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Abstract
In this paper, we study the blow-up singularity of a semilinear parabolic equation with
nonlinear memory both in the reaction term and the boundary condition. We firstly
establish the local solvability for a large class of semilinear parabolic equations with
various nonlocal reaction terms. Secondly, we give a complete classification for the
existence of a blow-up solution and a global solution. Next, we show that under
some hypotheses the blow-up can only occur on the boundary of the domain.
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1 Introduction
In this paper, we devote our attention to the singularity analysis for the semilinear equation
with nonlinear memory both in the reaction term and the boundary,

⎧⎪⎪⎨
⎪⎪⎩
ut =�u + uq

∫ t
 u

p (x, s)ds, x ∈ �, t > ,
∂u
∂ν

= uq
∫ t
 u

p (x, s)ds, x ∈ ∂�, t > ,

u(x, ) = u(x), x ∈ �,

(.)

where pi ≥ , qi ≥  (i = , ), � is a bounded domain in RN having piecewise smooth
boundary ∂� with outward pointing unit normal ν . The initial data u(x) is a nontrivial,
nonnegative, and continuous function on �.
Models involving memory terms in reaction have arisen in studies of nuclear reactor

dynamics [, ] and population dynamics [], specifically in the case of logistic growth
models involving both nondelayed and hereditary effects [, ]. Solvability, stabilization,
and blow-up in finite time of solutions for a variety of generalizations of suchmodels have
subsequently been investigated in a number of previous works, e.g., [–]. Particularly,
the blow-up properties of semilinear parabolic equation involving memory terms in a re-
action,

ut =�u + uq
∫ t


up(x, s)ds, (.)
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coupled with a zero Dirichlet boundary condition has been completely studied (see [–
]). Among other things, the authors obtained the following result: () Assume p + q > .
If q ≥ , then u blows up in finite time for sufficiently large u, and u exists globally for
sufficiently small u. If q ≤  then u blows up in finite time for any nonnegative nontriv-
ial u. () If p+q ≤ , then u exists globally for any nonnegative u.Meanwhile, the authors
obtained the blow-up rate in the case of q = , p >  in []. Furthermore, some authors ex-
tended the aboveworks for the semilinear case (.) to degenerate reaction-diffusion equa-
tions involving a nonlinear memory term and obtained a corresponding blow-up analysis
(see, for example, [–]).
Memory terms in diffusion have been studied as well, arising in models of viscoelastic

forces in non-Newtonian fluids [, ] and resulting from a modified Fourier law applied
to anisotropic, nonhomogeneous media [].
Despite the volume of work done on models incorporating memory in reaction, diffu-

sion, or both, there appear to be very few appearances in the literature of diffusion models
in which such terms are present in the boundary flux.
Recently, Deng et al. did some good work on the models with flux at the boundary gov-

erned by a nonlinear memory law in [, ]. Particularly, the authors studied the follow-
ing model that has been formulated for capillary growth in solid tumors as initiated by
angiogenic growth factors in []:

⎧⎪⎪⎨
⎪⎪⎩
ut =�u, x ∈ �, t > ,
∂u
∂ν

= uq
∫ t
 u

p(x, s)ds, x ∈ ∂�, t > ,

u(x, ) = u(x), x ∈ �.

(.)

Their primary result is that if  ≤ p + q ≤ , then every solution of (.) is global. On the
other hand, if p + q > , then all nonnegative, nontrivial solutions blow up in finite time.
Besides this, the authors proved that if p > , q =  or p ≥ , q > , blow-up can occur only
on the boundary.
For more related works with nonlinear memory, we refer the reader to [, , –]

and the references therein.
Motivated by above works, we investigate the blow-up properties of problem (.) in this

paper. According to the aforementioned works, one may expect that the blow-up result
of (.) is a combination of (.) and (.) to some extent. In fact, we shall prove that if
p + q ≤  and p + q ≤ , solution exists globally for any nonnegative u. We also find
that if p +q >  or p +q > , a blow-up singularity occurs and all nonnegative nontrivial
solutions blow up in finite time. We notice that the main idea as regards the time-integral
nonlocal problems is that only when the time is large, the time-integral term dominates
the evolution of the solutions. Therefore, for problem (.), a solution still maybe exists
globally even when p + q > . For our problem (.), however, if p + q >  or p + q > ,
there is no global solution. Thus, one can see that the nonlinear memory boundary plays
an important role in accelerating the occurrence of a blow-up singularity.
The remaining part of this paper is organized as follows. In Section , we prove the local

solvability of a wide class of integro-differential equations of the parabolic type involving
nonlinear memory terms, which include (.). In Section , we give the comparison prin-
ciple which will be used later for nonnegative solutions to (.). In Section , we establish
the global existence and finite time blow-up result. In the last section, we shall investigate
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the blow-up set. We will prove that the blow-up may only occur on the boundary of the
domain in some cases.

