – yn‖
εn

(‖xn – p‖ + ‖yn – p‖)
+ dklim sup

n→∞
‖Δk–

n xn –Δk
nxn‖

εn

‖AkΔ
k–
n xn –Akp‖

εn

+ lim sup
n→∞

αn

εn
b‖p‖(‖vn – p‖ + αnb‖p‖

)
≤ lim sup

n→∞
‖xn – yn‖

εn

(‖xn – p‖ + ‖yn – p‖)
+ dklim sup

n→∞
‖Δk–

n xn –Δk
nxn‖

εn
lim sup
n→∞

‖AkΔ
k–
n xn –Akp‖

εn

+ lim sup
n→∞

αn

εn
b‖p‖(‖vn – p‖ + αnb‖p‖

)
= .
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That is, limn→∞
‖Δk–

n xn–Δk
nxn‖

εn
= . If lim supn→∞

‖Δk–
n xn–Δk

nxn‖
εn

= ∞, then from (.), we
have

( – d)
‖Δk–

n xn –Δk
nxn‖

εn

[‖Δk–
n xn –Δk

nxn‖
εn

–
‖AkΔ

k–
n xn –Akp‖

εn

]
≤ ‖xn – yn‖

εn

(‖xn – p‖ + ‖yn – p‖) + αn

εn
b‖p‖(‖vn – p‖ + αnb‖p‖

)
. (.)

Since limn→∞
‖AkΔ

k–
n xn–Akp‖

εn
=  (due to (.)), it is easy to see that

lim sup
n→∞

‖Δk–
n xn –Δk

nxn‖
εn

[‖Δk–
n xn –Δk

nxn‖
εn

–
‖AkΔ

k–
n xn –Akp‖

εn

]
=∞.

Consequently, from (.), it follows that

∞ = lim sup
n→∞

( – d)
‖Δk–

n xn –Δk
nxn‖

εn

[‖Δk–
n xn –Δk

nxn‖
εn

–
‖AkΔ

k–
n xn –Akp‖

εn

]
≤ lim sup

n→∞
‖xn – yn‖

εn

(‖xn – p‖ + ‖yn – p‖)
+ lim sup

n→∞
αn

εn
b‖p‖(‖vn – p‖ + αnb‖p‖

)
= ,

which leads to a contradiction. This shows that (.) is valid. Therefore, from (.) and
(.), we get

‖xn – un‖
εn

=
‖Δ

nxn –ΔM
n xn‖

εn

≤ ‖Δ
nxn –Δ

nxn‖
εn

+
‖Δ

nxn –Δ
nxn‖

εn

+ · · · + ‖ΔM–
n xn –ΔM

n xn‖
εn

→  as n→ ∞ (.)

and

‖un – vn‖
εn

=
‖Λ

nun –ΛN
n un‖

εn

≤ ‖Λ
nun –Λ

nun‖
εn

+
‖Λ

nun –Λ
nun‖

εn

+ · · · + ‖ΛN–
n un –ΛN

n un‖
εn

→  as n→ ∞, (.)

respectively. Thus, from (.) and (.), we obtain

‖xn – vn‖
εn

≤ ‖xn – un‖
εn

+
‖un – vn‖

εn
→  as n→ ∞. (.)
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On the other hand, note that Γ = VI(C,∇f ). Then, utilizing Lemma . and the 
‖A‖ -

inverse strong monotonicity of ∇f , we deduce from (.) that

‖tn – p‖ ≤ ∥∥(I – λn∇fαn )vn – (I – λn∇f )p
∥∥

=
∥∥vn – p – λn

(∇f (vn) –∇f (p)
)
– λnαnvn

∥∥
≤ ∥∥vn – p – λn

(∇f (vn) –∇f (p)
)∥∥

– λnαn
〈
vn, (I – λn∇fαn )vn – (I – λn∇f )p

〉
≤ ‖vn – p‖ + λn

(
λn –


‖A‖

)∥∥∇f (vn) –∇f (p)
∥∥

+ αnb‖vn‖
∥∥vn – p – λn

(∇fαn (vn) –∇f (p)
)∥∥. (.)