2 Local solvability
In this section we derive the local solvability for a large class of semilinear parabolic equa-
tions with various nonlocal reaction terms and memory boundaries, which include (.).
Furthermore, we give the local existence theorem for (.), where the nonlinearity ismerely
locally Hölder continuous.

Theorem . Assume that F , f , H , and h are all locally Lipschitz continuous functions.
Consider the following problem:

⎧⎪⎪⎨
⎪⎪⎩
ut =�u + F(u,

∫ t
 f (u(·, s))ds), x ∈ �, t > ,

∂u
∂ν

=H(u,
∫ t
 h(u(·, s))ds), x ∈ ∂�, t > ,

u(x, ) = u(x), x ∈ �.

(.)

For every u ∈ C(�), then there exists a T >  such that the problem has a unique classical
solution u ∈ C(� × [,T])∩C,(� × (,T)).

Proof Set � ≡ {u ∈ L∞(� × (,T));‖u‖L∞(�) ≤M}, whereM >M ≡ sup� |u|.
Given u ∈ L∞(� × (,T)), define

�[u](x, t) ≡
∫

�

GN (x, y, t, )u(y)dy +
∫ t



∫
�

GN (x, y, t, τ )F
(
u,

∫ τ


f
(
u(·, s))ds)dydτ

+
∫ t



∫
∂�

GN (x, y, t, τ )H
(
u,

∫ τ


h
(
u(·, s))ds)dSy dτ .

Here GN (x, y, t, τ ) is the Green’s function for the heat equation with homogeneous
Neumann boundary condition. (We refer the readers to [, ] and [] for its con-
struction and properties.) As F , f , H , and h are all locally Lipschitz continuous functions,
we may assume that, for all M > , there exists L = L(M), l = l(M), K = K (M), k = k(M)
such that, for all a,a,b,b ∈ R with |a|, |a|, |b|, |b| ≤M, the functions F , f satisfy

∣∣F(a,b) – F(a,b)
∣∣ ≤ L

(|a – a| + |b – b|
)
,

∣∣f (a) – f (a)
∣∣ ≤ l

(|a – a|
)
,

and H , h satisfy

∣∣H(a,b) –H(a,b)
∣∣ ≤ K

(|a – a| + |b – b|
)
,

∣∣h(a) – h(a)
∣∣ ≤ k

(|a – a|
)
.

Noticing that
∫
�
GN (x, y, t, )dy =  and supx∈�,≤τ≤t

∫ τ


∫
∂�

GN (x, y, τ ,η)dSy dη ≤ Ct/

for constants ε,C >  with t < ε [], we have

∥∥�[u]
∥∥
L∞(�) ≤ M +C

∫ t



(
F(, ) + L

(
‖u‖ +

∫ τ



(
f () + l‖u‖)dσ

))
dτ

+Ct/
(
H(, ) +K

(
‖u‖ +

∫ τ



(
h() + k‖u‖)dσ

))
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≤ M +CT
(
F(, ) + LM + L

(
f () + lM

)
T

)
+CT /(H(, ) +KM +K

(
h() + kM

)
T

)
,

which implies ‖�[u]‖L∞(�) ≤M if T is small enough.
So, � is a mapping from � into itself.
Similarly, we obtain

∥∥�[u] –�[v]
∥∥
L∞(�) ≤

∥∥∥∥
∫ t



∫
�

GN (x, y, t, τ )
(
F
(
u,

∫ τ


f
(
u(·, s))ds)

– F
(
v,

∫ τ


f
(
v(·, s))ds))

dydτ

∥∥∥∥
+

∥∥∥∥
∫ t



∫
∂�

GN (x, y, t, τ )
(
H

(
u,

∫ τ


h
(
u(·, s))ds)

–H
(
v,

∫ τ


h
(
v(·, s))ds))

dSy dτ

∥∥∥∥
≤ (

TL( + Tl) +KCT /( + Tk)
)‖u – v‖.

Therefore, ifT >  is small enough, thenwe see that� is a strict contraction. Thus,� has
a unique fixed point by Banach’s fixed point theorem. This implies that, for any u ∈ C(�),
there exists a unique local solution u ∈ L∞((,T)×�) in the integral sense for T >  small
enough.
Concerning the regularity, we can see that the corresponding solution u is automatically

in C,(� × (,T)) from the standard bootstrap argument. On the other hand, the conti-
nuity of the solution u ∈ C(� × [,T]) follows from (.) itself (see [] for details). �

Of course, when min{p,q,p,q} <  in problem (.), the above local well-posedness
does not apply to (.). However, for problem (.), we still have the following local exis-
tence theorem.

Theorem . For every nonnegative nontrivial u ∈ C(�), there exists a T >  such that
problem (.) has a unique nonnegative classical solution u ∈ C(� × [,T]) ∩ C,(� ×
(,T)).

Proof We may only give the proof for the case that pi,qi <  (i = , ). Let

fin(z) =

{
zpi , z > 

n ,
(pin–piz + –pi

npi )+, otherwise,

and, similarly,

gin(z) =

{
zqi , z > 

n ,
(qin–qiz + –qi

nqi )+, otherwise.

Note that fi(n), gi(n) (i = , ) are monotone decreasing with respect to n and

fin(z) →
{
zpi , z > ,
, z ≤ ,

gin(z) →
{
zqi , z > ,
, z ≤ ,

as n→ ∞.
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For any fixed n, fi(n), gi(n) (i = , ) are non-decreasing, locally Lipschitz functions
of z.
Let (un) be a sequence of solutions such that

⎧⎪⎪⎨
⎪⎪⎩
(un)t =�un + gn(un)

∫ t
 fn(un)(s)ds, x ∈ �, t > ,

∂un
∂ν

= gn(un)
∫ t
 fn(un)(s)ds, x ∈ ∂�, t > ,

u(x, ) = u(x), x ∈ �.

(.)

Then we have a unique classical approximated solution un by Theorem .. Since fin(),
gin() ≥ , by the maximum principle we know that un ≥ , and by the comparison theo-
rem (see Lemma.)we see that un ismonotone decreasing.Hence, there exists a bounded
nonnegative function u = limn→∞ un, which corresponds to the continuous solution of
(.). On the other hand, we get the additional regularity of u from the standard argument.
When u is nontrivial, the uniqueness follows from the strong maximum principle. �

3 Comparison principle
In order to use the super-sub-solution technique, we next introduce the definition of the
super- and the sub-solution and the comparison principle for problem (.).

Definition . A function u is called the super-solution of problem (.) if u(x, t) ∈
C,(� × [,T)) and satisfies

⎧⎪⎪⎨
⎪⎪⎩
ut ≥ �u + uq

∫ t
 u

p (x, s)ds, x ∈ �, t > ,
∂u
∂ν

≥ uq
∫ t
 u

p (x, s)ds, x ∈ ∂�, t > ,

u(x, )≥ u(x), x ∈ �.

(.)

Similarly, we can obtain the definition of sub-solution of problem (.) by all inequalities
revised.

Lemma . Suppose that w(x, t) ∈ C,(� × (,T))∩C(� × [,T]) and satisfies

⎧⎪⎪⎨
⎪⎪⎩
wt ≥ �w + aw + a

∫ t
 a(x, s)w(x, s)ds, x ∈ �, t > ,

∂w
∂ν

≥ aw + a
∫ t
 a(x, s)w(x, s)ds, x ∈ ∂�, t > ,

w(x, )≥ , x ∈ �,

(.)

where ai(x, t) (i = , , . . . , ) are bounded functions and ai ≥  (i = , , , ). Then w ≥ .

Proof Let ξ (x) be a positive smooth function and satisfies ∂ξ

∂ν
≥ αξ , α >  is a constant to be

determined later. LetW (x, t) = e–λtξ (x)w(x, t), where λ >  is a constant to be determined.
Then, if we choose α > ‖a‖∞ +T‖a‖∞‖a‖∞, λ > ‖�ξ

ξ
‖∞ +‖a‖∞ +T‖a‖∞‖a‖∞, then

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Wt ≥ �W + ∇ξ

ξ
· ∇W + (�ξ

ξ
+ a – λ)W

+ ae–λt ∫ t
 ae

λsW (x, s)ds, x ∈ �, t > ,
∂W
∂ν

≥ (a – 
ξ

· ∂ξ

∂ν
)W + ae–λt ∫ t

 ae
λsW (x, s)ds, x ∈ ∂�, t > ,

W (x, )≥ , x ∈ �.

(.)
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Suppose thatW (x, t) attains negativeminimumat (x, t). If x ∈ �, thenWt ≤ ,�W ≥ ,
∇W =  at (x, t). On the other hand, we know from the first inequality of (.) that

Wt ≥ �W +
∇ξ

ξ
· ∇W +

(
�ξ

ξ
+ a + Taa – λ

)
W (x, t) > , x ∈ �, t > .