Combining (.), (.), and (.), we obtain

‖yn – p‖ ≤ βn‖xn – p‖ + ( – βn)‖tn – p‖

≤ βn‖xn – p‖ + ( – βn)
[
‖vn – p‖ + λn

(
λn –


‖A‖

)∥∥∇f (vn) –∇f (p)
∥∥

+ αnb‖vn‖
∥∥vn – p – λn

(∇fαn (vn) –∇f (p)
)∥∥]

≤ βn‖xn – p‖ + ( – βn)
[
‖xn – p‖ + λn

(
λn –


‖A‖

)∥∥∇f (vn) –∇f (p)
∥∥

+ αnb‖vn‖
∥∥vn – p – λn

(∇fαn (vn) –∇f (p)
)∥∥]

≤ ‖xn – p‖ + ( – βn)λn

(
λn –


‖A‖

)∥∥∇f (vn) –∇f (p)
∥∥

+ αnb‖vn‖
∥∥vn – p – λn

(∇fαn (vn) –∇f (p)
)∥∥,

which together with {λn} ⊂ [a,b]⊂ (, 
‖A‖ ) and {βn} ⊂ [c,d] ⊂ (, ) leads to

( – d)a
(


‖A‖ – b

)‖∇f (vn) –∇f (p)‖
εn

≤ ( – βn)λn

(


‖A‖ – λn

)‖∇f (vn) –∇f (p)‖
εn

≤ ‖xn – p‖ – ‖yn – p‖
εn

+ 
αn

εn
b‖vn‖

∥∥vn – p – λn
(∇fαn (vn) –∇f (p)

)∥∥
≤ ‖xn – yn‖

εn

(‖xn – p‖ + ‖yn – p‖)
+ 

αn

εn
b‖vn‖

∥∥vn – p – λn
(∇fαn (vn) –∇f (p)

)∥∥.
Since {vn}, {xn}, and {yn} are bounded sequences, we deduce from ‖xn – yn‖ + αn = o(εn)
that

lim
n→∞

‖∇f (vn) –∇f (p)‖
εn

= .
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So, it is clear that

lim
n→∞

‖∇fαn (vn) –∇f (p)‖
εn

= . (.)

Again, utilizing Proposition .(c), from tn = PC(I –λn∇fαn )vn and p = PC(I –λn∇f )p, we
get

‖tn – p‖ =
∥∥PC(I – λn∇fαn )vn – PC(I – λn∇f )p

∥∥
≤ 〈

(I – λn∇fαn )vn – (I – λn∇f )p, tn – p
〉

=


(∥∥(I – λn∇fαn )vn – (I – λn∇f )p

∥∥ + ‖tn – p‖

–
∥∥(I – λn∇fαn )vn – (I – λn∇f )p – (tn – p)

∥∥)
=



(∥∥(I – λn∇fαn )vn – (I – λn∇fαn )p – λnαnp

∥∥ + ‖tn – p‖

–
∥∥(I – λn∇fαn )vn – (I – λn∇f )p – (tn – p)

∥∥)
=



(∥∥(I – λn∇fαn )vn – (I – λn∇fαn )p

∥∥ – λnαn
〈
p, (I – λn∇fαn )vn

– (I – λn∇f )p
〉

+ ‖tn – p‖ – ∥∥(I – λn∇fαn )vn – (I – λn∇f )p – (tn – p)
∥∥)

≤ 

(‖vn – p‖ – λnαn

〈
p, (I – λn∇fαn )vn – (I – λn∇f )p

〉
+ ‖tn – p‖

–
∥∥(I – λn∇fαn )vn – (I – λn∇f )p – (tn – p)

∥∥)
≤ 


(‖vn – p‖ + λnαn‖p‖

∥∥(I – λn∇fαn )vn – (I – λn∇f )p
∥∥ + ‖tn – p‖

–
∥∥vn – tn – λn

(∇fαn (vn) –∇f (p)
)∥∥),

which immediately leads to

‖tn – p‖ ≤ ‖vn – p‖ + λnαn‖p‖
∥∥(I – λn∇fαn )vn – (I – λn∇f )p

∥∥
–
∥∥vn – tn – λn

(∇fαn (vn) –∇f (p)
)∥∥. (.)

Combining (.), (.), and (.), we obtain

‖yn – p‖ ≤ βn‖xn – p‖ + ( – βn)‖tn – p‖

≤ βn‖xn – p‖ + ( – βn)
[‖vn – p‖

+ λnαn‖p‖
∥∥(I – λn∇fαn )vn – (I – λn∇f )p

∥∥
–
∥∥vn – tn – λn

(∇fαn (vn) –∇f (p)
)∥∥]

≤ βn‖xn – p‖ + ( – βn)
[‖xn – p‖

+ λnαn‖p‖
∥∥(I – λn∇fαn )vn – (I – λn∇f )p

∥∥
–
∥∥vn – tn – λn

(∇fαn (vn) –∇f (p)
)∥∥]
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≤ ‖xn – p‖ + λnαn‖p‖
∥∥(I – λn∇fαn )vn – (I – λn∇f )p

∥∥
– ( – βn)

∥∥vn – tn – λn
(∇fαn (vn) –∇f (p)

)∥∥,
which immediately yields

( – d)
‖vn – tn – λn(∇fαn (vn) –∇f (p))‖

εn

≤ ( – βn)
‖vn – tn – λn(∇fαn (vn) –∇f (p))‖

εn

≤ ‖xn – p‖ – ‖yn – p‖
εn

+ λn
αn

εn
‖p‖∥∥(I – λn∇fαn )vn – (I – λn∇f )p

∥∥
≤ ‖xn – yn‖

εn

(‖xn – p‖ + ‖yn – p‖) + 
αn

εn
b‖p‖∥∥(I – λn∇fαn )vn – (I – λn∇f )p

∥∥.
Since {vn}, {xn}, and {yn} are bounded sequences, we deduce from ‖xn – yn‖ + αn = o(εn)
that

lim
n→∞

‖vn – tn – λn(∇fαn (vn) –∇f (p))‖
εn

= . (.)

Observe that

‖vn – tn‖
εn

≤ ‖vn – tn – λn(∇fαn (vn) –∇f (p))‖
εn

+
λn‖∇fαn (vn) –∇f (p)‖

εn
.

Thus, from (.) and (.), we have

lim
n→∞

‖vn – tn‖
εn

= . (.)

Taking into account that ‖xn–tn‖
εn

≤ ‖xn–vn‖
εn

+ ‖vn–tn‖
εn

, from (.) and (.), we get

lim
n→∞

‖xn – tn‖
εn

= . (.)

Utilizing the relation yn – xn = γn(tn – xn) + σn(Ttn – xn), we have

‖σn(Ttn – tn)‖
εn

=
‖σn(Ttn – xn) – σn(tn – xn)‖

εn

=
‖yn – xn – γn(tn – xn) – σn(tn – xn)‖

εn

=
‖yn – xn – ( – βn)(tn – xn)‖

εn

≤ ‖yn – xn‖
εn

+ ( – βn)
‖tn – xn‖

εn

≤ ‖yn – xn‖
εn

+
‖tn – xn‖

εn
,
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which together with (.) and ‖xn – yn‖ = o(εn), implies that

lim
n→∞

‖σn(Ttn – tn)‖
εn

= .

Since lim infn→∞ σn > , we obtain

lim
n→∞

‖tn – Ttn‖
εn

= . (.)

Step . We prove that ωw(xn) ⊂ Ω .
Indeed, sinceH is reflexive and {xn} is bounded, there exists at least a weak convergence

subsequence of {xn}. Hence, ωw(xn) �= ∅. Now, take an arbitrary w ∈ ωw(xn). Then there
exists a subsequence {xni} of {xn} such that xni ⇀ w. From (.), (.), (.), (.)
and (.), we have uni ⇀ w, vni ⇀ w, tni ⇀ w, Λm

niuni ⇀ w and Δk
nixni ⇀ w, where m ∈

{, , . . . ,N} and k ∈ {, , . . . ,M}. Utilizing Lemma .(b), we deduce from tni ⇀ w and
(.) that w ∈ Fix(T).
Next, we prove that w ∈ ⋂N

m= I(Bm,Rm). As a matter of fact, since Bm is ηm-inverse
strongly monotone, Bm is a monotone and Lipschitz-continuous mapping. It follows
from Lemma . that Rm + Bm is maximal monotone. Let (v, g) ∈ G(Rm + Bm), that is,
g – Bmv ∈ Rmv. Again, since Λm

n un = JRm ,λm,n (I – λm,nBm)Λm–
n un, n ≥ , m ∈ {, , . . . ,N},

we have

Λm–
n un – λm,nBmΛm–

n un ∈ (I + λm,nRm)Λm
n un,

that is,


λm,n

(
Λm–

n un –Λm
n un – λm,nBmΛm–

n un
) ∈ RmΛm

n un.