This is a contradiction.
If x ∈ ∂�, then at (x, t),

∂W
∂ν

≥ –W (x, t)
(

ξ

· ∂ξ

∂ν
– a – ae–λt

∫ t


aeλs ds

)
> ,

which contradict to ∂W
∂ν

|(x,t) ≤ . Therefore, for any (x, t) ∈ � × [,T], we have W (x,
t) ≥ . The same for w(x, t). �

Lemma . Suppose that pi ≥ , qi ≥  (i = , ). If u and u are the nonnegative super-
solution and sub-solution of (.), respectively, then u ≥ u in � × [,T).

Proof Let w = u – u. It is easy to verify that w satisfies (.), where ai (i = , , . . . , ) are
such that

[
uq (x, t) – uq (x, t)

] ∫ t


up (x, s)ds≡ a(x, t)

[
u(x, t) – u(x, t)

]
,

a(x, t)≡ uq (x, t),

up (x, t) – up (x, t)≡ a(x, t)
[
u(x, t) – u(x, t)

]
,

[
uq (x, t) – uq (x, t)

]∫ t


up (x, s)ds≡ a(x, t)

[
u(x, t) – u(x, t)

]
,

a(x, t)≡ uq (x, t),

up (x, t) – up (x, t)≡ a(x, t)
[
u(x, t) – u(x, t)

]
.

From Lemma ., we know u ≥ u. �

Remark . From the above proof, we know when pi <  or qi <  (i = , ) and there exists
some δ >  such that u ≥ δ > , u ≥ , the functions ai (i = , , . . . , ) are still bounded.
Therefore the conclusion of the lemma is valid in this case.

Using Lemma ., we could obtain another version of the comparison theorem, which
is useful in the proof of the local existence of the solution.

Lemma . Let fi, gi (i = , ) be non-decreasing locally Lipschitz functions. Suppose that
u, v ∈ C,(� × (,T))∩C(� × [,T]) such that

⎧⎪⎪⎨
⎪⎪⎩
ut –�u – g(u)

∫ t
 f(u)(s)ds≥ vt –�v – g(v)

∫ t
 f(v)(s)ds≥ , x ∈ �, t > ,

∂u
∂ν

– g(u)
∫ t
 f(u)(s)ds≥ ∂v

∂ν
– g(v)

∫ t
 f(v)(s)ds≥ , x ∈ ∂�, t > ,

u(x, ) = u(x)≥ v(x, ) = v(x) ≥ , x ∈ �.

Then u(x, t)≥ v(x, t)≥  in � × [,T).

http://www.journalofinequalitiesandapplications.com/content/2014/1/472


Wang et al. Journal of Inequalities and Applications 2014, 2014:472 Page 7 of 17
http://www.journalofinequalitiesandapplications.com/content/2014/1/472

Proof The proof is similar to that of Theorem . in [] by using Lemma .. We only give
a sketch of the proof.
We only need to prove u(x, t)≥ v(x, t) in�×[,T). Setw(x, t) = u(x, t)–v(x, t). Let ai(x, t)

(i = , , . . . , ) be continuous functions defined by

a(x, t) =
∫ t


f(u)ds×

⎧⎨
⎩

g(u)–g(v)
u–v , u �= v,

g ′
(u), u = v,

a(x, t) = g(v),

a(x, t) =

⎧⎨
⎩

f(u)–f(v)
u–v , u �= v,

f ′
 (u), u = v,

a(x, t) =
∫ t


f(u)ds×

⎧⎨
⎩

g(u)–g(v)
u–v , u �= v,

g ′
(u), u = v,

a(x, t) = g(v),

a(x, t) =

⎧⎨
⎩

f(u)–f(v)
u–v , u �= v,

f ′
(u), u = v.

Then w(x, t) satisfies the condition of the lemma. Thus, w(x, t) ≥  in � × [,T). �

4 Global existence and finite time blow-up
In this section, we shall determine when the solution of problem (.) exists globally or
blows up in finite time. We first establish the global existence result.

Theorem. If p +q ≤  and p +q ≤ , then the solution of problem (.) exists globally
for any nonnegative u.

Proof We shall construct a super-solution of (.). From [], we know that there exists a
function ϕ(x) ∈ C(�) satisfying

 < ϕ(x)≤ , x ∈ �, ∇ϕ · ν ≥ , x ∈ ∂�.

Denotem =max� |∇ϕ| and m =max� |�ϕ|. Define

u =Meδt+ϕ ,

where

M =max
{‖u‖L∞(�), 

}
, δ =max

{
m

 +m + , /p, /p
}
.