In terms of the monotonicity of Rm, we get〈
v –Λm

n un, g – Bmv –


λm,n

(
Λm–

n un –Λm
n un – λm,nBmΛm–

n un
)〉≥ ,

and hence

〈
v –Λm

n un, g
〉

≥
〈
v –Λm

n un,Bmv +


λm,n

(
Λm–

n un –Λm
n un – λm,nBmΛm–

n un
)〉

=
〈
v –Λm

n un,Bmv – BmΛm
n un + BmΛm

n un – BmΛm–
n un +


λm,n

(
Λm–

n un –Λm
n un

)〉
≥ 〈

v –Λm
n un,BmΛm

n un – BmΛm–
n un

〉
+
〈
v –Λm

n un,


λm,n

(
Λm–

n un –Λm
n un

)〉
.

In particular,〈
v –Λm

niuni , g
〉≥ 〈

v –Λm
niuni ,BmΛm

niuni – BmΛm–
ni uni

〉
+
〈
v –Λm

niuni ,


λm,ni

(
Λm–

ni uni –Λm
niuni

)〉
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/492


Ceng et al. Journal of Inequalities and Applications 2014, 2014:492 Page 33 of 40
http://www.journalofinequalitiesandapplications.com/content/2014/1/492

Since ‖Λm
n un –Λm–

n un‖ →  (due to (.)) and ‖BmΛm
n un –BmΛm–

n un‖ →  (due to the
Lipschitz continuity of Bm), we conclude from Λm

niuni ⇀ w and {λi,n} ⊂ [ai,bi] ⊂ (, ηi)
that

lim
i→∞

〈
v –Λm

niuni , g
〉
= 〈v –w, g〉 ≥ .

It follows from the maximal monotonicity of Bm + Rm that  ∈ (Rm + Bm)w, that is, w ∈
I(Bm,Rm). Therefore, w ∈⋂N

m= I(Bm,Rm).
Next we prove that w ∈⋂M

k=GMEP(Θk ,ϕk ,Ak). Since Δk
nxn = T (Θk ,ϕk )

rk,n (I – rk,nAk)Δk–
n xn,

n≥ , k ∈ {, , . . . ,M}, we have

Θk
(
Δk

nxn, y
)
+ ϕk(y) – ϕk

(
Δk

nxn
)
+
〈
AkΔ

k–
n xn, y –Δk

nxn
〉

+

rk,n

〈
y –Δk

nxn,Δ
k
nxn –Δk–

n xn
〉≥ .

By (A), we have

ϕk(y) – ϕk
(
Δk

nxn
)
+
〈
AkΔ

k–
n xn, y –Δk

nxn
〉
+


rk,n

〈
y –Δk

nxn,Δ
k
nxn –Δk–

n xn
〉

≥ Θk
(
y,Δk

nxn
)
.

Let zt = ty + ( – t)w, for all t ∈ (, ] and y ∈ C. This implies that zt ∈ C. Then we have

〈
zt –Δk

nxn,Akzt
〉

≥ ϕk
(
Δk

nxn
)
– ϕk(zt) +

〈
zt –Δk

nxn,Akzt
〉
–
〈
zt –Δk

nxn,AkΔ
k–
n xn

〉
–
〈
zt –Δk

nxn,
Δk

nxn –Δk–
n xn

rk,n

〉
+Θk

(
zt ,Δk

nxn
)

= ϕk
(
Δk

nxn
)
– ϕk(zt) +

〈
zt –Δk

nxn,Akzt –AkΔ
k
nxn

〉
+
〈
zt –Δk

nxn,AkΔ
k
nxn –AkΔ

k–
n xn

〉
–
〈
zt –Δk

nxn,
Δk

nxn –Δk–
n xn

rk,n

〉
+Θk

(
zt ,Δk

nxn
)
. (.)