Direct calculations show that

ut –�u – uq
∫ t


up (x, s)ds

=Meδt+ϕ

[
δ – |∇ϕ| –�ϕ –Mp+q–

(
eδt+ϕ

)q– ∫ t



(
eδs+ϕ

)p ds]

http://www.journalofinequalitiesandapplications.com/content/2014/1/472
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≥Meδt+ϕ
[
δ –m

 –m –
(
Meδt+ϕ

)p+q–/(δp)]
≥Meδt+ϕ

[
δ –m

 –m – /(δp)
]

≥ ,

∂u
∂ν

– uq
∫ t


up (x, s)ds

=Meδt+ϕ

[
∂ϕ

∂ν
–Mp+q–

(
eδt+ϕ

)q– ∫ t



(
eδs+ϕ

)p ds]

≥Meδt+ϕ
[
 –

(
Meδt+ϕ

)p+q–/(δp)]
≥ .

We notice that

u(x, ) =Meϕ ≥M ≥ u(x).

Therefore, u is a super-solution of problem (.). From the comparison principle, we know
the solution of (.) exists globally. �

In the remainder of this section, we shall establish the finite time blow-up result of prob-
lem (.). We have the following theorem.

Theorem . If p + q >  or p + q > , then all nonnegative solutions of (.) blow up in
finite time.

To prove this theorem, we need to consider first the following problem:

⎧⎪⎪⎨
⎪⎪⎩
ut =�u + c

∫ t
 u

λ(x, s)ds, x ∈ �, t > ,
∂u
∂ν

= , x ∈ ∂�, t > ,

u(x, ) = u(x), x ∈ �.

(.)

Lemma. For any positive constant c, if λ > , then all nonnegative solutions of (.) blow
up in finite time.

Proof Fromnowon,we use ci (i = , , . . .) to denote various positive constants. LetGN (x, y,
t, τ ) be the Green’s function for the heat equation with homogeneous Neumann boundary
condition. Then we have the following representation formulas for the solution of (.):

u(x, t) =
∫

�

GN (x, y, t, )u(y)dy

+ c
∫ t



∫
�

GN (x, y, t, τ )
∫ τ


uλ(y, s)dsdydτ . (.)

As is well known, the Green’s function GN satisfies (see, e.g., [])

c ≤
∫

�

GN (x, y, t, τ )dx≤ c, y ∈ �, ≤ τ < t < T . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/472
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By (.), (.), and Jensen’s inequality, we have

∫
�

u(x, t)dx =
∫

�

∫
�

GN (x, y, t, )u(y)dydx

+ c
∫

�

(∫ t



∫
�

GN (x, y, t, τ )
∫ τ


uλ(y, s)dsdydτ

)
dx

≥ c
∫

�

u(y)dy + cc
∫ t



∫
�

∫ τ


uλ(y, s)dsdydτ

≥ c + c
∫ t


τ –λ

(∫ τ



∫
�

u(y, s)dyds
)λ

dτ . (.)

Denote

F(t) =
∫ t



∫
�

u(x, τ )dxdτ , t > .

Then it follows from (.) that

F ′(t) ≥ c + c
∫ t


τ –λFλ(τ )dτ , t > .

Integrating this inequality from  to t, we obtain

F(t) ≥ ct + c
∫ t



∫ τ


ζ –λFλ(ζ )dζ dτ

≥ ct + c
∫ t


(t – ζ )ζ –λFλ(ζ )dζ

≥ ct + ct–λ

∫ t


(t – ζ )Fλ(ζ )dζ .

Assume to the contrary that (.) has a global solution u. Then, for any T > , we have

F(t)≥ cT + cT –λ

∫ t

T
(t – ζ )Fλ(ζ )dζ , T ≤ t ≤ T .

Thus, F(t) ≥H(t) for any T < t ≤ T , where

H(t) = cT + cT –λ

∫ t

T
(t – ζ )Hλ(ζ )dζ , T ≤ t ≤ T .

H(t) satisfies

⎧⎨
⎩H ′′(t) = cT –λHλ(t), T < t < T ,

H(T) = cT , H ′(T) = .
(.)

Multiplying the first equality in (.) by H ′(t) and integrating over (T , t), we obtain

H ′(T) = cT (–λ)/[Hλ+(t) –Hλ+(T)
]/.

http://www.journalofinequalitiesandapplications.com/content/2014/1/472
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Integrating this equality again from T to T , one can get

cT (–λ)/ =
∫ T

T

[
Hλ+(t) –Hλ+(T)

]–/H ′(t)dt

=
∫ H(T)

H(T)

[
zλ+ –Hλ+(T)

]–/ dz
≤ (λ + )–/H–λ/(T)

∫ H(T)

H(T)

[
z –H(T)

]–/ dz + (λ+)/
∫ ∞

H(T)
z–(λ+)/ dz

= 
[
(λ + )–/ + (λ – )–

]
c(–λ)/
 T (–λ)/,

that is,

T ≤ 
[
(λ + )–/ + (λ – )–

]
c(–λ)/
 /c. (.)