By (.), we have ‖AkΔ
k
nxn–AkΔ

k–
n xn‖ →  as n → ∞. Furthermore, by themonotonic-

ity of Ak , we obtain 〈zt –Δk
nxn,Akzt –AkΔ

k
nxn〉 ≥ . Then, by (A), we obtain

〈zt –w,Akzt〉 ≥ ϕk(w) – ϕk(zt) +Θk(zt ,w). (.)

Utilizing (A), (A), and (.), we obtain

 = Θk(zt , zt) + ϕk(zt) – ϕk(zt)

≤ tΘk(zt , y) + ( – t)Θk(zt ,w) + tϕk(y) + ( – t)ϕk(w) – ϕk(zt)

≤ t
[
Θk(zt , y) + ϕk(y) – ϕk(zt)

]
+ ( – t)〈zt –w,Akzt〉

= t
[
Θk(zt , y) + ϕk(y) – ϕk(zt)

]
+ ( – t)t〈y –w,Akzt〉,

http://www.journalofinequalitiesandapplications.com/content/2014/1/492


Ceng et al. Journal of Inequalities and Applications 2014, 2014:492 Page 34 of 40
http://www.journalofinequalitiesandapplications.com/content/2014/1/492

and hence

 ≤ Θk(zt , y) + ϕk(y) – ϕk(zt) + ( – t)〈y –w,Akzt〉.

Letting t → , we have, for each y ∈ C,

 ≤ Θk(w, y) + ϕk(y) – ϕk(w) + 〈y –w,Akw〉.

This implies that w ∈ GMEP(Θk ,ϕk ,Ak), and hence, w ∈ ⋂M
k=GMEP(Θk ,ϕk ,Ak). Thus,

w ∈ Fix(T)∩⋂M
k=GMEP(Θk ,ϕk ,Ak)∩⋂N

m= I(Bm,Rm).
Furthermore, let us show that w ∈ Γ . In fact, define

T̃v =

{
∇f (v) +NCv, if v ∈ C,
∅, if v /∈ C,

where NCv = {u ∈ H : 〈v – x,u〉 ≥ ,∀x ∈ C}. Then T̃ is maximal monotone and  ∈ T̃v if
and only if v ∈ VI(C,∇f ); see []. Let (v, ṽ) ∈ G(T̃). Then we have ṽ ∈ T̃v = ∇f (v) +NCv,
and hence, ṽ –∇f (v) ∈NCv. So, we have 〈v – x, ṽ –∇f (v)〉 ≥ , for all x ∈ C.
On the other hand, from tn = PC(vn – λn∇fαn (vn)) and v ∈ C, we get 〈vn – λn∇fαn (vn) –

tn, tn – v〉 ≥ , and hence,〈
v – tn,

tn – vn
λn

+∇fαn (vn)
〉
≥ .

Therefore, from ṽ –∇f (v) ∈NCv and tni ∈ C, we have

〈v – tni , ṽ〉 ≥ 〈
v – tni ,∇f (v)

〉
≥ 〈

v – tni ,∇f (v)
〉
–
〈
v – tni ,

tni – vni
λni

+∇fαni (vni )
〉

=
〈
v – tni ,∇f (v)

〉
–
〈
v – tni ,

tni – vni
λni

+∇f (vni )
〉
– αni〈v – tni , vni〉

=
〈
v – tni ,∇f (v) –∇f (tni )

〉
+
〈
v – tni ,∇f (tni ) –∇f (vni )

〉
–
〈
v – tni ,

tni – vni
λni

〉
– αni〈v – tni , vni〉

≥ 〈
v – tni ,∇f (tni ) –∇f (vni )

〉
–
〈
v – tni ,

tni – vni
λni

〉
– αni〈v – tni , vni〉.

Hence, it is easy to see that 〈v–w, ṽ〉 ≥  as i→ ∞. Since T̃ is maximalmonotone, we have
w ∈ T̃–, and hence, w ∈ VI(C,∇f ) = Γ . Consequently, w ∈ ⋂M

k=GMEP(Θk ,ϕk ,Ak) ∩⋂N
i= I(Bi,Ri)∩ Fix(T)∩ Γ =:Ω . This shows that ωw(xn)⊂ Ω .
Step . We prove that ωw(xn) ⊂ Ξ .
Indeed, utilizing Lemmas . and ., from (.) and (.), we find that, for all p ∈ Ω ,

‖xn+ – p‖

=
∥∥εnγ (δnVxn + ( – δn)Sxn

)
+ (I – εnμF)yn – p

∥∥
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=
∥∥εnγ (δnVxn + ( – δn)Sxn

)
– εnμFp + (I – εnμF)yn – (I – εnμF)p

∥∥
=
∥∥εn[δn(γVxn –μFp) + ( – δn)(γ Sxn –μFp)

]
+ (I – εnμF)yn – (I – εnμF)p

∥∥
=
∥∥εn[δn(γVxn – γVp) + ( – δn)(γ Sxn – γ Sp)

]
+ (I – εnμF)yn – (I – εnμF)p

+ εn
[
δn(γVp –μFp) + ( – δn)(γ Sp –μFp)

]∥∥
≤ ∥∥εn[δn(γVxn – γVp) + ( – δn)(γ Sxn – γ Sp)

]
+ (I – εnμF)yn – (I – εnμF)p

∥∥
+ εnδn

〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ [

εn
∥∥δn(γVxn – γVp) + ( – δn)(γ Sxn – γ Sp)

∥∥ + ∥∥(I – εnμF)yn – (I – εnμF)p
∥∥]

+ εnδn
〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ [

εn
(
δnγρ‖xn – p‖ + ( – δn)γ ‖xn – p‖) + ( – εnτ )‖yn – p‖]

+ εnδn
〈
(γVp –μFp),xn+ – p

〉
+ ( – δn)εn

〈
(γ Sp –μFp),xn+ – p

〉
=
[
εn
(
 – δn( – ρ)

)
γ ‖xn – p‖ + ( – εnτ )‖yn – p‖]

+ εnδn
〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ [

εn
(
 – δn( – ρ)

)
γ ‖xn – p‖ + ( – εnτ )

(‖xn – p‖ + αnb‖p‖
)]

+ εnδn
〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ [

εn
(
 – δn( – ρ)

)
γ
(‖xn – p‖ + αnb‖p‖

)
+ ( – εnτ )

(‖xn – p‖ + αnb‖p‖
)]

+ εnδn
〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
=
(
 – εn(τ – γ ) – εnδn( – ρ)γ

)(‖xn – p‖ + αnb‖p‖
)

+ εnδn
〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ (

 – εn(τ – γ ) – εnδn( – ρ)γ
)(‖xn – p‖ + αnb‖p‖

)
+ εnδn

〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ (

 – εnδn( – ρ)γ
)[‖xn – p‖ + αnb‖p‖

(
‖xn – p‖ + αnb‖p‖

)]
+ εnδn

〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ (

 – εnδn( – ρ)γ
)‖xn – p‖ + εnδn

〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
+ αnb‖p‖

(
‖xn – p‖ + αnb‖p‖

)
. (.)

Take an arbitrary w ∈ ωw(xn). Then there exists a subsequence {xni} of {xn} such that
xni ⇀ w. Utilizing (.), we obtain, for all p ∈ Ω ,

‖xn+ – p‖

≤ (
 – εn(τ – γ ) – εnδn( – ρ)γ

)(‖xn – p‖ + αnb‖p‖
)

+ εnδn
〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ (‖xn – p‖ + αnb‖p‖

) + εnδn
〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
,
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which implies that

〈
(μF – γ S)p,xn – p

〉
≤ 〈

(μF – γ S)p,xn – xn+
〉
+
〈
(μF – γ S)p,xn+ – p

〉
≤ ∥∥(μF – γ S)p

∥∥‖xn – xn+‖ + (‖xn – p‖ + αnb‖p‖) – ‖xn+ – p‖
εn( – δn)

+
δn

 – δn

〈
(γV –μF)p,xn+ – p

〉
≤ ∥∥(μF – γ S)p

∥∥‖xn – xn+‖

+
(‖xn – xn+‖ + αnb‖p‖)(‖xn – p‖ + ‖xn+ – p‖ + αnb‖p‖)

εn( – δn)

+
δn

 – δn

∥∥(γV –μF)p
∥∥‖xn+ – p‖. (.)