This leads to a contradiction when T is large enough. Therefore, problem (.) has no
global solution. �

Remark . We can also easily reach our conclusion by using the comparison principle.
In fact, the solution of the corresponding Dirichlet problem,

⎧⎪⎪⎨
⎪⎪⎩
ut =�u + c

∫ t
 u

λ(x, s)ds, x ∈ �, t > ,

u = , x ∈ ∂�, t > ,

u(x, ) = u(x), x ∈ �,

is the sub-solution of (.). We know from Theorem . of [] and Theorem . of []
that if λ >  the solution of this first initial boundary value problem blows up in finite time
for any nonnegative nontrivial initial data. However, applying the representation formula
of the Neumann problem (.), we gave a completely different approach here.

Now we are ready to prove Theorem ..

Proof of Theorem . When p + q > , we first consider the following problem,

⎧⎪⎪⎨
⎪⎪⎩

φt =�φ + φq
∫ t
 φp (x, s)ds, x ∈ �, t > ,

∂φ

∂ν
= , x ∈ ∂�, t > ,

φ(x, ) = φ(x), x ∈ �.

(.)

If q < , we know φ(x, t) >  (x ∈ �, t > ) by the maximum principle. Let

z =Mφ–q ,

whereM = ‖φ‖q∞, then z satisfies

⎧⎪⎪⎨
⎪⎪⎩
zt ≥ �z +M(–p–q)/(–q)( – q)

∫ t
 z

p/(–q)(x, τ )dτ , x ∈ �, t > ,
∂z
∂ν

= , x ∈ ∂�, t > ,

z(x, )≥ φ(x), x ∈ �.
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So z is a super-solution of problem (.). As p
–q

> , Lemma . shows that z blows up in
finite time, so does φ.
Now we consider the case of q ≥ . If p = , the solution of the following ODE:

v′(t) = t · vq , t > ,

v() =min
x∈�

φ(x),

is the sub-solution of problem (.). The fact that p +q >  shows that q > , which leads
to the finite time blow-up of this ODE. So does the solution of (.).
If q ≥  and p �= , for any μ >  there exists a constant cμ >  such that the solution to

(.) satisfies

φ(x, t)≥ cμ, x ∈ ∂�, t ≥ μ > . (.)

Here we used the fact that the solution of the heat equation with homogeneous Neumann
boundary condition is a sub-solution of problem (.).
Let q = α + γ , where γ <  and γ + p > , then we have

φq = φα+γ ≥ cαμφγ , x ∈ ∂�, t ≥ μ > .

Next we consider the following problem:

⎧⎪⎪⎨
⎪⎪⎩
ut =�u + cαμuγ

∫ t
μ
up (x, s)ds, x ∈ �, t > μ,

∂u
∂ν

= , x ∈ ∂�, t > μ,

u(x,μ)≤ u(x,μ), x ∈ �.

(.)

Proceeding analogously to the proof of Lemma . and the case q < , we can show that
u blows up in finite time. Since u is a super-solution of (.), φ cannot exist globally. The
solution to problem (.) is a super-solution of (.).
Therefore, when p + q > , all solutions of (.) blow up in finite time.
When p + q > , we know from [] that solutions of

⎧⎪⎪⎨
⎪⎪⎩
ut =�u, x ∈ �, t > ,
∂u
∂ν

= uq
∫ t
 u

p (x, s)ds, x ∈ ∂�, t > ,

u(x, ) = u(x), x ∈ �,

(.)

blow up in finite time. The comparison principle tells that all solutions of (.) blow up in
finite time. �

5 Blow-up set
Examples in [] indicate that the blow-up may occur in the interior of the domain for
some semilinear parabolic equation if the heat supply through the boundary is fast enough.
However, we shall prove in this section that the blow-up of problem (.) will occur only
at the boundary of the domain in some cases. This implies that the diffusion term is the
dominating term in the interior of the domain for these cases. To this end, we need a
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lemma as follows. We will prove this lemma by the idea introduced in []. However, we
need some careful modification due to the appearance of the nonlinear memory reaction
term.

Lemma . Suppose that the function u(x, t) is continuous on the domain � × [,T) and
satisfies

ut =�u + uq
∫ t


up (x, s)ds, x ∈ �,  < t < T ,

u≤ C
(T – t)q

, x ∈ ∂�,  < t < T

for some  < q < 
p+q–

(p + q > ). Then, for any �′ ⊂⊂ �,

sup
{
u(x, t); (x, t) ∈ �′ × [,T)

}
<∞.