Since the combination of the boundedness of {xn}, δn → , αn = o(εn), and ‖xn – xn+‖ =
o(εn) (due to Step ) implies that

lim
n→∞

(‖xn – xn+‖ + αnb‖p‖)(‖xn – p‖ + ‖xn+ – p‖ + αnb‖p‖)
εn( – δn)

= ,

from (.), we conclude that

〈
(μF – γ S)p,w – p

〉
= lim

i→∞
〈
(μF – γ S)p,xni – p

〉
≤ lim sup

n→∞

〈
(μF – γ S)p,xn – p

〉
≤ , ∀p ∈ Ω ,

that is,

〈
(μF – γ S)p,w – p

〉≤ , ∀p ∈ Ω . (.)

Since μF – γ S is (μη – γ )-strongly monotone and (μκ + γ )-Lipschitz continuous, by
Minty’s lemma [] we know that (.) is equivalent to the VIP

〈
(μF – γ S)w,p –w

〉≥ , ∀p ∈ Ω . (.)

So, it follows that w ∈ VI(Ω ,μF – γ S) =: Ξ . This shows that ωw(xn) ⊂ Ξ .
Step . We prove that xn → x∗ where {x∗} =VI(Ξ ,μF – γV ).
Indeed, note that {x∗} =VI(Ξ ,μF – γV ). Since {xn} is bounded and H is reflexive, there

exists a subsequence {xni} of {xn} such that xni ⇀ w and

lim sup
n→∞

〈
(γV –μF)x∗,xn – x∗〉 = lim sup

i→∞

〈
(γV –μF)x∗,xni – x∗〉 = 〈(γV –μF)x∗,w – x∗〉.

According to Step , we get w ∈ Ξ . So, it follows from {x∗} =VI(Ξ ,μF – γV ) that

lim sup
n→∞

〈
(γV –μF)x∗,xn – x∗〉 = 〈(γV –μF)x∗,w – x∗〉≤ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/492


Ceng et al. Journal of Inequalities and Applications 2014, 2014:492 Page 37 of 40
http://www.journalofinequalitiesandapplications.com/content/2014/1/492

However, from x∗ ∈ Ξ ⊂ Ω and condition (C), we deduce that, for sufficiently large
n≥ ,

〈
(γ S –μF)x∗,xn+ – x∗〉
=
〈
(γ S –μF)x∗,xn+ – PΩxn+

〉
+
〈
(γ S –μF)x∗,PΩxn+ – x∗〉

≤ 〈
(γ S –μF)x∗,xn+ – PΩxn+

〉
≤ ∥∥(γ S –μF)x∗∥∥d(xn+,Ω)

≤ ∥∥(γ S –μF)x∗∥∥( 
k̄
‖xn+ – Txn+‖

)/θ

. (.)

Utilizing Lemma .(a), we have, for sufficiently large n≥ ,

‖xn+ – Txn+‖
≤ ‖xn+ – Txn‖ + ‖Txn – Txn+‖

≤  + ξ

 – ξ
‖xn – xn+‖ +

∥∥εnγ (δnVxn + ( – δn)Sxn
)
+ (I – εnμF)yn – Txn

∥∥
≤  + ξ

 – ξ
‖xn – xn+‖ + ‖yn – Txn‖ + εn

∥∥γ (δnVxn + ( – δn)Sxn
)
–μFyn

∥∥
≤  + ξ

 – ξ
‖xn – xn+‖ + ‖yn – xn‖ + ‖xn – Txn‖ + εn

∥∥γ (δnVxn + ( – δn)Sxn
)
–μFyn

∥∥
≤  + ξ

 – ξ
‖xn – xn+‖ + ‖yn – xn‖ + ‖xn – Ttn‖ + ‖Ttn – Txn‖

+ εn
∥∥γ δn(Vxn – Sxn) + γ Sxn –μFyn

∥∥
≤  + ξ

 – ξ
‖xn – xn+‖ + ‖yn – xn‖ + ‖xn – tn‖ + ‖tn – Ttn‖

+ ‖Ttn – Txn‖ + εn
∥∥γ δn(Vxn – Sxn) + γ Sxn –μFyn

∥∥
≤  + ξ

 – ξ
‖xn – xn+‖ + ‖yn – xn‖ +

(
 +

 + ξ

 – ξ

)
‖tn – xn‖ + ‖tn – Ttn‖ + εnM̃, (.)