Proof We will prove this lemma in a similar way to Theorem . of [].
Let d(x) = dist(x, ∂�) and

v(x) = d(x) for x ∈ Nε(∂�),

where Nε(∂�) = {x ∈ �,d(x) < ε}. By approximating the domain from inside if necessary,
wemay assumewithout loss of generality that ∂� is smooth, say C. Henceforth, the func-
tion v(x) is in C(Nε(∂�)) if ε is small enough. As stated in Theorem . of [], we could
extend v(x) to a function on � such that v ∈ C(�), v ≥ c >  on � \Nε (∂�) and

�v –
(q + )|∇v|

v
≥ –C∗ on �

for some small enough ε and C∗ > .
Set

w(x, t) =
C

[v(x) + l(T – t)]q
.

Denote S(x, t) = v(x) + l(T – t), then there existM > ,M >  such thatM ≤ S(x, t)≤M

for any (x, t) ∈ �′ × [,T) (�′ ⊂⊂ �). If qp > , then direct calculation shows that

wt –�w –wq
∫ t


wp (x, s)ds

= Cq
[
v(x) + l(T – t)

]–q–(l +�v –
q + 

v(x) + l(T – t)
|∇v|

)

–
Cp+q


l(qp – )
S–q(p+q)+ +

Cp+q


l(qp – )
(
v(x) + lT

)–qpS–qq
≥ CqS–q–

{
l –C∗ –

C
p+q–

l(qp – )
S–q(p+q–)+

[
 –

(
S

v(x) + lT

)qp–]}

≥ CqS–q–
(
l –C∗ –

C
p+q–

ql(qp – )
M–q(p+q–)+



)
.
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Choose l = C∗+[(C∗)+Cp+q–
 (M–q(p+q–)+

 /(qp–))]



 , thenwt –�w–wq
∫ t
 w

p (x, s)ds≥  for
any (x, t) ∈ �′×(,T).Moreover, as q < 

p+q–
, we can chooseC to be large enough so that

w(x, ) ≥ u(x, ) and w(x, t) ≥ u(x, t) for x ∈ ∂�′. Then the comparison principle implies
that w(x, t)≥ u(x, t), and

sup
{
u(x, t); (x, t) ∈ �′ × [,T)

} ≤ C sup

{


vq(x)
;x ∈ �′

}
<∞.

When qp < ,

wt –�w –wq
∫ t


wp (x, s)ds

≥ CqS–q–
{
l –C∗ –

C
p+q–

l(qp – )
S–q(p+q–)+

[
 –

(
S

v(x) + lT

)qp–]}

≥ CqS–q–
(
l –C∗ –

C
p+q–

ql( – qp)
M–q(p+q–)+



(
D

D + lT

)qp–)
,

where D =min
�

′ v(x), D =max
�

′ v(x).
When qp = ,

wt –�w –wq
∫ t


wp (x, s)ds

≥ CqS–q–
{
l –C∗ –

C
p+q–

ql
Dq(–q)+ ln

(
 +

l
M

T
)}

.

By a similar way used in the case of qp > ; we could choose suitable l and C such that
wt –�w–wq

∫ t
 w

p (x, s)ds≥  for any (x, t) ∈ �′ × (,T). Moreover, w(x, )≥ u(x, ) and
w(x, t)≥ u(x, t) for x ∈ ∂�′.
Therefore, when q < 

p+q–
, we get

sup
{
u(x, t); (x, t) ∈ �′ × [,T)

}
<∞

from the comparison principle. �

Now we are ready to give our main result as regards the blow-up set. To this end, we
need the following hypothesis.
(H) �u ≥ , i.e. ut(x, )≥  for all x ∈ �.

Theorem . If p + q >  and one of the following cases occurs, the blow-up of problem
(.) occurs only at the domain of the boundary:

(i) q = , p > p + q, and (H) is valid,
(ii) p = ,
(iii) q > p+q+

 .

Proof GN (x, y, t, τ ) is the Green’s function for the heat equation with a homogeneous
Neumann boundary condition. Then we have the following representation formulas for
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the solution of problem (.):

u(x, t) =
∫

�

GN (x, y, t, )u(y)dy +
∫ t



∫
∂�

GN (x, y, t, τ )uq (y, τ )
∫ τ


up (y, s)dsdSy dτ

+
∫ t



∫
�

GN (x, y, t, τ )uq (y, τ )
∫ τ


up (y, s)dsdydτ . (.)

Next, we consider three cases, respectively.
Case  (q = , p > p + q). Set

J(t) =
∫ t



∫ τ



∫
∂�

up (y, s)dSy dsdτ +
∫ t



∫
�

uq (y, τ )
∫ τ


up (y, s)dsdydτ .