where M̃ = supn≥ ‖γ δn(Vxn – Sxn) + γ Sxn – μFyn‖ < ∞. Hence, for a large enough con-
stant k̄ > , from (.) and (.), we have, for sufficiently large n ≥ ,

〈
(γ S –μF)x∗,xn+ – x∗〉

≤ ∥∥(γ S –μF)x∗∥∥( 
k̄
‖xn+ – Txn+‖

)/θ

≤ ∥∥(γ S –μF)x∗∥∥{ 
k̄

[
 + ξ

 – ξ
‖xn – xn+‖ + ‖yn – xn‖ +

(
 +

 + ξ

 – ξ

)
‖tn – xn‖

+ ‖tn – Ttn‖ + εnM̃

]}/θ

≤ k̄
(
εn + ‖xn – xn+‖ + ‖yn – xn‖ + ‖xn – tn‖ + ‖tn – Ttn‖

)/θ
≤ k̄ε/θn

(
 +

‖xn – xn+‖ + ‖yn – xn‖ + ‖xn – tn‖ + ‖tn – Ttn‖
εn

)/θ

. (.)
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Next we prove that limn→∞ ‖xn – x∗‖ = . As a matter of fact, putting p = x∗ in (.),
we obtain from (.) that

∥∥xn+ – x∗∥∥
≤ (

 – εnδn( – ρ)γ
)∥∥xn – x∗∥∥ + εnδn

〈
(γV –μF)x∗,xn+ – x∗〉

+ εn( – δn)
〈
(γ S –μF)x∗,xn+ – x∗〉 + αnb

∥∥x∗∥∥(∥∥xn – x∗∥∥ + αnb
∥∥x∗∥∥)

≤ (
 – εnδn( – ρ)γ

)∥∥xn – x∗∥∥ + εnδn( – ρ)γ · 
( – ρ)γ

[〈
(γV –μF)x∗,xn+ – x∗〉

+ ( – δn)
〈(γ S –μF)x∗,xn+ – x∗〉

δn

]
+ αnb

∥∥x∗∥∥(∥∥xn – x∗∥∥ + αnb
∥∥x∗∥∥)

≤ (
 – εnδn( – ρ)γ

)∥∥xn – x∗∥∥ + εnδn( – ρ)γ · 
( – ρ)γ

[〈
(γV –μF)x∗,xn+ – x∗〉

+ k̄
ε/θn
δn

(
 +

‖xn – xn+‖ + ‖yn – xn‖ + ‖xn – tn‖ + ‖tn – Ttn‖
εn

)/θ]
+ αnb

∥∥x∗∥∥(∥∥xn – x∗∥∥ + αnb
∥∥x∗∥∥). (.)

Since
∑∞

n= εnδn = ∞,
∑∞

n= αn < ∞, ε/θn
δn

→ , ‖xn – yn‖ = o(εn), and ‖xn – xn+‖ = o(εn),
we conclude from (.), (.), and xn ⇀ x∗ that

∑∞
n= εnδn(–ρ)γ =∞,

∑∞
n= αnb‖x∗‖×

(‖xn – x∗‖ + αnb‖x∗‖)≤ ∞, and

lim sup
n→∞


( – ρ)γ

[〈
(γV –μF)x∗,xn+ – x∗〉

+ k̄
ε/θn
δn

(
 +

‖xn – xn+‖ + ‖yn – xn‖ + ‖xn – tn‖ + ‖tn – Ttn‖
εn

)/θ]
≤ .

Therefore, applying Lemma . to (.), we infer that limn→∞ ‖xn – x∗‖ = . This com-
pletes the proof. �

Remark . Algorithm . and Theorem . extend and generalize algorithms and con-
vergence results in [, ].
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