Then

J ′′(t) =
∫

∂�

up (y, t)dSy +
∫

�

[
quq–(y, t)ut(y, t)

∫ t


up (y, s)ds + up+q (y, t)

]
dy.

We have ut ≥  from (H) and the comparison principle of the usual parabolic equation
(see, e.g., []). From [], we know

∫
∂�

GN (x, y, t, τ )dSx ≥ c, y ∈ �, ≤ τ < t < T . (.)

Therefore, (.) and Jensen’s inequality show that

J ′′(t) ≥
∫

∂�

up (y, t)dSy

≥ cp |∂�|–p Jp (t).

Multiplying both sides of the above inequality by J ′(t) and integrating over (, t), we obtain

J ′(t) ≥ cJ (p+)/(t).

Integrating this inequality over (, t), one can get

∫ ∞

J(t)
s–(p+)/ ds≥ c(T – t),

that is,

J(t) ≤ c(T – t)–/(p–), ≤ t < T . (.)

We now take an arbitrary �′ ⊂⊂ � with dist(∂�,�′) = ε > . For this �′, we then take
�′′ ⊂⊂ � such that �′ ⊂⊂ �′′, dist(∂�′′,�′) ≥ ε

 and dist(∂�,�′′) ≥ ε
 . It is well known

that, for any ε > ,

 ≤GN (x, y, t, τ )≤ Cε for |x – y| ≥ ε/,x, y ∈ �,  < τ < t < T , (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/472
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where Cε is a positive constant depending on ε. Then by (.), (.),

max
�

′′ u(x, t) ≤ c +CεJ(t) ≤ c(T – t)–/(p–).

As p > p + q, Lemma . implies that the blow-up occurs only at the boundary.
In the remaining two cases, we set

J̃(t) =
∫ t

σ

∫
∂�

uq (y, τ )
∫ τ

σ

up (y, s)dsdSy dτ

+
∫ t

σ

∫
�

uq (y, τ )
∫ τ

σ

up (y, s)dsdydτ , (.)

where  < σ < T/. In view of Case  and Lemma ., it suffices to prove that J̃(t) satisfies
a similar estimate to (.). Precisely, if we can prove that

J̃(t) ≤ c̃(T – t)–β for T/≤ t < T

for some positive constants c̃, β , then the blow-up can only occur on the boundary ∂�.
Case  (p = ). p + q >  and p =  show that q > . From (.), (.), and Jensen’s

inequality, we can obtain that

J̃ ′(t) =
∫

∂�

uq (y, t)
∫ t

σ

up (y, s)dsdSy +
∫ t

σ

∫
�

uq (y, t)dyds

≥ (t – σ )
∫

�

uq (y, t)dy

≥ T


|�|–q
[∫

�

u(y, t)dy
]q

≥ T

cq |�|–q J̃ q (t).

Integrating this inequality over (t,T), we have

∫ ∞

J̃(t)
s–q ds≥ c̃(T – t),

that is,

J̃(t) ≤ c̃(T – t)–/(q–), T/ ≤ t < T .

Case  (q > p+q+
 ). As q > p+q+

 > , we know from [] that, for some β > , there
exists cβ >  such that, for y ∈ ∂�, t ∈ [T/,T),

∫ t

σ

up (y, s)ds ≥ cpβ (T – σ )≥ cpβ T/.

Denote c̃ = cpβ T/, then

∫ t

σ

up (y, s)ds ≥ c̃. (.)
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Using (.), (.), (.), and Jensen’s inequality, one can easily get

∫
∂�

u(x, t)dSx ≥
∫

∂�

(∫ t



∫
∂�

GN (x, y, t, τ )uq (y, τ )
∫ τ


up (y, s)dsdSy dτ

)
dSx

+
∫

∂�

(∫ t



∫
�

GN (x, y, t, τ )uq (y, τ )
∫ τ


up (y, s)dsdydτ

)
dSx

≥ C

∫ t



∫
∂�

GN (x, y, t, τ )uq (y, τ )
∫ τ


up (y, s)dsdSy dτ

+C

∫ t



∫
�

GN (x, y, t, τ )uq (y, τ )
∫ τ


up (y, s)dsdydτ

≥ C J̃(t).

From this we can obtain

J̃ ′(t) ≥ c̃
∫

∂�

uq (y, t)dSy ≥ c̃c
q
 |∂�|–q J̃ q (t).

Integrating over (,T), we know that

∫ ∞

J̃(t)
s–q ds ≥ c̃(T – t),

that is,

J̃(t) ≤ c̃(T – t)–/(q–), T/ ≤ t < T .

Since q > p+q+
 , we can conclude that u(x, t) blows up only on the boundary in a similar

way to Case  by Lemma .. �
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